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The propagation of microwave discharges in gases at a pressure of the order of the atmospheric pres­
sure is discussed. Thermal conduction is the main mechanism responsible for the propagation of the 
discharge toward the incident electromagnetic wave. Heat from the plasma is transferred to the cold 
gas which becomes ionized and begins to absorb microwave Pnergy. The problem of the steady- state 
propagation of the discharge wave is formulated and solved approximately. The temperature of the 
heated plasma, the velocity of the discharge front as a function of the energy flux in the electromag­
netic wave, and the threshold for this state are determined. It is shown that the process has much 
in common with flame propagation in the case of combustion. The phenomenon is frequently observed 
in microwave devices operating under continuous conditions when a discharge appears in the wave­
guide and the plasma travels toward the microwave source. However, so far, no satisfactory physical 
interpretation has been available. Reasonable agreement between the results of our calculations and 
the experimental data has been obtained. 

1. INTRODUCTION 

B EUST and Ford(ll have described a phenomenon oc­
casionally observed in microwave devices operating 
under continuous conditions. A discharge appears from 
time to time in the waveguide, and the resulting plasma 
formation travels against the direction of propagation of 
the microwaves. The discharge is usually initiated by 
some impurity or foreign body, for example, a metal 
shaving which has been left behind inside the waveguide. 
This is heated to a high temperature in the microwave 
field and produces the initial amount of ionized vapor. 
Buest and Ford have investigated this phenomenon in a 
rectangular waveguide using microwaves in the X band. 
The waveguide dimensions were 2.29 x 1.02 em and the 
wavelengths employed were in the range ..\ 0 = 2.5-5.8 
em (11.9-5.2 GHz). The discharge was initiated by a 
small steel screw introduced into the waveguide, which 
immediately became red hot in the microwave field. 
The effect was found to have a power threshold of about 
0.25 kW which is lower by three orders of magnitude 
than the power necessary for ordinary breakdown in air 
at atmospheric pressure in the waveguide. 

Insofar as one can judge from the photographs, the 
plasma formation has the appearance of a column at the 
center of the waveguide, which is at right angles to its 
axis and is parallel to the shorter wall, i.e., it lies along 
the electric vector (the H01 mode was employed). The 
radius of the bright region appears to amount to a few 
millimeters. The velocity of the plasma moving against 
the incident wave was found to increase monotonically 
from about 25 em/ sec up to 6 m/ sec as the power was 
increased from the threshold value up to 2.5 kW. Meas­
urements showed that the energy balance depended on 
the number of specific conditions and, in a typical case, 
the plasma absorbed about 75% of the incident power, 
the remainder being reflected. In order to prevent this 
phenomenon from occurring it is recommended in[1 l 
that the waveguide be carefully cleaned so that the 
foreign bodies which initiated the discharge are re-
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moved. An increase in air pressure leads to only a 
slight increase in the threshold power. 

The above phenomenon is well known to anyone who 
has to work with high-power microwave devices operat­
ing under continuous conditions. However, no physical 
interpretation of the process has been given either in[lJ 
or, as far as we know, anywhere else. At the same 
time, there seems to be no doubt that we are dealing 
here with a well-defined example of the propagation of 
discharge waves similar to flame propagation in the 
case of combustion. The deep analogy between dis­
charge propagation and combustion has facilitated very 
substantially the analysis of high-frequency discharges 
in gas flows on which the electrodeless plasmatron is 
based. [2J The analogy has also been used in the theor­
etical analysis of the slow propagation of laser sparks, 
i.e., discharges at optical frequencies[ 3 ' 4 J (the experi­
ments are described in[3 ' 5 ' 6 l). 

The above process is important not only because of 
its practical significance but also because it is an in­
teresting physical effect, especially since, in one form 
or another, it may appear under very different condi­
tions. For example, a related phenomenon of discharge 
propagation is produced in microwave plasmatrons with 
transverse gas flow[7 J in which the gas passes through 
the waveguide at right-angles to its axis and the dis­
charge remains stationary. The effect which elsewhere 
is undesirable is used here for a positive purpose. 

In this paper we shall discuss the propagation of 
high-pressure discharge waves maintained by micro­
wave radiation. u This case has a number of features 
which distinguish it from discharges at high and optical 
frequencies. We shall review the main regularities of 

llJt is important to note that the propagation of the plasma front 
in the waveguide has also been observed at low pressures of the order of 
I torr. [8 ] This is a special case because the plasma is under highly non­
equilibrium conditions and the propagation mechanism is not thermal 
conduction, as in the case of high pressures, but the diffusion of reso­
nance radiation. The theory of this phenomenon is given in [ 18]. 
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the phenomenon, the temperature of the resulting 
plasma, the velocity of its propagation, and the thres­
hold for the effect. One would hope that this would also 
be useful for the theory of microwave plasmatrons. 

2. ONE-DIMENSIONAL FORMULATION OF THE 
PROBLEM 

The real process in a waveguide is complicated by 
many details, and to exhibit its main features we shall 
consider a somewhat simplified problem. Consider a 
plane electromagnetic wave of frequency w, propagating 
through cold gas in the direction of the x axis, and sup­
pose that it encounters a plane front which bounds a 
region of plasma. The dissipation of electromagnetic 
energy in the ionized gas leads to its heating but, as a 
result of thermal conduction, there is heat transfer from 
the plasma to the cold gas so that further layers are 
heated, become ionized, and begin to absorb electro­
magnetic energy. The plasma front, i.e., the boundary 
of the discharge, is thus found to propagate against the 
incident electromagnetic wave, leaving behind heated 
plasma at some temperature Tp· The problem is to de­
termine this temperature and the velocity of the dis­
charge in the cold gas. 

We shall suppose that the pressure is of the order of 
atmospheric pressure, so that the plasma may be ap­
proximately regarded as being in thermodynamic 
equilibrium. This is permissible, at least for nitrogen 
and air .. The thermal conduction rates are very low, 
and the process proceeds at constant pressure p. The 
electrodynamic properties of the medium are fully de­
fined by the temperature T (and so is the thermal con­
ductivity ..\.), The permittivity E and the electrical con­
ductivity a [91 are given by 

4ne'N, 
e=1- ... , 

m(w'+vm') 

e2Nevm 
(J = m(w' + Vm')' 

(1) 

where Ne is the number of electrons per cm3 and llm is 
their effective collision frequency. 

Consider a time-independent state in a coordinate 
system in which the discharge front is at rest (Fig. 1). 
Cold gas of initial density p 0 enters the discharge with 
velocity u. 

In the time-independent planar process, dT/dt 
= vxdT/dx, where vx is the velocity of the gas, pvx 
= const = p 0u, and hence the energy balance is 

FIG. 1. Schematic distribution 
of temperature (upper curve) and 
electron density, permittivity, and 
conductivity in the wave. 

dT dl E' 
P,uc.-= --+a , 

dx dx 

J =- '}.,!!:!_, (2) 
dx 

In these expressions cp is the specific heat, J is the heat 
flux and the bars over the symbols represent averages 
per 'period of the field (E, H ~ e- iwt). We shall neglect 
energy losses by radiation because the resulting tem­
peratures are relatively low (RJ 5000° in air), so that 
they are small in comparison with heat release and do 
not affect the parameters of the problem. There are no 
other losses that need be taken into account. The region 
to which the fields in the plasma are confined are boun­
ded and this leads to thermal- conduction (and hydro­
dyn~ic) heat losses in transverse directions. This can 
be ignored only if the transverse size r of the discharge 
is much greater than the width of the discharge front, 
i.e., it is much greater than the depth a of penetration 
of the field into the plasma. We shall suppose for the 
moment that this condition is satisfied. However, it will 
be shown below that it is precisely the condition for high 
losses, r ~ a, which determines the threshold for the 
state. 

The fields are given by the Maxwell equations. In the 
case of monochromatic fields and planar geometry, the 
complex field amplitudes Ea = Ey, Ha = Hz are given 
by 

dE. iooH. 
----;ji" = -c-

_ dH. = ( 4ncr _ ie~)E •. 
dx c c (3) 

We must now formulate the boundary conditions. The 
field does not penetrate deep into the plasma where the 
gas is heated to some constant temperature, i.e. for 
x = oo we have Ea = 0, J = 0. In front of the discharge for 
x = - oo the gas is cold (T = 0), the heat flux is fully ab­
sorbed (J = 0), and the electromagnetic flux density So 
is given. The problem is overdefined mathematically. 
This enables us to determine the unknown velocity of 
propagation, u, which is an eigenvalue of the system 
just as in the case of combustion. [loJ 

Equations (2) and (3) have a first integral which ex­
presses the conservation of the total energy flux: 

p,uw+J+S=S., 

T 

c-
8=-EH, 

4n 
(4) 

where w = J c dT is the specific enthalpy and S1 is the 
0 p 

electromagnetic energy flux in front of the discharge 
for x =- oo, which is equal to the energy flux entering 
the plasma. It is given by S1 = S0(1- R), where R is the 
reflection coefficient of the plasma for the incident 
wave which must be determined in the course of the 
solutlon of the problem. From Eq. (4) we have the gen­
eral energy- balance equation for the discharge wave 
without losses: 

(5) 

3. APPROXIMATE SOLUTION 

Let us solve Eqs. (2) and (3) by a very approximate 
method, since an accurate solution can only be obtained 
by numerical procedures. The analogy with combus­
tion[toJ suggests a method of avoiding the difficulties 
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connected with the presence of the unknown parameter u. 
The quantities t- 1 and o determine the effect of 

the medium on the field, and are proportional to the 
electron density Ne. Relatively low temperatures and 
low degrees of ionization are found in plasma produced 
by microwaves. The temperature depenc;l.ence of the 
electron density is then of the form e- l/2kT, where I is 
the ionization potential, i.e. this dependence is very 
rapid because I/2kT :::P 1. This means that the density 
Ne which is appreciable in comparison with the finite 
density Ne(Tp) is reached only at temperatures very 
close to Tp (Fig. 1). The main fraction of the dissipat­
ing field energy is liberated in the gas at temperatures 
lying within a very narrow temperature interval To < T 
< Tp, approximately given by Tp- T0 ~ Tp(2kTp/l) 

« Tp (the density Ne changes by a factor of e within 
this range). The temperature T0 , which is naturally re­
ferred to as the ionization temperature, corresponds to 
the ignition temperature in the case of combustion. 
Most of the change in the electromagnetic energy flux 
occurs in this temperature range, and the reflected wave 
is generated there as well. 

In the region where most of the heat is released the 
gas itself is not highly heated because most of the 
liberated heat is lost by thermal conduction to the cold 
gas, and is used up to heat it to the ionization (ignition) 
temperature, as in the case of combustion. This means 
that, when we consider the region in which there is an 
appreciable change in S, we can approximately replace 
w(T) by w(Tp) in Eq. (4), and then use Eq. (5) to write 
down the flux integral in the form 

(6) 

This equation rigorously describes the flux balance in 
the time-independent static discharge which is obtained 
if we place a cold wall in the path of the incident elec­
tromagnetic waves and in front of the discharge, pro­
vided the wall is transparent to the wave and completely 
removes the heat released in the discharge. However, 
the fate of the heat flux in the temperature region below 
To, where there are practically no heat sources and 
S ~ const = 81, cannot have a substantial effect on the 
temperature to which the plasma is heated because this 
temperature is, of course, governed by the conditions in 
the heat release zone. Therefore, to calculate the tem­
perature Tp (and the field distribution) we can start 
with the simplified set of equations given by Eqs. (3) 
and (6), and extend Eq. (6) to the entire temperature 
range. This means that we separate the determination 
of Tp from the determination of the velocity u2 J. The 
velocity u can be found from Eq. (5). We note that this 
equation can be written in the form characteristic for 
the thermal conduction mechanism of propagationYl 

Let us now consider the electromagnetic wave. In a 
plane monochromatic wave propagating through a homo­
geneous medium E ~ H ~ exp(- iwt + inwx/ c-
- Kwx/ c), [91 where 

(7) 

n= {'f,[e+fe'+ (4ncr/w)']}'", x= {'/,[-e+l'e'+ (4ncr/w)']}'". 

2lWe note that in the case of high-frequency discharges for which 
To "" T p as well, the plasma temperature calculated with allowance for 
flow is found to be very close to the static value. [ 2 ) 

The energy flux is S ~ 1Hal2 and its attenuation is des­
cribed by 

dS 
~=-f!S, 

2xw 4nx 
fl=-=-.-. 

C Au 
(8) 

For normal incidence of the waves from a medium with 
t = 1, a = 0 on a sharp boundary with a medium t, o, 
the reflection coefficient is given by 

(n-1)'+x' 
(n.·+ 1)' + x' · 

(9) 

If the medium is not homogeneous and the frequency 
is arbitrary, the solution of the Maxwell equations as 
given by Eq. (3) becomes very difficult. However, the 
problem is substantially simplified in two limiting 
cases. 

In the low-frequency limit, when j47To/wtl » 1 
(n ~ K ~ ·.J27TO/w » 1, reflection almost complete, skin 
depth much less than A0), we can neglect displacement 
currents in the Maxwell equations. We then have 
S =- (c2/647T2o)dlHal2/dx, and if we substitute this and 
Eq. (2) in Eq. (6) the resulting equation is immediately 
integrable. If we then determine the integration constant 
with the aid of the boundary conditions we find the rela­
tion between the plasma temperature Tp and the mag­
netic field amplitude in front of the discharge 1Ha1 l: 

Tp 

J 'A(T)a(T)dT = c'JH",J'/64n'. (10) 
0 

This formula was obtained in[11 J for the case of the 
static high-frequency discharge (high frequencies of the 
order of 1 MHz are "low" in the above sense).· 

In the high-frequency limit when 41Ta/wt « 1, t > 0 
(n ~ .ft ~ 1; K ~ 2ro/w.ft « 1; absorption over a 
wavelength and reflection are small) we may assume 
that Eq. (8) remains valid even for an inhomogeneous 
medium because the inhomogeneity is "weak." Equa­
tion (6) can then again be integrated and yields 

T 

S(T) = S,- J l.fl dT. (11) 
0 

Here the integration constant has been determined from 
the boundary condition S = S1 for T = 0. Referring the 
integral given by Eq. (11) to the point T = Tp, where 
S = 0, we find the relation between the temperature Tp 
and the energy flux S1 entering the plasma by analogy 
with Eq. (10): 

~p 

J 'A(T)fl(T)dT = S,. (12) 
0 

The high- frequency limit corresponds to, for exam­
ple, optical frequencies, but the microwave frequencies 
in which we are interested occupy the intermediate 
position between the two limiting cases because 
J47To/wtJ ~ 1 (Table 1). Equation (6) cannot then be 

Table I 

T."K I N,, 'm·IO~",I (J·f0-10, I . 4na 

I cm·s sec·1 sec·• (;"TtT n X a, em R, 

3500 6.6·1011 7.5 0.13 0.78 0.33 0.89 0.14 1.7 0.0089 
4000 4.4·10'2 7.1 0.88 -0.53 3.3 0.81 1.1 0.22 0.218 
4500 1.6· 1013 6.6 3.3 ·-5.1 1.3 1.3 2.6 0.091 0.57 
5000 4.8-1013 6.4 9.9 -18 1.1 2.1 4.7 0.050 0.71 
5500 9.3·1013 6.0 19.0 -39 1.0 2.8 7.3 0.032 0.83 
t.OOO 2.1·10" 5.8 41.0 -88 1.0 4.3 II 0.022 0.88 
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integrated exactly, but Eqs. (11) and (12) remain ap­
proximately valid. They can be looked upon as a result 
of a first approximation when Eqs. (3) and (6) are solved 
by the method of successive approximations. In fact, 
one can start the iteration process by using step func­
tions as the zero-order approximations to T(x), t(x), 
and a(x) (dashed curve in Fig. 1). By solving the field 
equations in the plasma we obtain Eq. (8). If we now 
substitute !J. = !J. (T) in Eq. (8) and integrate Eqs. (6) and 
(8), we obtain Eqs. (11) and (12) as the next approxima­
tion. 

It is readily seen that Eq. (12), which is rigorously 
valid in the limit of high frequencies, gives satisfactory 
results even in the limit of low frequencies. In fact, the 
energy flux received by a homogeneous skin layer is 
S1 = (cJHa112/167T)(w/2rop) 112, where a_:p = a(Tp). Sub­
stituting this equation and !J. = 2-/2rowjc in Eq. (12), we 
obtain, instead of Eq. (10), an approximate relation in 
which, instead of a(T) in the integrand, we now have 
v'a(T)ap. Integrals of this kind can be evaluated ap­
proximately by expanding 1 /T in the exponential around 
its upper value by the Frank-Kamenetski1 method(lDJ: 
1/T"" 1/Tp + (Tp- T)/Tp. This procedure shows that 
the exact and the approximate integrals differ by a fac­
tor of only two, and this characterizes the error in the 
square of the field amplitudP at a given temperature. 
The error in Tp for a given field will be quite small be­
cause the temperature is only a logarithmic function of 
all the factors apart from the ionization potential. It 
follows that we can use Eq. (12) to determine the micro­
wave discharge temperature. 

It is interesting that Eq. (12) is practically equivalent 
to the condition that the optical thickness of the heating 
zone is unity. In fact, 

Tp T_p 
<(To) To A dT 1 1 

'~' = f fl dx = f _Jl __ . ~ f "-ll dT ~ -J Afl dT ~ 1, 
, A.dT/dx (l,dTjdx)Tp, S,, 

i.e., we have Eq. (12). 
There remains the very important problem of the 

reflection coefficient, since it is not clear in advance to 
what extent it will be reduced by a diffuse plasma boun­
dary. Since in the zero-order approximation, corre­
sponding to a sharp boundary, the reflection coefficient 
r 0 is given by Eq. (9), let us consider the next approxi­
mation. Since the function S(T) is now known [it is given 
by Eqs. (11) and (12)], the distribution T(x) can be found 
from 

X= J A.(T)dT/S(T), (13) 

which follows from Eq. (6). 
For the approximate evaluation of the integrals given 

by Eqs. (11) and (12) and then Eq. (13), we note that in 
the limit as w - oo we have !J. ~ a, and as w - 0 we have 
!J. ~ a 112. Calculations show that in the intermediate 
case of microwave frequencies we can approximately 
substitute !J. ~ all f3 with constant f3 (1 < f3 < 2). 
Therefore, !J. ~ exp(- I/2 f3 kT), and if we evaluate the 
integrals given by Eqs. (11) and (12) by the above 
method, we find that 

S(T)~ s,{1-exp[--1-(Tp-T)]}. 
2~kTp' (14) 

(15) 

Substituting Eqs. (14) and (15) in Eq. (13) and integrating 
again on the assumption that A (T) is a slowly varying 
function, we finally obtain the distribution T(x). Let us 
write down the explicit expression for the electron den­
sity: Ne ~ exp(-I/2kT)"" exp[-I(Tp- T)/2kTpl· The 
quantities t- 1 and a are proportional to this density. 
We have 

N, ( e*p ) ~ 1 
-~ --"1,- , ap=-=a(Tp). 
Nep 1 + e p flp (16) 

To estimate the reflection coefficient for a layer with 
this distribution of t and a we can use the well-known 
solution of the wave equation[12 l for a transparent tran­
sition layer with the distribution 

exJb. 

e(x)=i-(1-e~) t+e"l'' · e~=e(oo). (17) 

Generalization to an absorbing medium can also be 
made quite easily if we assume that t is complex. After 
some simple rearrangements we find that the reflection 
coefficient for the transition layer defined by Eq. (17) is 

R =-1-l r [~(1-i n+t )]/ r [~ (1- i n- 1 )]I', (18) 
R,(n, x) 2a x 2a x 

where r is the gamma function and the quantities n, K, 

and a = 1/ !J. = A 0 / 47TK are referred to the point x = oo. 

When t:. - 0 we have R - Ro, and when t:. - oo we have 
R"" R;/exp(-4nt:./K 2a). The dependence of Ron the rela­
tive layer thickness is illustrated in Fig. 2. Comparison 
of Eqs. (16) and (17) shows that to estimate R we can 
substitute in our case t:. = a/ f3. Since 1 < f3 < 2, the 
values of Rare not much less than Ro, especially at 
higher temperatures (Fig. 2). 

4. THE REGIME WITH LOSSES AND THE LIMIT FOR 
ITS EXISTENCE 

In the absence of energy losses the discharge wave 
can exist at very low electromagnetic energy fluxes, 
which is clear from Eq. (12). In practice, the state 
always has a threshold which is connected with heat 
losses from the discharge through heat conduction in 
transverse directions out of the region in which strong 
fields operate (the hydrodynamic energy loss is estima­
ted to be less than the thermal conduction loss). 

Let us now include the losses, at least approximately. 
Suppose that the incident wave and the discharge have a 
radius r in the transverse directions. The mean energy 
loss per unit volume of the gas at a point x per second 
is (27Tr/7Tr2)(-A8T/ar')r' = r- This can be written in the 
form Ae/ r2, where the heat flux potential is given by 

FIG. 2. Reflection coefficient of a 
plane transition layer as a function of 
the relative thickness in air (at a pres­
sure of I atm and wavelength A0 = 3 
em). 
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s, 

71Sr 
p L .X 

FIG. 3. Schematic distribution of temperature, radiation flux, and 
heat release in the presence of energy losses. Broken curves shows the 
heat-release approximation adopted for the linearization of the equa­
tions. 

T 

a= J I.(T)dT (d8 = t..dT, 1 =- d8/dx) 

and corresponds to the mean temperature at the point x, 
A depends on the radial profile T(r'), and when T(r) = 0 
we have A= Amax R:< 5.8.[4 1 In practice, the tempera­
ture is still high on the discharge boundary and A is a 
few times lower. Let us apply Eq. (8) to radiation, and 
introduce a loss term in the energy- balance equation of 
Eq. (2) by rewriting it in the form 

p0uc. ~= d'8 +Q- A8, Q =S" = _.!:!.__. 
A dx d.x' r' r dx (19) 

In front of the discharge, where x = -oo, we have T = 0, 
J = 0, and S = S1 as before, and behind the wave, when 
x = oo, the gas is now fully cooled because of the losses, 
so that T = 0, J = 0 (Fig. 3). The radiation flux is ab­
sorbed by the wave quite strongly, but not completely, 
since the "optical thickness" is now finite. The phrase 
"plasma temperature" must now be interpreted as the 
maximum temperature Tmax = Tm reached in the wave. 
This quantity replaces T p· The threshold for the exis­
tence of this state corresponds to zero propagation 
velocity (u = 0), when heat release is just sufficient to 
compensate the losses but not as yet sufficient to 
"move" the wave. 

The approximate solution can be found by linearizing 
Eq. (19) by analogy with the theory of combustion. [l3J 

We shall suppose that Q = 0 for T < To, x < 0 so long as 
the absorption coefficient is still low, and also for 
x > l where flux S is highly absorbed. 3 ' In the region 
0 :5. x :5. l the heat release Q will be assumed constant 
and we shall substituted= ~./poucp = const = d(Tm)· 
The general solution of the linearized equation (19) 
which satisfies the boundary conditions for x = ±oo is 

where 

e = a,e•··. e, = 8(T,) for X ~ 0, 

8=Qr'/A+C,e•••+C,e""' forO~x~l, 

a= C,e·~·-'l for X ;;;;.: l, 

(20) 

3lThis is the essential difference from the case of optical frequencies 
where the absorption of the flux can be completely neglected. [4 ] 

By matching the values of e and of the derivatives on 
the boundaries, we obtain four equations relating the 
integration constants C1 , C2, C3 and the unknown param­
eter d (the wave velocity). Mter some rearrangement 
we have 

C,=-8, q:z, C,=-8,!, C,=8, ~ (1-e-•IY7:i), (21) 

q = z/(1- e-•1•-'), 

where we have used the dimensionless parameters 

Qr' - l 
q=-, y=l'A-, 

A8, r 

k, 
z = 1-k.. (22) 

Let us now use the condition which gives the ioniza­
tion temperature T 0 introduced at the beginning of Sec. 3: 

8,.-8,~_!_(d8) (T,.-T,)~I.,.T,.2~kT,. ,.. 11• (23) 
8, a, dT ,. 8,. I 

(we have taken into account the fact that Tm- To« Tm)· 
The maximum of e lies in the heat release zone and 
approaches its end as the losses become less important. 
By calculating 6max and using Eqs. (21) and (22), we 
obtain one further equation, namely, 

a ( z )''' ~- 1 = q- 1- q 1- - = ll. 
8, q (24) 

Physically, it is clear that the quantities Q and l, given 
during the linearization, are 

Q= aS, /l, l=ya(T,.,.), (25) 

where a and y are of the order of unity. More accurate 
results can be obtained by going over to the low-loss 
limit r - oo for which a more exact solution was found 
in Sec. 3. When r-oo we have y-O, q-oo, z-oo, 
and yfZ = const, q/z = const. If o << 1, which corre­
sponds to the solution of Sec. 3, both these constants 
are found to be equal to 2o and we do, in fact, obtain Eq. 
(15). The coefficients a and y must be chosen to be 
a = 3/2 f3, y = 3/ f3 (where we recall that 1 < f3 < 2). 

The threshold for the u = 0 state corresponds to 
d- oo, z = 2. Equations (21) and (24) then give 
q = (1 + c5) 2/2o, y = 2 ln[(1 + o)/(1- o)]. The second of 
these two relations gives us the plasma temperature Tt 
under the threshold conditions, and the first gives the 
minimum flux Stl which must be introduced into the 
plasma. The temperature T t is not very dependent on 
the transverse "radius" r of the wave. For atmospheric 
air Tt R:< 4000-4500°. The main contribution to the 
ionization of air at such temperatures is due to nitric 
oxide with I= 9.4 eV, and forT R:< 4000-6000° we have 
e R:l AT/3, f3 R:l 1.5 (Table II). Moreover, if we suppose 
that A = 2, we obtain the following formulas which de­
fine the threshold conditions for air (o R:l 0.35): 

Table II 

I ) ... o·. 9·102, ('p·101, 

I 
1D, 

I s.. I u, I •. s.•, I u. T, °K kW/cm· 
kW/cm kJ/deg kJ/g kW/cm' em/sec m/sec kW/cm' em/' 

d~ 
sec 

4200 0.92 1.1 2.6 

I 
- 0.2 0 0 - -

4500 095 1.4 2.3 9 0.23 6.2 1.2 0.045 -
5000 1.1 1.9 2.8 10 0.35 22 4.8 0.14 II 
5500 1.3 2.5 4.4 I 12 0.56 26 6.7 0.30 19 
6000 1.55 3.3 7,5 15 1.06 30 8.7 0.60 31 
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l=2a(T,) ~ 1,0r, 8 11 ~ 5.49,/r. (26) 

We note that similar formulas are obtained when the 
threshold is estimated simply from the obvious condi­
tion that all three terms on theright-hand side of Eq. 
(19) must be comparable in the heat-release zone. 
Equations (21) and (24) together with the known function 
l(Tm), i.e., y(o), enable us to calculate Tm and u as 
functions of S1 •4 > 

5. DISCUSSION OF RESULTS. DISCHARGES IN 
WAVEGUIDES 

The numerical calculations were performed for air 
at a pressure p = 1 atm for A a= 3 em (frequency 
10 GHz, w = 6.3 x 1010 sec-1), i.e., for the conditions of 
the experiments described in£11. The electromagnetic 
parameters are shown in Table I and the electron colli­
sion frequencies were calculated for a cross section 
a c = 10-15 cm2 which corresponded to nitrogen mole­
cules. £14 1 Let us first estimate the threshold for the 
process. Without going into the reasons for the limited 
transverse size of the discharge, let us supposP that 
r = 0.3 em, which corresponds approximately to the ex­
periment in£11. According to Eq. (26), a~=::: 0.5 em, which 
corresponds to a temperature Tt ~=::: 4200°. Using the 
thermal conductivity data,£51 we find that 6t = 1.1 
x 10-2 kW/cm and from Eq. (26) we obtain S1t ~=::: 0.2 
kW/cm2• The reflection coefficient R ~=::: 0.28 (see Fig. 2; 
tJ./ a = 1/ (3 ~=::: 0. 7) and the threshold flux in the incident 
electromagnetic wave is Sat~=::: 0.28 kW/ cm2 • 

Comparison with expPriment can be carried out by 
using the power introduced into the plasma. Experi­
mentally£11 the threshold power in the incident wave is 
0.25 kW. If, as suggested in£11, the power absorbed 
amounted to 75%, the power actually absorbed by the 
plasma was 0.19 kW. If we take the surface of the 
plasma column facing the incident wave to be 1Trh with 
r = 0.3 em, h = 0.8 em, we obtain S1t = 0.25 kW/ cm2 as 
compared with the calculated value of 0.2 kW/cm2• The 
agreement is so good that, bearing in mind all the ap­
proximations, one can hardly ascribe to it any great 
significance. 

Table II gives the calculated flux S1 which must be 
introduced into the plasma to heat it to a temperature T 
and the corresponding wave propagation velocities u. 
Losses were taken into account (r = 0.3 em) as described 
in the preceding section. The last columns give si and 
u* calculated for finite temperatures T but without los­
ses, i.e., using Eqs. (5) and (12). There is a consider­
able difference between the data near the threshold, but 
this difference rapidly decreases for fluxes above the 
threshold value, as expected. We do not reproduce the 
incident radiation flux Sa because the reflection coeffi­
cients R, calculated for the planar problem, turn out to 
be extremely high at temperatures in excess of 4500° 
(see below). As the electromagnetic energy flux increa­
ses, the temperature rises relatively slowly and the 

4>It is more convenient to take Tm as the independent variable in 
the calculations. By specifying T m we determine li and y. If we elimi­
nate q from Eqs. (21) and (24), we can solve the resulting equation for 
z and then find q from Eq. (21) and S1o d, and u from Eqs. (20), (22), 
and (25). 

main increase is in the discharge propagation velocity. 
The table also gives the velocity of the discharge front 
relative to the heated gas, i.e., v = upa/Pm, where am 
is the air density at a temperature T and pressure 
p = 1 atm. This should be equal to the velocity of the 
plasma front in the laboratory system if the heated gas 
is at rest, as in the case of a flame in a tube away from 
the closed end. 

The measured velocities increase more or less pro­
portionally to the power, and agree with the calculated 
values of v but not those of u. This shows that the situa­
tion in the waveguide is in some way closer to combus­
tion in a tube with a closed end. This is natural because 
the heated gas expands in all directions, including the 
direction of motion of the discharge wave. The dis­
charge front acts as a piston pushing in front of it the 
cold gas which, consequently, itself moves relative to 
the waveguide. However, in the absence of the usual 
combustion in the tube, the "flame" does not occupy the 
entire tube but is confined to its central region, and this 
exceedingly complicates any consideration of the hydro­
dynamic flow in the waveguide. 

The transverse size of the discharge in the wave­
guide and its shape are determined by the distribution 
of the electromagnetic field near the plasma, and are 
also connected with the hydrodynamics of the process. 
It is clear from the photographs given in£11 that the dis­
charge does not propagate in the transverse cross sec­
tion in the direction of the narrower wall of the wave­
guide well away from the axis. It appears that this oc­
curs because, owing to the presence of the plasma, the 
field in its neighborhood falls with distance from the 
axis more rapidly than the sinusoidal expression corre­
sponding to the Ha1 wave in the empty waveguide. The 
radius r of the column can be determined theoretically 
only by solving the field problem for the plasma­
waveguide. Unless this is done, one cannot determine 
the actual amount of energy absorbed from the incident 
wave. The reflection coefficients of the plasma calcula­
ted for the planar problem, i.e., without taking into ac­
count the transverse size, were found to be too high at 
temperatures for which absorption is sufficiently high 
to ensure the required plasma heating. When the diffuse­
ness of the plasma boundary was taken into account 
this did not result in any essential reduction in the re­
flection. Moreover, it is noted in£11 that only 25% of 
the incident power was reflected, but it was not indica­
ted how reflection varied with power. 

A solution for the scattering of Ha1 waves in a wave­
guide from a very thin conducting rod parallel to the 
electric vector is given in£161, According to this solu­
tion, one-half, at most, of the power can be dissipated, 
one-quarter being reflected and the other quarter trans­
mitted, and this is in conflict with experiment.£11 It is 
clear that the plasma rod cannot be regarded as thin. 

Another solution is given in£171, where a thick plasma 
column in a waveguide is considered for a smooth 
(parabolic) radial electron density distribution. This 
again is not in agreement with the experimental data 
in£11. The solution results in reflection coefficients 
which are too high for electron densities which could 
ensure sufficient absorption of energy. Unfortunately, 
no data are given in£171, either on the field structure or 
on the absorption and transmission of waves. This 
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means that it is almost impossible to use the results 
of that paper for our purposes. It would be necessary to 
repeat the complicated and extensive calculations on a 
computer. 

In conclusion, we must say a few words about the 
initiation of the discharge. To start off the '' combus­
tion" of the main gas, the initial ionized vapor cloud 
must be large enough and hot enough so that ionization 
is produced. The situation is completely analogous to 
the firing of a combustible mixture. 

It is clear that, even for comparable threshold 
powers necessary to maintain an existing discharge 
wave, it will be more difficult to initiate the process at 
a higher ionization (combustion) temperature of the gas. 
One must assume that the discharge will be most diffi­
cult to initiate in helium because this gas has the highest 
ionization potential of all the gases. Calculations for 
helium with p = 1 atm and Ao = 3 em, analogous to those 
performed for air, shows that, for the same discharge 
radius r = 0.3 em, the threshold temperature is higher 
by a factor of two than in air (approximately 9000°). 
The threshold flux at which the "combustion" is possi­
ble is also much higher than in air, namely, S1t 
f':j 0.9 kW/cm2• 

The author is indebted toN. P. Lokalina, who brought 
the experiments described in(1 J to his attention, and to 
G. V. Lysov for discussions in connection with the prob­
lem of reflection by plasma in a waveguide. 
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