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The role of many-particle states in the unitarity conditions for the amplitude of elastic scattering 
by a paramagnetic impurity at zero temperature is investigated. An analysis of the spin structure of 
the inelastic-process amplitudes occurring in these conditions makes it possible to conclude that 
these conditions have different forms for electron and hole scattering. Namely, the expression for 
the imaginary part of the exchange amplitude B contains a term that changes sign on passage 
through the Fermi surface. On the basis of the requirement of analyticity of the amplitude and the 
unitarity conditions for its non-exchange part, it is concluded that on the Fermi surface this term 
is exactly equal to zero. Since it has the form of a product of the sign function with a sum of posi
tive terms, each of these is, consequently, equal to zero. But one of these terms is I B 12 , i.e., 
B( EF) = 0. Furthermore, an analysis of the unitarity conditions for inelastic processes in the 
spirit of scaling theory makes it possible to conclude that, near the Fermi surface, the amplitudes 
behave in a more complicated manner than simple powers of the energy, and, consequently, the 
asymptotic forms of the amplitudes in the Kondo effect are not the same as in the scaling theories. 

A theory of the Kondo effect based on unitarity condi
tions and the analytic properties of the scattering am
plitude was developed by Suhl and Wong[ 1 J and by the 
authorr2• 31 • The basic predictions of this theoryr41 

agree qualitatively with the experimental data at pres
ent available. At the same time, from a theoretical 
point of view the position is not so satisfactory, since 
this theory does not take many-particle states into ac
count11. 

In papers by the author[s,s], an iteration procedure 
was developed, making it possible to take systematic 
account of the contribution of many-particle states to 
the unitarity conditions. The basic result of these 
papers is the following: if ln ( ~ 0/ I !; I) » 1, where !; is 
the energy reckoned from the Fermi surface and ~ 0 is 
the Kondo energy, the many-particle states do not 
change the amplitude's asymptotic form obtained in the 
single-particle approximation: 

F=A+BSo, 

i ( n'S(S + 1) ) n 
A(~)~ k. 1- In'(•,/~) ' B(~) ~ ----. • ~ ~ 2kpln(e,/~) (1) 

Their role reduces simply to renormalization of the 
Kondo energy. For !; :s; ~ 0, the contribution of three
particle terms is of order ( 2S + 1)-1 relative to the 
one-particle terms and is therefore small for large 
spins (even for S = Y2 it is about a third as large as the 
one-particle contribution). It was further shown that 
the five-particle terms lead to corrections of order 
( 2S + 1r2, and so on. Thus, for large spins the single
particle approximation is validated. Moreover, for 
S = Y2 too it gives the correct qualitative behavior of 
the scattering amplitude and the correct asymptotic 
formulas (1). 

nwe shall not concern ourselves here with the question of the so
called COD ambiguity, which arises when one seeks a solution satisfy
ing the single-particle unitarity conditions. In a paper by the author[5), 

it was shown on the basis of the equations of motion that the correct 
choice of solution was made in p- 3]. 
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In the present paper the role of many-particle 
states at zero temperature is investigated from a dif
ferent point of view. On the basis of an analysis of the 
spin structure of the inelastic amplitudes, the general 
structure of the unitarity conditions for elastic scatter
ing is established. Starting from these conditions, we 
find a number of constraints that the different ampli
tudes must satisfy. In particular, we show, in a general 
form, that the exchange part B of the scattering am
plitude is equal to zero at the Fermi surface, and find 
an upper bound for this quantity valid for all energies. 
We then give an analysis of the amplitude of inelastic 
processes and show that we cannot define the asymp
totic forms of all the amplitudes as simple powers of 
the energies, as we could have done if the scaling law 
proposed recently inr7-s1 were valid. 

We now make one remark, important for what fol
lows, concerning the characteristics of the problem 
under consideration. The impurity occupies a com
pletely determined position in space. Therefore, the 
amplitudes of all the processes caused by the interac- · 
tion with the impurity are amplitudes of transitions 
between states of free particles, i.e., particles not in
teracting with the impurity. The unitarity conditions 
for such amplitudes must contain free particles in the 
intermediate states, exactly as in the case of the 
ordinary theory of elastic and inelastic scatterings by 
a nucleus or atom. In this respect our problem is 
radically different from, e.g., the problem of second
order phase transitions, where it is completely mean
ingless to consider free particles 21• In other words, we 
shall in fact analyze below the properties of the 
matrix elements of the S-matrix between asymptotic 
states consisting of a product of the function for the 

2>strictly speaking, the unitarity conditions for a many-body system 
should always be written using free particles or some other complete 
set of states. The connection between the quantities appearing in these 
unitarity conditions and quantities that can be determined by Feyn
man diagrams is discussed in a paper by Ginzburg and the author[l0 ]. 
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ground state (characterized by the total moment J and 
its projection M) of the "electrons plus impurity" 
system and a finite number of plane waves describing 
electrons and holes situated far from the impurity, 
where the latter's influence can be neglected. Such a 
description is, of course, possible only if the system 
of electrons interacting with the paramagnetic impurity 
has a ground state, and this is essentially the only as
sumption upon which the results obtained below are 
based. 

As shown in[ 2' 3l, the expression for the retarded 
amplitude for scattering by a pointlike impurity has 
the form 31 

(2) 

Here a and a 1 are the spin projections of an electron 
( E > EF ) before and after the scattering, or of a hole 
( E < EF) after and before the scattering and M and 

I > 
M are the spin projections of the impurity. From this 
formulal the unitarity conditions follow immediately 
(cf. [2,3,al): 

ImA = k[IA I'+ !B!'S(S + 1)]+ 11A, 

ImB = k[AB• + A•B- IBI'e(~)] + 1'1., 

!:::..~~M = !:::..A6o'o6M'M + !:::..B (S~)~~M = 

1/4 ~~ dpniM'o'niioM• E > EF 

"'. . 1/4~~dpnit'onino'M• E<EF 
n (3) 

where E;(i;) = 1 for {; > 0 and E;( ') = -1 for ' < 0· 
. ' dPn 1s an element of phase volume of ann-particle 

state (n > 1). 
For E > E F, the quantity j a 1 n has the meaning of 

the amplitude of the coalescence of m + 1 electrons 
and m holes into one electron (n =2m + 1), while for 
E < EF, the quantity jna1 is the amplitude of the de
cay of a hole into m electrons and m + 1 holes; j~a 
and jan are the Hermitean-conjugate amplitudes of 
the reverse processes 41 • The simplest three-particle 
term in (3) is depicted graphically in Fig. 1, where the 
lines cut by a vertical dashed line represent free par
ticles; these lines correspond to o-functions expressing 
the fact that the energy of the particles is k 2/ 2m. 

For simplicity, we shall assume that the impurity 
spin S = ?'2· Then the matrix element ja 1n has the 
form 

ia/n = Ka.'n + Sbct'n 

and for the n-particle contribution to t:.. for E > EF 
we obtain 

3lThe assumption of a pointlike impurity is not essential for what 
follows. Just as in [4], we could examine all the processes for a fixed 
value of the orbital angular momentum. 

(4) 

·• 4lOth~r variants of this interpretation are also possible. For example, 
Jncx and Jncx' are decay amplitudes of an electron and a hole, and so 
forth. This is connected with ·the fact that the unitarity conditions can 
be written in two ways: ss• = s•s = I. Formally, the different variants 
are obtained by means of the relation, used in[6 ], between the matrix 
elements of s and j orr when the different times t = += and t = -00 

pertain to the intermediate states. 

where the symbol ( .•. , ... ) denotes integration over 
the phase volume of the intermediate particles and 
summation over their spin projections. Clearly, by 
virtue of the definition, an> 0 and cn + dn > 0 and, 
therefore, t:..nA > 0. We shall now show that dn ~ 0. 
This quantity can be written thus: 

1 
dn = L;i Sp {cr,[ (hnx, hn/)- (hn,,hnx+)]}. {6) 

To construct the vectors h~1n we have at our dis
posal one vector O'i and one tensor E;ikl· By means of 
these quantities the most general expression for hi 1 an 
can be represented in the following form 

hi i n<1> + 1 Jf<•> + k 1 n<•> k 1 <•> cx'n=::Sa.'tJ. ;;- ap.v a.',T'i' eiklO:.z•lJ.O'v-r n +eiklo:!J-.,.0:-rpHa..,n', (7) 

where each of the symbols n comprises all the spin 
indices of the intermediate particles with the exception 
of those explicitly written out alongside the Pauli 
matrices. From this formula we obtain 

d '\1 (n) 
n = .l....J dp,q' 

whence it follows immediately that dn is non-negative. 
We now consider the scattering of a hole ( E < EF ). 

For jna1 we have 

(9) 

The matrix structure of the quantities gfia· and hfia• 
differs from the matrix structure of ga·n and ha·n only 
in the order of the sequence of all the spin indices. That 
this statement is true is seen most simply by examin
ing Fig. 1. In fact, diagram l(b) differs from l{a) only 
in the direction of all the electron lines and, in particu
lar, in the order of the sequence of all the spin indices. 
As a result, for E < EF the expression for t:..n will 
differ from (5a) only in the ordering of the vector 
indices in the product of Pauli matrices in the last 
term (akai instead of O'iO'k), while the coefficients an 
and cn + dn, expressed now in terms of the primed 
quantities, will be positive as before, with dn non
negative. 

As a result we can write down the unitarity condi
tions for the scattering amplitude for all E in the 
form 

lmA = k[ !A!'+ IBI'S(S+ 1) ]-l- ~[an+ S(S + 1) (en+ dn)], {lOa) 
n>l 

ImB = k[AB' + A'B]+ ~(bn + bn')- em [ k!BI' + ~ dn]. (lOb) 
n>t n>t 

The reason for the appearance of the factor E; ( {;) in 
(lOb) can be elucidated as follows. The transition from 
electrons to holes for the spin operators is analogous 

~~ ~"' a b 

FIG. 1 
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to "time reversal"[11l. Therefore, in such a transi
tion the ordering of the electron-spin operators should 
change. But this "time reversal" does not, of course, 
refer to the impurity spin, i.e., the ordering of the 
operators Si is not changed. This also gives a change 
of sign in the last term in 1m B. 

As is well known, a knowledge of the functions 1m A 
and 1m B enables us to determine the whole scattering 
amplitude by means of the dispersion integral: 

F(~)=F,m+~s· d~'ImF(t;~) (11) 
n_E ~'-t;-zll 

F 

where F 0(/;) is the rational part of F, consisting of a 
constant and pole terms corresponding to the bound 
states for /; < -EF. The latter lie far from the Fermi 
surface and bear no relation to the Kondo effect. The 
functions 1m A and 1m B must be continuous for all 
/; > -EF, and at the point /; = 0 in particular. Indeed, 
if for one of these functions this is not so, the corre
sponding dispersion integral must behave as ln /;. 
Substitution of this logarithm into the expression for 
1m A immediately leads to a contradiction: quantities 
of different order appear on the right and the left (the 
same contradiction arises if we assume the existence 
of a pole in the amplitude at /; > -EF; hence follows, 
in particular, the impossibility of genuine bound states 
near the Fermi surface). 

But in (lOb) there is a term proportional to E<{l;). 
Therefore we must have one of two possibilities: 
either the coefficient of E<( /;)goes to zero for /; = 0, or 
else the second term in (lOb) behaves in such a way as 
to compensate the term with E<(/;). 

In Appendix I it is shown that such a compensation is 
impossible, and therefore only the first possibility 
remains, by virtue of which, taking into account that 
dn is non-negative we obtain 

B(O) = O. 

d.(O) = 0, 

E [b.(O)+b .. '(O)]=O. 

•>• 

(12a) 

(12b) 

(12c) 

No approximations have been made in the derivation of 
these formulas. They are the consequences of the exact 
unitarity and analyticity conditions. We note also that 
in[s,a] these conditions were fulfilled. The physical 
meaning of the condition (12a) is as follows. The entire 
problem of scattering by an impurity with spin has 
arisen because of the fact that an electron and a hole 
are scattered in different ways by such an impurity. 
This is due to the fact that the expressions for their 
spins (a and -aT [lll) are different. But on the Fermi 
surface the difference between an electron and a hole 
disappears and consequently they must be scattered in 
the same way; this, evidently, is possible only if the 
scattering amplitude does not depend on the spin, and 
this is just condition (12a). 

The results obtained in[s,al were essentially based 
on an estimate of I B 12 obtained in the single-particle 
approximation: 

IBI':s;;; 1/k'(2S+1)'. (13) 

We shall now show that the rigorous upper bound for 

I B 12 differs little from this expression. For this we 
eliminate A from (lOa) with the aid of the formula 
2ikA = Bu - l. As a result we obtain 

IBI'- 1-4~A (14) 
- lui'+ 4k'S(S + 1) 

where t:J..A represents the many-particle terms in (lOa). 
It follows from (14) that 

'
BI',;:: 1. 

"""4k'S(S+1) 
1 (15) 

k'[(2S+1)'-1]' 

These formulas are also exact. They are, obviously, 
valid for any values of the spin S. 

Recently, in a number of papers[7- 91 , attempts have 
been made to construct a theory of the Kondo effect in 
the spirit of the scaling theories widely used to describe 
second-order phase transitions (cf., e.g., the papers of 
Migdal and Polyakov[12•131). We shall now concern our
selves with elucidating whether the basic ideas of these 
theories can be reconciled with the results obtained 
above. In the case we are considering (T = 0), the 
scaling laws reduce to the following two statements: 
1) all amplitudes of inelastic processes have the form 
rn1,n2 = ,-zfn1,n2 ( /;1, ... , /;n) where /;i are the ener
gies of the particles participating in the process; 
2) many-point vertices with the same number of points 
are quantities of the same order (e.g., r 13 ~ r 22, 
where r 22 is the scattering amplitude for two parti
cles); the discontinuities of the many-point functions 
with respect to any of the energies are also of the 
same order. 

The contribution of the n-particle term to the uni
tarit&conditions (10) is, in order of magnitude, equal 
to 1; 1 rn1l 2 where rn1 is the inelastic amplitude, 
which is expressed in terms of the matrix elements of 
j and f. It follows from this estimate that z :S m. By 
virtue of (4) and (9), rn1 = rhV + rh2l·S, and, 
generally speaking, rh11 and rg] can have different 
indices Z 1 = m - x and z 2 = m - y (we recall that, in 
perturbation theory, x = y = o[s,al). We consider the 
unitarity condition for scattering of a particle and a 
hole (see Fig. 2). Schematically it has the form 

~r~:>= r::>+ ~d~+ r,~>+~r.~>+ r,~>+ ~·r!!>+ .... 
(16) 

Here t:J.. denotes the discontinuity with respect to the 
energy /; 1 - /; 2. It follows immediately from these 
conditions that x = 0, while y remains undetermined. 
The unitarity conditions for other processes also do 
not allow us to determine y. 

In Appendix II, it is shown with the aid of invariance 
with respect to time reversal that y is either a whole 
number or zero. This means in fact that y = 0, since. 
otherwise the principal term in rw will be the con
stant term, and this is sufficient to violate all the 
scaling theory concepts. 

Moreover, there exist simple physical considera
tions from which it follows that y = 0. In fact, for 
y > 0 we have r~2; « q.a, i.e., inelastic scattering 

I 

;~:+~ 
I 

FIG. 2 



MANY-PARTICLE STATES IN THE THEORY OF THE KONDO EFFECT 189 

processes accompanied by a spin-flip are small com
pared with non-spin-flip processes. For ~ - 0 the 
total probability of the former is proportional to !; 2Y 
and of the latter is constant. In other words, an elec
tron that has collided with an impurity can generate a 
certain number of pairs, but the impurity spin cannot 
be flipped in this process. Moreover, it follows from 
(lOb) that in the case under consideration B ~ 1;Y and, 
consequently, the spin does not flip in elastic scatter
ing either. 

Thus, a very strange situation arises; the inelastic 
scattering processes have a finite probability, whereas 
the only impurity degree of freedom responsible for 
the interaction between the electrons-its spin-turns 
out to be frozen. And only when y = 0 do the inelastic 
processes with a spin-flip become of the same order 
as the non-spin-flip processes. 

Neither, however, can the scaling laws be fulfilled 
for x = y = 0. In fact, if these laws hold, then for 
'- 0 the many-particle contribution to (10) cannot 
depend on !;, i.e., it must be constant5 >, and it is im
possible to reconcile this with the conditions (12). 
This means that the inelastic amplitudes I'n 1 must 
have, in addition to a power factor of order em, an 
additional energy dependence of a non-power type, the 
latter being responsible for the fulfillment of the con
ditions (12). This conclusion is in complete agreement 
with the results of[s,sJ, where it is shown that 

fn, ~ ~-m(tn~)-m-', B ~(In~)-'. 

In the present article, unlike in[7- 91 , all the ampli
tudes are considered "on the mass-shell," i.e., under 
the condition that the impurity energy is the same be
fore and after the scattering. 

Experimentally observed quantities such as the 
resistance, thermopower, etc., are directly expressed 
in terms of precisely these amplitudes. Because of 
this fact, our results mean that the asymptotic behavior 
of the observed quantities in the lim it cannot be a powez 
behavior, and this is in accordance with the results of 
paper[4 l. At the same time, the results obtained above 
cannot, generally speaking, be used for the analysis of 
quantities whose definitions contain amplitudes (many
point functions) "off the mass-shell," e.g., for the 
calculation of the impurity Green's function or the 
magnetic susceptibility. 

In conclusion, the author expresses his gratitude to 
S. L. Ginzburg and E. F. Shender for discussions, to 
A. A. Abrikosov and A. A. Migdal for constant criticism 
and for the opportunity to become acquainted with the 
results of[sJ before it was published, and also to Fowler 
and Zawadowski for sending their preprint. 

APPENDIX I 

We now show that the second term in (lOb) cannot 
compensate the term proportional to € (' ). 

First of all, we note that the phase volume of an 
n-particle state is /; 2m in order of magnitude, and the 
problem arises only when the inelastic amplitudes can 
compensate this small quantity, i.e., when for these 
amplitudes the estimate ,-mf(l;), where f(') is 

5lit is shown in (6] that substitution into (I 0) of the amplitude cal
culated by perturbation theory leads to a logarithmic infinity. 

bounded, holds; in particular, as ' - 0 this estimate 
can decrease more slowly than any power of '. A 
strong singularity is impossible, since the contribution 
of 1m A becomes infinite. Furthermore, each inelastic 
amplitude is an analytic function of the energies of all 
the particles participating in the process and of anum
ber of linear combinations of these energies (cf. [141 ), 
while in each of its arguments it has a cut along the 
real axis. The choice of branches of such an analytic 
function is fixed by the usual rules for causal ampli
tudes : 1) the imaginary parts of the fermion energies 
(combinations of an odd number of energies of electrons 
and holes) have the same sign as the energies them
selves; 2) as a function of each of the boson energies 
(combinations of an even number of energies of 
fermions), the amplitude consists of two terms, in the 
first of which the energy has a positive, and in the 
second a negative imaginary part. For the Green's 
functionst these rules follow from the formulas avail
able in[ 15 J; in more complicated cases, they are easily 
derived by means of an expansion, analogous to that 
used in[ 141 , in the intermediate states. 

In passing from E > EF to E < EF, apart from the 
rearrangement of the spin indices already taken into 
account, the signs of all the energies change (we 
neglect the change, small for I' I « EF, in the density 
of states). With the choice of branches indicated above, 
such a change in the signs is equivalent to a rotation 
of each of the arguments through an angle 1T in the 
positive direction. As a result of such a rotation, the 
imaginary parts of all the energies turn out to have 
signs opposite to the signs they must have in a causal 
amplitude, i.e., with the rotation we go over from a 
causal amplitude to a quantity that is the Hermitean 
conjugate of another causal amplitude. But on rotation 
through an angle 7T, the factor em goes to ,-m( -l)m 
and, consequently, cannot lead to a change of sign in 
the corresponding contribution to Im B. It remains to 
discuss the role of the non-power factor f({;). It is 
also an analytic function of its arguments and for each 
of them can be represented in the form of a Cauchy 
integral along the real axis. Elementary estimates 
show that such an integral, for small values of its 
argument x, has the form 

C, + C,p, (!xi )!nix! + C,p,( lxi)x + i[C,p, (!xi )e(x) + C,p, (!xi)], 

where the Ci are functions of all the remaining argu
ments, and p 1 and p 2 are the odd and even parts of 
the discontinuity p of the function f(!;) with respect to 
x: p(x) = p 1(1xl)€(x) +P2<Ixl). It follows from this 
formula that the odd part in f(!;) is small compared 
with the even, and therefore cannot contribute to the 
part of Im B of interest to us, namely, the part that 
does not fall off as !; - 0. Generally speaking, it could 
be the case that the principal contribution to 1m B from 
certain terms diverges and is finite only in the sum; 
then it would become necessary to take account of the 
odd corrections. But such divergences would inevitably 
lead to divergences in Im A, where such a cancellation 
is impossible. 

APPENDIX II 

The amplitude s·r~~> is a matrix in spin space; to 
construct it we have at our disposal the spin vectors of 
an electron (ae) and of a hole (ah) and the impurity-
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spin vector. Obviously, for S = Y2 the most general 
expression for this amplitude has the form 

sr~~ = Sa,y, + Sa.y, + S[a, x a,]y,, (A.1) 

in which the first two combinations of spins are un
changed on time reversal but the last changes sign. 
Therefore, the functions y 1 and y 2 must by t-even, 
and y 3 t-odd. We now change the signs of the energies 
of all the particles taking part in the scattering. In 
accordance with what was said in Appendix I, we have, 
taking into account the assumed uniformity of the 
functions f22• 

sr!:> (~ •• ~ •• ~ •• ~.)-+- e'"• sr~~ (~ •• ~ •• ~ •• ~.) 
= sr~:>+ <- ~ .. - ~ .. - ~ .. - ~). . (A.2) 

where r+ differs from r by a change in the signs of 
the imaginary parts of all the energies. On the right 
and left of (A.2) are the scattering amplitudes of a 
particle and a hole. We now choose the energies as 
follows: /; 1 = -/;3 = E:, /; 4 = -/;2 = 1J. Then (A.2) goes 
over to the equality 

- e'••sr::>(e,- Tj,- e, TJ) = sr~:>+ (- e, TJ, B- TJ). (A.3) 

We now apply the time-reversal operation to the 
quantity on the right. Taking (A.l) and the t-parity 
properties of the functions ri into account, we obtain 

-e'"•y,,,(e, -TJ, -e, TJ) =y,,,+(e, -TJ, -e, TJ), (A.4) 
e'""Vs(e, -1], -e, 1]) = y,+(e, -1], -e, TJ). 

The functions Yi can be represented in the form Yi 
= r11> + iy! 2>, where y! 1> is the part of the function 'Yi 
defined by lhe principa\ values of the Cauchy integrals 
in all the variables (cf. Appendix I), and r12> are the 
imaginary parts of the energies in the corresponding 
denominators; therefore, ri = r1l) - iy~2) and it follows 

from (A.4) that 

e'"•(v!~l + iy!~b = - vl~l + iy,<~~ 
e'"•(y~•> + iy!'>) = y~•>- iy!'>. 

(A.5) 

These equalities are possible only if e i1ry = ±1; in this 

case, some of the y[1•2> must be equal to zero. We note 
also that the expression for S ·I'W obtained in[sJ in 
first order of perturbation theory satisfies the condi
tions (A.5) for y = 0. 
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