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The thermal conductivity of binary mixtures of molecular non-paramagnetic gases in mutually per
pendicular constant and alternating magnetic fields is considered. An expression describing the 
resonance spectrum, each line of which corresponds to thermal conductivity resonance with various 
mixture components, is obtained by solving the set of kinetic equations and taking into account the 
pseudo-proper collision operators. Examples of fine structure of the resonance lines are considered. 
The dependence of the resonant variation of the thermal conductivity of molecular gas mixtures on 
the concentration of each component is obtained. Cases when the concentration of one of the compon
ents is small or when the values of the thermal conductivity co-efficients, molecular weights and 
nonsphericity scattering parameters of the components are close to each other are considered in 
greater detail. 

1. INTRODUCTION 

GAS-kinetic magnetic resonance (GMR) was observed 
experimentally with the thermal conductivity of 0 2 as 
an exampler 11 • The theory of the effect is given in[ 21 • 

This effect is observed in mutually perpendicular con
stant and alternating magnetic fields, is exhibited by 
all molecular gases, and is due to the additional change, 
compared with the case of a constant field, of the scat
tering cross section of nonspherical molecules, which 
has a maximum when the frequency of the alternating 
field is equal to the frequency of molecule precession 
in the constant field. 

Gorelik, Rukavishnikov, and Sinitsynr 3l observed 
resonance of the thermal conductivity of the polar gas 
NF 3 in mutually perpendicular constant magnetic and 
alternating electric fields. The resonant behavior of 
the angular momentum of the NF3 molecules and con
sequently the resonant increase of the scattering cross 
section were due to the interaction of the (rotational) 
magnetic moment with the constant magnetic field and 
of the dipole moment with the alternating electric field. 

As shown earlierr 21 , the resonant change of the 
thermal-conductivity coefficient should have several 
maxima (fine structure of GMR), the presence of which 
is connected with the symmetry of the perturbed colli
sion operator and with the angular dependence of the 
nonspherical potential of molecule interaction. 

In the present paper we analyze theoretically the 
phenomenon of kinetic resonance in binary mixtures of 
molecular gases. By solving the system of kinetic 
equations vi~ obtain expressions describing the behavior 
of the thermal-conductivity coefficients of such a mix
ture in mutually perpendicular constant and alternating 
fields. We consider the fine structure of the resonance 
lines corresponding to different mixture components, 
and the concentration dependences of the effect. 

2. SYSTEM OF KINETIC EQUATIONS 

The system of linearized kinetic equations describ
ing the binary mixture of gases with rotating molecules 
in a spherical coordinate system, in which the z axis 

coincides with the direction of the constant magnetic 
field H0, is of the form (we use throughout the indices 
a,{3=1,2) 

(2.1 )* 

where fa = nafoa(1 + xa); foa is the equilibrium dis
tribution function of the molecules of sort a; Ya 
= J..l.aroth; J..l.arot are the rotational magnetic moments 
of the molecules; 

H = -iH, sin wt + jH, cos wt + kH, 

(H 0 is the intensity of the constant field; H1 and w 
are the amplitude and the frequency of the rotating 
field); na is the density of·the molecules. 

In the case of thermal conductivity, the quantity Na 
has the following value: 

( 2kT)';, n ( 2kT)'I• N.=(u.'+M.'-cp.) ~- (u.).V;lnT+- -- (u.),d,a~, 
ms na. ma, 

(2.2) 
where 

d,·~ = ~~+ n.n~(m.- m~) a Inp = _ ar, 
n or, np {)r, 

p = n.m., p = nkT, n = n, + n,, 

u and M are the dimensionless velocity and moment 
of the molecule, cpa is the specific heat of the gas at 
constant pressure. The collision operators in (2.1) are 
given by 

108 

i.x. = s J,. [ (Xa + Xta) w. - (x.' + X•a') w.'] dr a' dr ••' dr '"' 

i.~(x.+x~)= ft,~[(x.+x~)w.~ (2.3) 

- (x.' + xo') w.,'] ar .' dr / ar ,, a =I= ~. 

Here w is the probability of molecule collision and 
eli' is the phase volume of the molecules. 

According to Kagan and Maksimov[4 l, the homogene
ous parts of (2.2) can be represented in the form 

(2.4) 

where 
lm 
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Yzm (u~) = (u~)'Yzm (cpu"' ttu.}. (2 ,5} 
The indices T and D denote the terms corresponding 
respectively to the heat transfer and to the number of 
molecules. The quantities tk_m are given in[ 4l. 

The operator Ia describes collisions of molecules 
of one sort. The properties of these operators are 
considered in[ 4- 61 • The collision operators of molecules 
of different sorts have Ia[3 can be represented, in ac
cordance with (7 J in the form 

L~(x. + x~J = l.~(x.) + J.~(x~J. 
i.~<x~)= J f,~(x.-x~')w.~dr.'df~dr~'. 

i~~<x~)= s f,~(x~-xow.~df/df~df~'. a =I=~ (2.6) 

(it is assumed in these relations that the equality Wa{3 
= w~p is satisfied in the collisions of these molecules). 

Taking (2.6) into account, the system (2.1) takes the 
form (a ;e {3) 

.... ,.. .... -
La = i ['ya;ola;z + Vu)a+e-iwt + Ya)a-eiwt]. 

(2.7) 

(2.8) 

The operator La describes the interaction of the mole
cules with the field[ 2J. Here Yao = YaHo, Ya1 
= ( Y2 haHI> and la is the molecule angular momentum 
operator. 

Followingf 41 , we break up the collision operators 
(2.3) and (2.6) into two parts: 

/. = t<•> + ef.<•>, f.~ = J~'/ + e!~V, a =I= ~. (2 .9) 

where € is a small parameter. Here i~> and I~/3 are 

operators that are diagonal in the space l/Jan, 

ljl •• = ~ c,::;:,,,m, Y,,m,(u.)Yz,m,(M.)L,,'•(u.')L~:+v (M.'), (2.10) 

where n = (lm, l 1 l2, r 1r2), c/:1z2m 2 are Clebsch

Gordan coefficients and L~ are Laguerre polynomials. 
For linear molecules y = 0. For molecules of the 
symmetrical-top type y = Y2. 

The cross-collision operators I~{; and J~~ satisfy 
relations analogous to those given int7l: 

(2.11a) 

(2.1lb) 

here l/Jan are the eigenfunctions of (2.10), and 11.f:i3 
are the eigenvalues of the operators ~~~· The functions 
t/Jcm describe the anisotropy of the non-equilibrium 
distribution function in the angular-momentum and 
velocity space. The expression (2.1lb) is a reflection 
of the pseudo-eigenfunction properties of l/Jan· These 
properties of the functions are very useful, since they 
make it possible to separate only one type of eigen
functions for each kinetic equation. 

3. SOLUTION OF SYSTEM OF KINETIC EQUATIONS 

We represent the solution of the system (2.7) in the 
form 

x~ =- L. <a~),m • x~·m· (3.1) 
lm 

Substituting these expressions into the initial equations 
(2.7) and taking (2.9) into account, we obtain equations 
for xazm: 
IV' x~•m + n~ft,;;> x~zm = n.(A~)zm- e(n.id'> + n~t~ )x.,"'- en~F,;;> x~'"'' 

where 
~ _ 1 f) ~ ~(o) ~(o) 
K. =at+ L. + n.I. + n~I.~ 

FA (o) _ n. ( m. ) '/, JA(o) ;., <•l _ n. ( m. ) •;, JA (!) 
afl, -- - a!), rail--- "~' 

nil mr. n 13 m 13 

We seek Xalm in the form of a series in the small 
parameter €: 

(3.2) 

(3.3) 

(3 .4) 

Substituting these expressions into (3.2) and retaining 
terms of zeroth order in €, we obtain a system of 
equations for x~}m, solutions of which take the form 

where 

b.~: = (flhn,( (A,),,,, ljl.,,)- n,'Q,:~ ((A,) 1,, ~,,,,)) v ,~ 1 , 
~li>llD = n~'"A~~/ + na'An/a, 

(q,, q,) = J f,q,'q, df, n, = (lm, l,O, r,r,). 

The functions X~zm satisfy the equations 
,.._1 (1) ""(o) (1) n lm 

KrJ. Xatm + ni3F af.l XP/m = - L Ban '¢an, 

" 
where 

(E.),,,= n.(I.<'>),,, + n,(IJ;\,,n, a of=~· 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Here (I~>) non are the matrix elements of the opera
tors J.~>. For the operators F:;~ they take the form 

(F~~)nno = (tjl.,.F~liJl~,,). (3.9) 

The symmetry properties of r ll I(l) and F< ll 
a ' a{3' a{3 

give rise to selection rules for the matrix elements of 
these operators, analogous to those obtained inr4 ' 6 l. 

We seek the solution of the system (3.7) in the form 

(I) I:I: Zm Xazm =- B (a ) m e'•'<"',-'1 a:n a qm~'f'Cl.n • (3.10) . . 
Here 

(3 .11) 

Substituting (3.10) in (3.7) and taking (3.3) and (2.8) into 
account, we obtain equations for the unknown coeffi
cients 

~ e'•<m,-'J' {B~':[ (ikV•• +X.") (a.)'"'''+ iy., (l.~+• (a.),m,.., 
• (3.12) 

where 
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Transforming (3.12) back to operator form, we ob
tain equations for the determined coefficients: 

where 

B!";. [f.+ i(y.,l, + y.,f+ + y • .f-)]x.(M.) 

+ B,',';'n,F.c:h(M.) =B •• Y,,m,(M.), 

x.(M,) = L (a.).m,,Y,,,(M,). 

• 

(3.13) 

(3 .14) 

Solving (3.13) by the method used inr 21 , we obtain 

(a.).m,. = L (r:•m,.(T;');,[B:: (ll•· + im2oo 
p 

(3.15) 

Substituting this solution in (3.10) and using (3.11), 
bt . ( 1) 

we can o am Xalm. 
The system of equations for x~lm is 

K~ _1 (2) + F~ (o) (2) ~ lm 1 
a Xatm nil a.ll x~am = - ~ Aa.1\}'¢!1n~e l&l(m~-hJ 1 • 

Here 

A~":.,=- L L 
• 

We seek the solution of (3.17) in the form 

x~~>,. =-L D~":.,(t).p •• ,. .. 

(3 .17) 

(3 .19) 

Substituting (3.19) into the system (3.17) and using (3.3), 
we obtain equations for the unknown coefficients 
D~~0(t): 

av:;:',(t) lm "' lm( -I"' io(m,-Af (3.20) ---+ll••,D.,,(t)+n,Q,,D,., £1 -Aan,e . 
at 

The periodic solution of this system of inhomogeneous 
equations of first order is presented in the form 

D''"() {[ · ] lm •> lm}{ ""' t =- It>•• + !OO(m2 - k) A •• ,- n,Q., A,,., [!l>no (3 .21) 

+ ioo(m,- k)] [t-t •• , + ioo(m,- k) ]- n.n,A:; A!;'}-'e'•'(m,-•J. 

Knowledge of these coefficients makes it possible to 
write in explicit form expressions for x< 2l> • 

am 

4. THERMAL CONDUCTIVITY 

The heat flux in a binary gas mixture can be written 
in the following form : 

~ ( 2kT )'" [ q,=kT ~n. ---;;;:- J f,.z.(u.'+M.'-c •• )(u.);dr. 

+c •• (u.).]. (u.), = <x., (u.).>. (4.1) 

Substituting xa in (4.1) we obtain, in accord with (3.1), 

q,=-k .E{.Et;'"'(t,'m')•[( ~~) (c.T)Imlm'(VT), 
a mm• 

where k is Boltzmann's constant, 

(c.T),mlm' = ((A.•),m, (x.•),m•), 

(c!-D)tmtm' =((A.'),,., (x.n),m•), a =I=~. 

Expression (4.2) shows that the heat flux consists of 
three parts: 1) the heat flux due to the inhomogeneity 
of the temperature, 2) the heat flux due to diffusion
the so-called diffusion thermal effect, 3) the flux due 
to mass transport. 

We use furthermore the equation for the diffusion 
flux 

n' ( 1 ] (v,),-(iJ,), = --- D,.' -(VT),+D .. (d12), , 
n,n, T 

D _ -•~ ~ ''"( tm')•n' (2kT) ( D) 
ill- n ~ ~~ ti t, na. \ ma. Ca. tmtm', 

D T_ n,n2Lt''"(t'm'>•[ 1 ( 2kT)( n-r) 
ill.--,- i 11. -- C1 lmtm' 

n mm• ni mi 
(4.3) 

1 ( 2kf) D-T ] -- - (cz )tmtm' 
nz mz . 

(Dik, n'& are the coefficients of diffusion and thermo

diffusion); then the expression for the heat flux in the 
case of a stationary state at (v1) i = (v2) i = 0 can be 
written in the absence of the field in the form 

q, = -x,(VT),, 

n' 
Xo = x,'--- kk.'D,. 

n.nz 

(4.4) 

(4.5) 

Here kT is the thermodiffusion ratio, Ko is the experi
mentally measured coefficient of thermal conductivity 
of the mixture, and K~ determines the heat transport 
in the gas mixture without allowance for the diffusion 
thermoeffect . 

It follows from (4.5) that the change of the thermal 
conductivity coefficient of the mixture in the magnetic 
field (~ K) can consist of the change of the coefficients 
K1

, D, and kT: 

~ = llx' _ nkDk.' ( llD + 21lk. } , 
Xo Xo XtXzXo Do kr 

n. 
Xa:=-. 

n 
(4.6) 

Let us estimate the contribution of the second term 
in (4.5), which describes the change of the heat flux 
connected with the diffusion thermoeffect in a magnetic 
field. As shown inr 91 and noted inr 101, the change of the 
thermodiffusion ratio of the mixtures 0 2-Kr and 
0 2-He in a magnetic field amounts to less than 0.4%. 
The diffusion coefficient of the mixture 016018-0~6 in a 
magnetic field changes by an amount ~1.5 x 10-4 [ 111. 
Unfortunately, we do not know the changes of D and kT 
of other mixtures in a magnetic field, but it can be 
assumed that the changes of D and kT will be ~1% (as 
is the case, for example, for the change in the thermal 
conductivity). 

Under conditions typical of measurements of the 
thermal-conductivity coefficient of gases in a magnetic 
field, p = 1 mm Hg, T = 300°K, the second term in (4.6) 
for the 0 2-Kr mixture is of the order of 10-6 (D 
= 115 cm 2/sec, kT = 0.045, x 1 = x 2 = 0.5, Ko = 22.5 
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x 103 erg/cm-sec-deg). It follows from the work of 
Senftleben[ 121 that the relative change of the thermal
conductivity coefficients of the mixtures investigated 
by him depends on the concentration and amounts, say 
for 0 2-Kr, to 0.1- 1%. We shall therefore consider 
only the coefficient K1 in the analysis of the behavior 
of the thermal conductivity of a gas mixture in mag
netic fields. 

Let us examine the dependence of K1 on the intensity 
of the constant field and on the amplitude and frequency 
of the alternating field. We are interested only in the 
real part of the time-averaged thermal-conductivity 
tensor, wh;~h is even in the external field[ 4 l · 

X;•= .E~~:, ,.S,.Re(c.T)u,u+h;h,[(c.')to,to-Re(c.')u,u]}, (4.7) 

" hi= Hi/H. It is seen from (4.7) that, just as in the 
case of a molecular gas[ 21, the dependence of Kik on 
H0, Hh and w is determined by the coefficients 

(4.8) 

where (x~>lm are non-equilibrium distribution func
tions, obtained in the preceding section in the second 
approximation in the small parameter t: (here and 
throughout the index T has been left out from the 
quantities (ca)l'mzm, (Aa)z'm, (x~>)lm). Using ex
pressions (3.18), (3.19), and (3.21), we can express the 
coefficients ( c01 ) z' mlm in the form 

where 

\"1 '\' 1'"'1! I'm. (c,)l'mlm =~~B.,. an' (G.) nn'o 

\"1 \"1 lm I'm 
(c,), . .., 1,. = "'-" ~ B •• Q ••• (G.) •• •, 

I'm . \"1 (1) Z1 ) ] -1 Q, •• = ~n,((A,)I•m,1Jlz.,,)[J,t 1 n,(F, )., •• -Q., (E, no•' v., .. 
and 

(4.9) 

(Ga.) 1•n' = .E c~::7t2m2Ct,1;:.,~ml)'l1ono'(aa,) qm2m2· (4.11) 
m 1+m2=m 

The quantities BUP and B~ were defined earlier 
(see (3.8)). 

Using the equality 

L, !P,..'(cos tt) I'= 1, 
p 

we separate in the quantities ( G01 ) nn' the parts 
(AGa)nn' that vanish in the absence of magnetic fields: 

(11a.)om2m, = ,E IP~:.(cos tt.) l'(m,w + py • .,rr)'{[(m,w + P'\'aerr)' 
p 

+(B~:n.n~A."'A.~·- J,t1.n~::"o.·~) (!t1• + ft•n)} · (4.13) 

X [ (B:: 11~·- n~;:'. 0."')11 ... ]-1, 

11 ... = [ (m,ro + py .. err)'+ J,t ... '] [(m,w + py .. err)'+ ftpn2] 
-2[~-t••ft~·- (m,w + py .. err)']n .. n~A.·~A.'" + 

+ (n .. n,A."'A.'")', a-=/= ~· 

Taking these expressions into account, the change 
of the coefficients (c 01 )z'mlm in mutually-perpendicu
lar fields will be 

(4.14) 

Cl '"" 

Expressions (4.14) together with (4.12) and (4.13) 
determine completely the dependence of the time
averaged changes of the thermal-conductivity coeffi
cient of a gas mixture on the value of the constant 
field, on the amplitude and frequency of the alternating 
field, and on the pressure. 

Let us consider the case of strong fields, when 

(4.15) 

Then expression (4.12), with allowance for (4.13), takes 
the form (a ~ {3) 

_ ~ C lm C l"m lm l'm 2 _ 
- ~ l,m 1t~m~ 1 1m 1/~m2 +C,,m,t~oCI,m 1 1 2o(1-P,1 (cos-6-a)], {4.17} 

m1+m2=m 
1112::;=0 

It follows from (4.17) that in this case the depend
ence of the thermal-conductivity coefficient of a gas 
mixture on Ho (y 010 = J..LarotHo/li), Hh and w 
(y 011 = J..l.arotH1 /fi) is determined by the function Pz 2 , 

and consequently by the selection rules with respect 
to the index l 2 for the matrix elements of the operators 
i~>, i~b• and J~1• which describe non-spherical scat
tering of molecules. In the case when the probabilities 
of the direct and inverse transitions in collisions are 
equal, the simplest operator model is the one in which 
the matrix elements differ from zero only for "transi
tions between states" n0 =(1m, 10, r 1r 2 ) and 
n = (1m, 12, 00). If the interaction of the mixture 
molecules is described by this model, then the reso
nant change of the thermal conductivity of the mixture 
in accordance with (4. 7), (4 .9 ), (4 .12), (4.14), and (4.17), 
in fields satisfying the condition (4.15), is described by 
the expressions 

(G )1m,1m -(C1m )' 4(y.,-w)'+y • .' 
a 1.2 - 1m,zo [(y.,-w)'+y.,'l'. 

(4.18) 

(4.19) 

Here 

(4.12) Here F 1(>0) and F 2(>0) are complicated coefficients 
that depend on the non-zero matrix elements of the 
operators li1>, r/>, ig>, and JW (see (4.14) and (4.9)) 
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and determine the concentration dependence of the 
resonant change in the thermal conductivity. At low 
concentrations of the first gas we have F 1 ~ n 11 and at 
small concentrations of the second gas F2 ~ n2. (The 
concentration dependences will be discussed below.) 

It follows from (4.18) and (4.19) that at a fixed fre
quency and amplitude of the alternating field the quan
tity .6.c liD 1m and consequently also the change of the 
thermal-conductivity coefficient, has two maxima at 
constant-field values 

liro 1 
H,=-±--=H,, 

ll•rot 21'2 
(4.20) 

corresponding to resonance with the molecules of the 
first gas, and two maxima at constant-field values 

~ 1 ) H,=-±---=.H., (4.21 
!luot 21'2 

corresponding to resonance with the second gas. 
Thus, a resonant spectrum, each line of which has a 

fine structure, should be observed in a gas mixture. 
As seen from (4.18) and (4.19), the amplitudes of 

the resonance lines also change with changing concen
tration, but the form of the fine structure of the lines 
does not depend on the concentration. The latter cir
cumstance can be attributed to the fact that, in the 
nonspherical scattering model considered above, the 
collision-operator matrix elements differ from zero 
for both identical and different molecules only in 
"transitions into states" with identical l 2 = 2. The 
anisotropy of the non-equilibrium distribution functions 
( x1 and X2) in ( v, M) space will then be the same and, 
as can be seen from (3.8), (3.10), and (3.11), it is de
scribed in the first approximation in ~ by the functions 
<Pn (3.11) with l 1 = 1 and l 2 = 2. This form of the 
anisotropy of x1 and x2 is likewise independent of the 
concentration. 

The change of the anisotropy of x1 and X2 with 
changing concentration, and consequently the change of 
the fine structure of the resonance lines, can occur in 
a gas mixture if the non-spherical interaction of mole
cules of different sorts differs. An example is a mix
ture of two molecular gases, one of which exhibits the 
anomalous effect of the change of thermal conductivity 
in a constant magnetic fieldr 13l. Such an effect can be 
represented as a superposition of two changes of the 
thermal-conductivity coefficients, with opposite signs. 
As shown inr 5 ' 6 ' 14l, the anomalous effect can be ex
plained by considering collisions for which the proba
bilities of the direct and inverse transitions are differ
ent ( w "" w' ). Allowance for these collisions leads to 
the need for breaking up the operator jpl into sym
metrical and antisymmetrical parts, having the 
properties r 61 

(4.22) 
(ljl,,, J,1jo,,•) = (ljl,,•, J,1jl,,), (tjJ,,, foljl,,•) = -('fin'> [,ljJ,,). 

When describing the interactions of molecules in a 
mixture of gases, in one of which the anomalous effect 
is observed (the first gas), in accordance with the 
selection rules for the operators Ic and Ia r6J, the 
simplest model will be the one with non-zero matrix 
elements of Ia for "transitions into states" with 
Z1 = 1, l 2 = 1 and for "transitions into states" with 
l1 = 1, l2 = 2 in the case of the operators Ic, lap. Jap. 

and I2. Then the anisotropy of x1 will be described by 
a linear combination of the functions <Pn with l 1 = 1 
and l 2 = 1 and 2, while that of X2 will be described by 
the functions C{Jn with l 1 = 1 and l2 = 2. As shown by 
the calculations, the expression for .6.cliD,liD (4.14) 

, will contain in addition to the terms analogous to (4.18) 
and (4.19) also the supplementary term 

+ S.m,lm - lm 2 Yuz 
!1c1m1m = F,(G,)u = F,(CimiO) 2 2 , 

(y .. - w) + Yu 
(4.23) 

which describes the resonant increase of the thermal 
conductivity connected with the resonance with the 
molecules of the first gas; F 3 (>0) determines the 
maximum increase of the thermal-conductivity coef
ficient and depends on the matrix elements of Ia. 

It follows from (4.23 that ac;m, 1m reaches a maxi
mum at 

H, = OJii i.!ltrot (4 .24) 
When this relation is satisfied, in accord with (4.18) 
and (4.19), the resonant change (decrease) of the 
thermal-conductivity coefficient should have a mini
mum. 

At low concentrations (n1 - 0), when the collisions 
of the molecules of the first gas with one another do 
not make an appreciable contribution, we have F 3 ~ n~ 
(as follows from (4.9), (4.14), and (4.22)), and therefore 
the resonant change of the thermal-conductivity coef
ficient in the approximation linear in the concentration 
will be described by expressions analogous to (4.18) 
and (4.19), and the anisotropy of x11 which is described 
by the function <Pn with l 1 = 1 and l2 = 1, vanishes. 

According tot2•4 l, the resonant change of the thermal 
conductivity in the case when Ho is parallel to VT is 
determined by the coefficient .6.c 10, 10, and consequently 
also by the quantities Gz~z~ (4.17). However, C1010 = 0, 
and therefore (see (4.23)) in a field H0 11 VT there 
should be no resonant increase of the thermal-conduc
tivity coefficient. 

In the second simplest model of the interaction of 
the molecules of the same mixture, the non-zero 
matrix elements will be those of the operators 1:;~ and 
J~h (a "" {3) in "transitions to the states" with 
l 1 = 1 and l2 = 1 or 2. It can be shown that in this case 
a change of the concentration will be accompanied by a 
change of the anisotropy of the distribution function and 
of the fine structure of the line of the second gas. 

An analogous behavior of x11 x2, and of the fine 
structure can take place in a mixture of a diatomic gas 
with a gas of the SF6 type. It was shown in[ls] that in 
a gas with molecules of the type SF6 , which have octa
hedral symmetry, the main term in the expansion of 
the nonequilibrium distribution function is the one con
taining the product of irreducible third- and fourth
rank tensors ( [ v P[M ]4 ), made up of the components 
of the velocity and angular momentum vectors. As 
follows from the performed analysis, the fine structure 
of the line of such a gas consists of four maxima, the 
positions of which are determined by the relations 

hw 1 
(H,,),,, = -± -;-H1, 

!-la.rot 0 

liw :3 
(H,,),,, = --±-H,. 

ll•rot 4 

In a mixture with SF6 the fine structure of the line of 
the first or of the second gas will vary with the concen
tration, depending on whether the operator for colli-
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sions between molecules of different sorts has or does 
not have non-zero matrix elements for "transitions to 
thestate"with l 1 =3 and l2=4. 

It should be noted that the perturbed-collision
operator model describes satisfactorily the interaction 
of molecules in a number of gases[ 161 when transitions 
to the state with l2 = 2 are allowed and the anisotropy 
of x is described by the functions 'Pn with h = 1 and 
l 2 = 2. This result follows from measurements of the 
ratio (aK1/aKII)sat of the components of the thermal
conductivity tensor at saturation when the constant 
magnetic field is perpendicular and parallel to VT. 
However, in the presence of other terms of the expan
sion of the non-equilibrium distribution function (for 
example v, M, [ v ]3 l:M:] 4 ), a deviation of the ratio 
(aKl/ aKII) sat from 7'2 (this value corresponds to an 
anisotropy of X described by 'Pn, Z1 = 1, l2 = 2) should 
be observed in different directions. In this case 
measurements of (aK1 /aK 11 >sat cannot give reliable 
information concerning the true contributions of the 
different terms to the e:...J:)ansion of X· 

Let us consider the dependence of the resonant ef
fect on the concentration. We assume that the second 
gas constitutes an admixture x = ndn « 1. In this 
case, retaining in (4.7) terms that are linear in x, we 
can reduce the experimentally measured relative 
change of the thermal-conductivity coefficient in 
crossed fields, E: = (E:11 + E:l)/2, where E:1 = aKl/Ko 
and E:11 = aKii/Ko ( Ko is the thermal-conductivity coef
ficient of the mixture in the absence of fields), to the 
form 

8 = L 1)>. _, [Re (~c.)"·" + ( L'ic.) 10, 10], 
.. 

'\1 lmtm tmtm ( A ) tmlm +(A ) tmtm]} ¢.=L1 {(1-x)((A,)" +(A,) 12 ]+xi'J(•" '" , 
.. (4.25) 

where T/ = 1 if a = 1 and T/ = m 1/m2 if a = 2, and 

(L'ic,),,.,,. =-[ (1- x) (A,),';"''" (G,)!~'m + x(A,),','"'"'(G,):;··''" J, 

(~c,),.,, .. =- [x(A,),!m''"(G,) ,~mtm +(1- x) (A,),','"'"' (G,);,'"'"']. 

The coefficients (AT/)W11m, where T/ = 1, 2, 3, and 4, 
are given by cumbersome equations that depend on the 
collision frequencies of the like and unlike molecules 
~nd on the matrix elements of the operators i<C:~ and 
J~h. The expressions for ( Gamnrm in the case of 

large values of the fields (llao, Ya1 » naA.an) are 
given in (4.19) above. 

The concentration dependences of the GMR in the 
case of arbitrary concentrations become much simpler 
if it is assumed that the binary mixture under consider
ation consists of gases with large thermal conductivi
ties and with close values of the masses and interaction 
nonsphericities of the molecules. This makes it possi
ble to put 

i.~J = i..,, (1~~).,. =(!<'>).,., m, = m,. (4.26) 
Using these assumptions, and also the relations (3.6), 
(3.8), and (4.10), we obtain 

B,'~·= (1- x) _E1..:: (A,.,, w.,) (/<'>)..,., .. 
•.. 

11 I'm I'm '\1 -t J t ••' = Q, •• = .i...l i.., (A, ... , 'IJ,.,) ( < >) •••'• .. 

o::':' = n;~'!' = o. (4 .27) 
In this case the relative change of the thermal conduc
tivity (E:) takes the form 

. 1 
8 = ~ -;p[Re(~c .. )u,H +(~c.)10,10], (4.28) 

where 
'11 = .L, A'"'·'"'(1- 2x + 2x'), 

(4.29) 

.. 
Expressions for (Ga)rmrm are given in (4.17). It 

should be noted that, according to (4.28) and (4.29), a 
certain deviation of the effect from linearity with re
spect to x = n2/n is observed even for such a simpli
fied case of binary mixtures. For arbitrary gas mix
tures, this relation is more complicated. 

The authors are grateful to L. L. Gorelik, L.A. 
Maksimov, and V. V. Sinitsyn for a discussion of the 
work. 
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