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The refractive index of a resonant medium is studied with account of coherent multiple scattering of 
y quanta by nuclei located in the lattice. A general formula is derived for the rE>fractive index of 
Mossbauer y quanta in polycrystals. In the short-wavelength range (A «a, A is the y quantum 
wavelength and a is the interatomic distance), coherent multiple y-quantum scattering in a polycrystal 
yields a contribution which is proportional to (A/a) 2 • The time dependE>nce of the probability of passage 
of y quanta through a resonant filter is calculated. The characteristics of the M'ossbauer spectra are 
considered as functions of the delay time and these spectra are compared with the ordinary Mossbauer 
spectra. 

THE time dE>pendence of the probability of passage 
of y quanta through a resonant filter was first investi
gated by Lynch, Holland, and Hammermeshr1 J and by 
Wu and co-workers[2 J. The results of these investiga
tions are in good agreement with the known classical 
theory of dispersion, according to which the reaction of 
the medium to the y quantum can be described by a 
certain macroscopic refractive index with a frequency 
dependence in the form 

[ a ] '" 1 a n(ro)= 1+ ~ 1+- , 
ro'- ro,' + iyro 2 ro'- ro,' + iyro (1) 

where Wo and y are the resonant frequency and the 
damping coefficient of the classical oscillators, and a 
is a certain factor that depE>nds on the number of reson
ant oscillators per unit volume. As noted in[3 J, the 
"unexpected success" of such a simple model for the 
region of wavelengths much shorter than the interatomic 
distance (A « a) is due to the fact that the contributions 
of all the nuclei to the coherent forward scattering of 
the y quanta, which is responsible for the change in the 
primary wave inside the crystal, are characterized by 
the same phase. It is obvious here that the discrete 
structure of the arrangement of the nuclei does not play 
any role. 

We show in this paper that it is precisely only when 
A « a that this simple model is valid. When A ~ a, 
allowance for multiple coherent scattering of the y 
quantum by an aggregate of resonant nuclei located in 
the periodic structure of the crystal can lead to a sig
nificant deviation of the refractive index from the value 
given by (1). Such a collective effect was first consid
ered in[4 ' 5 l, for regular systems of identical nuclei 
(single crystals). In the present paper we consider the 
case of a polycrystal and obtain general expressions for 
the refractive index of polycrystalline media. In the 
short-wave limit A <<a, formula (1) coincides, accur
ate to (A/ a) 2 , with the general formula obtained by us. 

The refractive index of a resonant medium was in
vestigated in y- resonant experiments. In ordinary ex
periments on y resonance, however, one measures only 
the imaginary part, which is proportional to the cross 
section for the resonant absorption of the y quantum by 
the nucleus: 
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o(E) =- (4n/ AN) Im n(E); (2) 

Here E is the energy of the y quantum and N is the den
sity of the resonant nuclei in the medium. The total 
refractive index can be investigated by measuring the 
time dependence of the probability of passage of a y 
quantum through a resonant filter. The second part of 
this paper is devoted to the calculation of this time dE>
pendence. The results of the calculation of the 
M'ossbauer spectra as functions of the delay time are 
compared with the corresponding results for ordinary 
Mossbauer spectra. This reveals certain advantages of 
the y- resonance procedure in conjunction with the de
layed- coincidence technique. 

1. In quantum theory, the refractive index of a med
ium is directly connected with the amplitudE> of coherent 
forward scattering of a y quantum by a nucleus a~0~h(E): 

n(E)= 1 +("-'/2n)Na~~(E). (3) 

For the y transition between degenerate levels with spin 
I of the excited state and the spin J of the ground state 
we have 

(4) 

where Eo is the resonance energy, rR and r are the 
radiative and total widths of the excited level, and f is 
the probability of recoilless resonant y-quantum ab
sorption. It is easy to write similar formulas also for 
other cases (for example, for polarized nuclei or 
y quanta[6 J). Substitution of (4) in (3) yields for the 
refractive index an expression that coincides with (1). 

However, formulas (1) and (3) are approximate, since 
they do not take into account the possibility of excita
tion transfer from nucleus to nucleus when the y quan
tum passes through the resonant medium. Such a collec
tive effect, which is connected with multiple scattering 
of the y quantum by an aggregate of resonant nuclei, 
plays an important role both in single crystals and in 
polycrystals[4-7J. Let us generalize formulas (1) and (3) 
with allowance for this collective effect. 

To simplify the derivation, we neglect first the influ
ence of the thermal oscillations of the lattice and as
sume that the spin of the ground state of the nucleus is 
equal to zero. Allowance for the thermal oscillations of 
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the lattice and for the spin of the ground state of the 
nucleus has already been considered in detail in [7 J. Nor 
shall we consider the Rayleigh scattering of the y quan
tum by the electron shells. This assumption is fully 
justified for many Mossbauer y quanta at a high con
centration of the resonant nuclei. 

Let us consider the motion of a y quantum with wave 
vector ko and polarization a0 in a crystalline medium. 
Passing through the medium, the y quantum causes 
resonant transitions. Let Csi be the amplitude of the 
state corresponding to excitat~on of only a nucleus at 
the sites, with excitPd-state spin projection is, and let 
Cka be the amplitude of the state corresponding to the 
situation in which all the nuclei are in the ground state 
and there exists a photon (k, a) with energy Ek. The 
amplitude of the state Cka is equivalent to the wave 
function of the photon (k, a). These amplitudes satisfy 
the system of coupled equations 

(E- E.)C.,(E) = L H~".C,;, (E), . 
( if, \ '\I .; c ) E- Eo+ 2/ C,;, (E)= ld Hi, ,,(E , 

ka 

(5) 

where r c is the .conversion width of the excited level, 
r c + r R = r, H=~ is the matrix elemPnt of the y tran
sition in the crystal, which in our case is given by 

(6} 

r s are the coordinates of the s- th nucleus, and ~sa is 
the matrix element of the isolated nucleus. The matrix 
elements (6) are connected with the parameters of the 
excited state of the nucleus by the relation 

'\I H.:' H,~" _ ( . fR + L\E )I) 
.t.-=E=-.-_-E-=.-+.,---it- - - l-2- R w, 
ta 

(7} 

where o is an infinitesimally small real number and 
~ER = E0 - Eo denotes renormalization of the energy of 
the excited state, which is connected with the presence 
of the self-field of the y radiation. It is useful to note 
the connection between the matrix elements (6} and the 
amplitude of the resonant scattering of the y quantum 
by a nucleus 

(8) 

The solution of the system of Eqs. (5} for the wave 
function of the photon (k0 , a 0} leads to the equation 

(E- E,,- g)C.,,,(E) = 0. (9} 

Here (see formula (9} of[7 l) 

.g = 

where 

Li,i8 • = ~ 
a, k=Fko 

(11} 

From equation (9) follows directly a formula for the re
fractive index: 

n = 1 - "Ag I 2:nc. (12) 

Formulas (9} and (10) are general for the problem of 
the passage of a photon through a resonant medium with 
allowance for multiple coherent scattering by the nuclei 
(with the exception of the case of the single crystal when 
the Bragg condition is satisfied[4 J ). In the individual 
approximation when single scattering is neglected, only 
the first term remains in formula (10). Taking (8) and 
(12) into account, it is easily seen that 

"A' I: (o) n = 1-- a,(coh), 
2:rt (13) 

where a~(>coh) is the amplitude of the coherent resonant 
forward scattering of the y quantum by the s-th nucleus. 
(In (13), the normalization volume of the crystal is as
sumed to be equal to unity.) 

Formula (13) coincides with (3) if all the resonant 
nuclei are identical. Actually the amplitudes for scat
tering by different nuclei can be different. By way of an 
example we point to the case when the nuclei are in 
chemically nonequivalent positions, and therefore their 
resonant energies expPrience different chemical shifts. 
If it is assumed that the distributions of these ,resonant 
energies have a Lorentz form with a center of gravity 
E~ and a half width r', then the summation over the 
nuclei in formula (13) gives for the refractive index 
exactly the same expression (3}, with 

<o> At 21+1 rR (14) 
acoh(E) = Bn 2! + 1 E- Eo'+ i(f + f')/2 

Although the example in question has a purely illustra
tive character, formulas (3} and (14}, as well as the ex
pressions that can be derived from them for the cross 
section of the resonant absorption, can be usefully em
ployed for an experimental study of the mechanism of 
broadening of Mossbauer spectra . 

Let us return to the general equations (9) and (12). In 
the general case, it is necessary to sum all the terms 
of the series (10), which represent the contributions 
made to the refractive indices by the different proces
ses of multiple scattering of a y quantum by an aggre
gate of nuclei. It is important to emphasize here that in 
final analysis the contributions are made not by all the 
multiple- scattering processes, but only by their coher
ent part. It is seen therefore that interference of these 
coherent radiations on the periodic arrangement of the 
nuclei should strongly influence the refractive index of 
the crystal. The summation of the series (10) gives a 
formula analogous to (3), except that in place of the 
amplitude for coherent forward scattering by an isola
ted nucleus we have the amplitudE> for coherent forward 
scattering of the y quantum by an aggregate of resonant 
nuclei, A to~h(E). If we take into account the spin of the 
ground st~te of the nucleus and the influence of the 
thermal motions of the lattice, then the summation of 
the series (9) leads to the expression 

A (o) (E) - At 21 + 1 r R 

coh - 8:n 2! + 1 E- E, + if/2 + R • 

(15) 

The contribution of multiple scattering of a y quantum 
by an aggregate of nuclei is expressed by the complex 
quantity R. We are interested in its imaginary part, 
which gives the correction to the decay constant of the 
isolated nucleus. The real part of this complex quantity, 
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which corresponds to a correction to the resonant en
ergy Eo, is apparently very small and general expres
sions for it are given inr4' 7 J. For a single crystal, when 
the Bragg condition is not satisfied, we haver4'7 l 

lmR =- 21 + 1 (16) 
T] (2/ + 1) (2£ + 1) rpfR, 

and for the poly crystal (7 J 

(17) 

In (16) and (17) Lis the multipolarity of they transition, 
T1 the concentration of the resonant nuclei in the crystal, 
27TT the reciprocal-lattice vector, F 7 and {3 7 the struc
ture factor and the periodicity factor for the vector T , 
Vo the unit- cell volume, and cp a factor characterizing 
the incoherence due to the thermal motions of the lat
tice[4'6J. At high temperatures cp = 0, and for a rigid 
lattice at zero temperature cp = 1. In the short-wave 
limit ( ;>.. « a) formula (7) simplifies to: 

3 21+1(")' ImR = -T]fRrp-- - . 
8n 21+1 a 

(18) 

Formula (18) can be used with high dE>gree of accuracy 
already at ;>../a <;:; 10. Thus, when ;>.. « a we can use for 
the refractive index of a polycrystal the usual formula 
(3) or the equivalent formula of classical dispersion 
theory. For a single crystal, however, and also for a 
polycrystal at ;>.. ~ a, the collective effect plays an im
portant role and formulas (1) and (3) are not valid. 

2. Let us calculate in this section of the paper the 
time dependence of the probability of passage of a y 
quantum through a resonant filter. On passing through 
the resonant filter, the intensity of the y quanta emittE'd 
from the source does not decrease with time exponen
tially[lJ. The Mossbauer spectrum also depends on the 
delay time and differs considerably from the ordinary 
one[2 J. The indicated time dependences can be calcula
ted with the aid of a Fourier transformation, using the 
corresponding expressions for the refractive indices. 
We write the general expressions for the probability 
W(t, v) of passage of a y quantum through a resonant 
filter: 

W(t, v) = IS(t, v) I', (19) 

1 Jro e-'E'f' (. 2nn(E)d) 
S(t, v) = 2ni -roE- E, + v + if/2 exp 1 A dE. (20) 

Here d is the thickness of the resonant filter, t the delay 
time reckoned from the instant of formation of the exci
ted state in the source, and v the energy shift (including 
also the artificial Doppler shift). It is easy to verify 
that for large energy shifts (v- oo), and also in the ab
sence of a resonant filter (d = 0), formulas (19) and (20) 
give the usual Axponential decay law 

(21) 

In addition, from (20) we can arrive at the well-known 
expression for the ordinary Mossbauer spectrum ob
served without delay: 

(22) 

W(v}=Jrow(t,v)dt=~Jro dE ex(- 4nlmn(E)d)· 
n (E-E,+v)'+r'/4 p A 

0 -oo-

FIG. I. Retarded Mossbauer 
spectra: 1-T = Y, (t = Tn/2), 2-T =I 
(t = Tn), 3-T = 2 (t = 2rn), 4-T = 
0-oo (ordinary Mossbauer spectrum). 
v -energy shift in units of r /2. 

We shall calculate the function W(t, v) below for several 
concrete cases on the basis of formulas (19) and (20). 

In the simplest case the refractive index takes the 
form ( 3). It is then convenient to rewrite (20) in the 
form 

W(T, V) = IS(T, V) I', 

S(T, V)=-1-. J exp(- ixT/2) exp ( iC/2. )ax, 
2m -ro X+ V + ! X + ! 

where 
E-E, 

X =-r;;:-, V=-v 
I'/2 ' 

(23) 

(24) 

(T n is the lifetime of the excited state of the nucleus and 
C is the so- called effective thickness of the resonant 
filter). The integral ( 24) has been calculated in [l l and 
the results presented in the form of a seriE'S of Bessel 
functions. 

Figure 1 shows the Mossbauer spectra for different 
delay times1> at C = 4. For convenience, the ordinates 
represent the relative transmission P(T, V) 
= W(T, V)/W(T, oo), where in accordance with (21) we 
have W(T, oo) = e- T. (If we disregard the electron ab
sorption, then W(T, 00 ) is also the flux of y quanta in the 
absence of the resonant filter.) As seen from Fig. 1, 
each Mossbauer spectrum breaks up into alternating 
intervals with normal and anomalous transmission. At 
energy shifts corresponding to the anomalous trans
mission, the flux of y quanta emitted from the source 
after a certain time delay t is intensified by the pres
ence of the resonant filter. This interesting fact was 
first observed by Wu and co-workersr2 J. The modula
tion character of the Mossbauer is connected exclusively 
with the coherE>nt property of the resonant y quanta. 
Unlike the ordinary Mossbauer spectrum (22), the re
tarded Mossbauer spectra are constructed by coherent 
superposition of the wave functions of y quanta passing 
through the resonant medium, and the modulation of the 
amplitude of the summary wave is connected here with 
the real part of the refractive index of the resonant 
medium. 

1lHenceforth called the "retarded Mossbauer spectrum." 
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FIG. 2. Maximum absorption of 
-y-quantum flux as a function of the 
delay time: 1-C = 1, 2-C = 2, 3-C = 
4 (C-effective thickness of ftlter); T = 
t/Tn· 

Let us consider one of the characteristic parameters 
of the retarded Mossbauer spectrum-the value of the 
maximum absorption, determined by the relation 

e(O) = 1- W(T, 0) / W(T, oo) = 1-P(T, 0). (25) 

The integral (24) gives for the quantity t(O) a simple 
analytic formula 

e(O) = 1-l,'(YCT), (26) 

where Jo is a Bessel function of zero order. Figure 2 
shows plots of t(O) as functions of the delay time T at 
certain effective filter thicknesses. For comparison, 
the points of Fig. 2 show the corresponding values of 
t(O) for the ordinary Mossbauer spectra, calculated in 
accordance with formula (23). 

It follows from Figs. 1 and 2 that, starting with a cer
tain value of the delay, the resonant line of the retarded 
Mossbauer spectrum becomes sharper than the resonant 
line of the ordinary MOssbauer spectrum. This means 
that with the aid of the technique of delayed coincidences 
it is possible to improve the resolution of the Mossbauer 
spectra [8 J • To illustrate this conclusion, let us consider 
the case when doublet splitting is present in the 
Mossbauer spectrum. Starting from formula (13), we 
readily see that in place of formula (24) we have 

S~ e-"'" [ C ( 1 1 ) ] ( 27) 
S(T,V)=_~.x+V+iexp i4" x+i+.x+~+i d.x, 

where A. is the splitting in units of r /2. Expression (27) 
is calculated by numerical integration2 >. 

Figure 3 shows the results of a numerical calcula
tion of the ordinary and retarded Mossbauer spectra for 
the delay interval Tn < t <co (1 < T <co). From the 
experimental point of view, the choice of such a broad 
delay interval favors a simul:aneous increase of both 

Z) Since the integrand in (27) converges poorly, in numerical integra
tion it is convenient to replace the infinite limits of the integral by the 
sufficiently large. quantities± A(A > 1). The additional contribution of 
the two remaining integration intervals ( -oo, -A) and A, oo) can easily be 
calculated analytically. A comparison of the values of the integral (27) 
calculated in this manner at 6. = V = 0 with the analytic formula (26) 
reveals no discrepancies larger than 0.5%. 

'r r 
FIG. 3. Retarded (l) and ordi- t 

nary (2) Mossbauer spectra in the r 
presence of doublet splitting (C = 4, f 
t:J.= 4): 1-1 <T <oo, 2-o < T <oo.ll.Sr 

.. 

the resolving power of the doublet and the intensity of 
the incident y-quantum fluxlBl. 

The foregoing examples demonstrate the sensitivity 
of the retarded Mossbauer spectrum to the refractive 
index of the resonant medium. It is interesting to con
sider the extent to which the retarded Mossbauer spec
tra are sensitive to refractive-index changes due to the 
collective effect, especially in the case when such a 
change is small. In this case the retarded Mossbauer 
spectra can be calculated also from the general form
ulas (17) and (18), using expression (13) for the refrac
tive index. The results of a numerical calculation show 
that the retarded Mossbauer spectra are similar to 
those shown in Fig. 1. Unfortunately, the sensitivity of 
these spectra to a small correction R in the expression 
for the refractive index (15) is approximately the same 
as the sensitivity of the ordinary M'ossbauer spectra. 
Thus, investigations of the time dependence of the 
Mossbauer spectra offer no noticeable advantage for the 
observation of a certain small deviation of the refrac
tive index from formula (1) in comparison with the 
ordinary y- resonance method (without delay). 

The author is grateful toM. I. Podgoretskir and V. L. 
Lyuboshitz for a discussion of the results. 
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