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Nonlinear stationary waves propagating along the axis of a ring electron beam similar to the E­
layer[7J is investigated. Dispersion relations for nonlinear periodic waves are obtained, the maxi­
mum amplitudes of the electric field in them are determined, and conditions for the existence of 
solitary waves are considered. 

1. In stationary electron configurations, such as the 
Budker self-stabilized beam and the Veksler relativis­
tic electron rings[ 2J, a reduction in the Coulomb repul­
sion of the electrons is achieved with the aid of the 
Lorentz forces of the self-pinched relativistic currents. 
Thus, in a self-stabilized electron beam, the condition 
for equilibrium of the electrons can be written in the 
formr3' 4J 

- eE.+.!_u,H.+F•.J =0. 
c 

Here, v0 is the longitudinal velocity of the electrons of 
the beam, Fext is the force exerted on the electrons by 
the external fields, and Er and Hcp are the electric 
and magnetic fields in the electron beam, defined by 
the equations 

1 d . 
--(rE.) = 4ne(n,- n,), 

r dr 
1 d 4ne 
--(rH0)= ---v,n,. 

r dr c 

It follows from these equations that the Coulomb force 
of repulsion of the electrons in the beam, -eEr, is 
weakened by a factor of y~ = (1- v~/c 2t 1, owing to 
the Lorentz force evJ;J.cp/ c, and equilibrium is attained 
either as a result of partial compensation of the elec­
tron charge by ions of density ni = ne/r~, or with the 
aid of external fields. A similar reduction in the 
Coulomb repulsion of the electrons, owing to the intrin­
sic magnetic field of the electron current, occurs in 
the relativistic ring[21 • As is well known, the station­
ary electron configurations considered in[ 1 ' 2J can very 
effectively be employed for the realization of a collec­
tive method of acceleration. 

Also of interest is the collective method of accelera­
tion in which the merits of the method of acceleration 
by electron rings and of acceleration by running waves 
of charge density are combined. According to[6 J, such 
a method of acceleration can be realized by exciting 
charge-density waves that propagate along the axis of 
the E-layer[71 . ·In that case, the wave causes the layer 
to split up into electron rings, the Coulomb repulsion 
in which is weakened by the orbital motion of the elec­
trons, which should lead to a substantial increase in 
the highest possible intensity of the field of the wave 
and, consequently, to a considerable rise in the effec­
tiveness of the acceleration. 

In the present paper we investigate, in connection 
with the method of acceleration proposed in [s], non­
linear waves propagating along the axis of an electron 
beam, the particles of which revolve in the azimuthal 
direction. In such a beam the charge-density wave 
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leads to oscillations in the particle current j~ 
= -evon'(z - Vpht) (v0 is the azimuthal velocity of the 
electrons and Vph-the phase velocity of the wave) and, 
consequently, to the appearance of a magnetic field of 
the wave Hr(z - Vpht). The corresponding pinching 
force FH = evoHr/c of the bunches into which the wave 
breaks up the beam is, as in the stationary case, out of 
phase with the Coulomb force FE = -eEz and balances 
it when v0 ~ .Jc2 - vph" Such a compensation of the 
forces acting on the electrons should lead to a consid­
erable increase in the largest possible amplitudes of 
the field, since the breaking of the wave front at suffi­
ciently large values of the amplitude of the wave is 
usually connected with Coulomb repulsion of the elec­
trons in the field of the wave (see[8• 91 ). 

In the second section of the paper we investigate 
nonlinear periodic waves in an uncompensated electron 
beam, consider the dispersion relations for these 
waves and determine the maximum amplitudes of the 
field. 

In the third section we show that solutions of the 
type of solitary waves, in which the energy of the field 
is localized within a distance of the order of a wave­
length, are also possible in such a beam. 

2. In the present paper we investigate, for simplicity, 
the propagation of waves in a rectangular geometry. 
As a stationary state we choose a plane uncompen­
sated-with respect to charge--electron beam bounded 
by the x-axis and moving along they-axis with velocity 
v0 • The self-magnetic field of the current Hz(x) 
weakens the Coulomb repulsion of the electrons by a 
factor of y~ (see Sec. 1). 

Considering the stationary wave propagating along 
the axis of the electron beam and assuming that the 
transverse gradients of the wave quantities f are 
negligibly small in comparison with the longitudinal: 

I a~~~ 1/1 a~t I ~ka»1 
(~ = z - Vpht, k is the wave number and a is the 
transverse dimension of the beam), we obtain the 
following system of equations, which describes the 
propagation of the wave in the beam: 

) dp, d<p e ( dA, dA. ) 
(v,-z:,lidf=edf--;;- v, d~ +v. d~ , 

dp. e dA• e 
(v,-v \-d-=;= --(v,-v \-d-+-vxH,, 

ph';; c ph'r; c 

dp, e dA. e 
(v,-v.h)-_ =-(v,- v 11)----(v,- v,)H,, 

p d~ c p d; c 

(1) 

(2) 

(3) 
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,, 
-,:-[n(v,- vph)] = 0, 
c" 

d'cp i a;'= 4ne (n- n,)' 

( vp~) d'A, 4ne 
I--., - .. - = --(nv, -- n,v,), 

c- a;-" c 

( 1 _ ~) d'A, = 4ne nv,. 
c- d~2 c 

(4) 

(5} 

(6) 

(7) 

In these equations p = ;gv/c 2 is the momentum of the 
beam particles, If = ..Jm 2c 4 + c 2p2 is their energy, and 
cp ( ~) and A( ~) are the scalar and vector potentials of 
the wave. Linearizing Eqs. (1}-(7) with respect to the 
amplitude of the wave and substituting in them the 
wave quantities in the form f ~ exp[i(k~ - wt)], we 
reduce them to the following dispersion equation: 

'{ 'k' 2 m'm,' ) ( 'k' , + ro,'k'v,' 
c -w- wu'fy,'-w' c -ro w'-w,' 

fil00o2 ) Wo' 0>H2(1)2 

- - -0, 
Vo'(wH'/y,'- w') vo' ((un2/y,'- w')' (8) 

where Wo = ( 41Te:n0 /m y0 )J./ 2 is the Langmuir frequency 
of the beam, WH = eHz/mcy 0 is the cyclotron fre­
quency in the self-magnetic field and y 0 = ~0/mc 2 • We 
investigate the case when the self-magnetic field 
"magnetizes" the transverse wave motion in the beam. 
The conditions for "magnetization" have the form 

Wu~wy,, max (w,ck) ~(uo'/wn. 

When these conditions are met, Eq. (8) breaks up into 
two independent equations: 

w'=c'k' / (1 + w,'y,'/ Wn2}, (9) 

w'-w'(·wo'+c'k') -wo'k'(vo'-c') =0. (10) 

The last of these equations describes two branches of 
the oscillations in an uncompensated beam-a fast wave 
with Vph > c and frequency w > w0 and a slow wave 
whose phase velocity varies within the limits 0 < Vph 
< c/y0 , and frequency w :S w0 /y 0 (see Fig. 1). Our 
analysis will, in the main, pertain to the slow branch. 

Substituting the characteristic values k ~ w0 / c, 
w ~ Wo/Yo and WH = eHz/mcy 0 R:: w~a/c in the "one­
dimensionality" condition ka >> 1 and in the "mag­
netization" condition, we find that these conditions are 
fulfilled for sufficiently "wide" beams for which 

6= w,aj c~1. (11) 

Allowance for the "finiteness" of the self-magnetic 
field of the beam for the wave under consideration be­
comes important for sufficiently long wavelengths kc 
« Wo, w « wo!Yo· When these conditions are fulfilled 

FIG. I 

the dispersion equation (8) becomes simplified and 
takes the form 

(12) 

It follows from this equation that a dependence of the 
wave frequency w on w~ arises when 
k ~ wg/2/ cw~2( 1 - f:lph) 1 2 • For such values of k the 
dispersion equation for the wave under consideration 
may be written in the form 

The maximum value of the phase velocity for the 
periodic wave is attained at k = ( w 0 v0 ) ( w 0 / WH )J/ 2 

(13) 

and is equal to vp&ax = ( c/y 0 ) 1 - 2w 0 WH. For small 
k, the phase velocity of the wave decreases and when 
k « w~/cwH (i.e., when f:lphYo « 1) the branch of the 
oscillations under consideration goes over into the 
helicons w = k 2c2wH / who11 • 

In this section we shall consider with the aid of 
Eqs. (1)-(7) nonlinear periodic waves under the as­
sumption of "magnetization" of the transverse wave 
motion and of the one-dimensionality of the wave. The 
finiteness of the self-magnetic field and deviation from 
the one-dimensionality condition for such waves are 
taken into account in the following section of the paper. 

We note that the nonlinear theory of the high-fre­
quency longitudinal and transverse oscillations of a 
relativistic plasma in the absence of orderly motion 
of the electrons has been cons ide red in ( 10 u). In the 
present paper (see also( 12l) we investigate nonlinear 
oscillations for which the decisive role is played by 
the ordered motion of the electrons which leads to the 
appearance of an additional focusing force and to an 
increase in the maximum intensity of the field of the 
wave. This focusing proves to be substantial in the 
case of f:lphYo R~1 which we shall, in the main, con­
sider. The case of f:lph Yo« 1 and of long wavelengths 
corresponds to low-frequency electromagnetic oscilla­
tions of the helicon type, the nonlinear theory of which 
was constructed in ( 131. 

The equations of motion of the beam particles (1 )­
(3) have the energy integral 

~- ~tf·- Vo (Pu- -+A• )_ = ~0 - V 0p0 + e<p. (14) 

Here, 1£0 = ..Jm 2c 4 + c 2p~ is the value of the energy of 
the electrons at the point Py = Po, Pz = 0 and cp = Ay 
= 0. Under the condition of "magnetization" of the 
transverse wave motion in the beam, we have 

Vx .= Px = 0, vll = Vo, 

= v,~ = [ 1+ e(cp-v,A./c)+P,Vphl 
Pu c' Po t!l,- p,v, J. (15) 

In that case, we have from Eqs. (5}-(7) the following 
relations for the vector potential of the wave: 

noui- analysis is applicable in the long wavelength region k :$ w~/ 
cwH only when an external magnetic field of intensity substantially ex­
ceeding the intensity of the self-magnetic field of the beam is present in 
the beam. 
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Ar=O, A =~ <p 
• c 1 - vph/c' · 

(16) 

Determining the longitudinal momentum of the parti­
cles from the energy integral 

_ w~phYo -l'w'- m'c'(1- 13p6yo') (17) 
p,- c(1-~•2Yo 2 ) ' 

where 
1- R...t 2 

w=mc'+e<p~~ 
(1 ..._ ~p6)Yo ' 

and the density of the particles from the continuity 
equation 

Vph 
n=-no---, 

V,- Vph 

p,c' 
v,=-g, (18) 

we obtain from (5) the following equation for the scalar 
potential of the wave cp ( ~): 

d'<p 4neno [ W~pbYo 

~ = 1- ~Pj,yo' jw'- m'c'(1- flpj,yo') 

(19) 

The first integral of this equation can be obtained in 
the usual manner. It has the form 

(~) 2= 8nn, { (1-flp~)~phYo~luf'-m' , 11 _" 2 2 ) 

ds 1 - flpi.Yo' 1 - llpfiyo' r c \ t'pbYo 

- e - ~ ( 1 - f\pw f!pbyo' } + E' (20) cp 0 1 - A 2 2 max• 
l'pbY• 

In this equation Emax is the amplitude of the longitud­
inal electric field of the wave Ez = -dcp/d~, i.e., the 
value of Ez at the point cp = 0. Using (20), we can 
without difficulty express the solution of the equation 
for cp ( 0 in terms of elliptic functions. To do that, it 
is convenient to change to the dimensionless variables 

t + ytz=T- !.a 
2tl- = arccos - , 

afA2 -1 

where t is related to the potential cp through the rela­
tion 

t = 1 ( 1 + e<p 1 - M.vo' ) , 

l'i- l'phYo' lffo 1-i-f\"'ph;--,...-::--

/. = 1 + E,. .. _ 1- Mv:' , 11 = y 1 + f\phYo . 
8nno~ o 1 - flph 1 - flpJi'o 

Equation (19) may be written in terms of these vari­
ables in the following form (see [nl): 

-- (1- flpbYo)fA.' -1 sin 2tl-
T] = 2 BphYo (A + y/, 2 - 1) 'I• E ( x, ~) + -'---;--;-'-=;-;;;:O=:::;:;:;;:- -~==;;::::;:::;::;.=­

(A.+l''-'-1)'1• 11-x'sin'tl-

(21) 
Here, E( K, J) is an elliptic integral of the second kind, 

x'= 2l't.' -1 I (t.+ yJ..' -1). 

The potential cp of the wave determined by the rela­
tion (21) is a periodic function of ~. For the wave fre­
quency w = 7TVph/L (L is the period of the function 
cp ( ~ )) we have from (21) the following equation: 

(22) 
2 roo' · 1 - ~p{No' [ :rt ] 2 1 

w =yo' 1-~P~ 2E(x) t.+l''-'-1 

E( K) is a complete elliptic integral of the second kind. 
For small amplitudes of the wave (A - 1, K - 0) 

this equation coincides, as is not difficult to see, with 
the dispersion equation of the linear theory (10). For 

larger amplitudes (A - 1) two waves-a fast (vph >c) 
and a slow wave for which 0 < Vph < c/y 0-exist in the 
beam as before. The dispersion dependence for the 
slow wave for the largest possible amplitude of the 
field is shown in Fig. 1 by the dashed curve. The 
growth of the amplitude of the wave only leads to some 
decrease in its frequency for a given k. 

The slow wave possesses substantial components of 
both the longitudinal El = -dcpj d~ and the transverse 
Et = i3phdAy / d~ electric fields. For the coupling be­
tween these components of the field we have from (16) 
the following relation: 

E'~~~E' (23) 
. c 1- ~i>j, . 

The magnetic force, acting on the electrons in such a 
wave 

e e dA. vo' d<p 
F n· =- VoH:r: = --Vo-- = - e -----, 

' c c ds c' - vph d6 

balances the electric force F~ = edcp/d~ when Vph 
f;:; .J c 2 - v~. Under these conditions, we must expect a 
substantial increase in the maximum amplitude of the 
field of the wave. Indeed, substituting in Eq. (20) the 
minimum of the possible values 

Wm<n = mc'y1- f\pEvo', 

which corresponds to 

,., 1-M (1 ,,1 .. fl 2 '> e<p,.,. = -(!) o 1 " ' 2. - r - ph Yo ' 
- ''pbYo 

we obtain the following relation for the maximum value 
of the amplitude of the longitudinal electric field in the 
slow wave, on exceeding which a breaking of the wave 
front occurs. 

E! .. ,,.._ ~ ( 1 -~ W 1-}'1-flp~Yo' 
---g;-- no o P 1'(1- ~pbYo')' 

(0<~ph<1/yo). 
(24) 

When w ~ w0 /ro (i3phYo « 1) the amplitude Emaxmax 
is sufficiently small: 

(25) 

On approach of Vph to c/y 0 , the amplitude of the field 
Emax max significantly increases. The limitation of 
Em ax max in this case is connected with the fact that 
owing to the "one-dimensionality" and "magnetiza­
tion" conditions on the wave, the "detuning" c/y 0 

- Vph cannot be made as small as we wish. 
Thus, for example, setting 

km<r. ~ ko = w't, few~ ( 1 - flpW •;, (25') 

and determining the corresponding "detuning" 1::.. v 
= c/y 0 - Vph from the dispersion equation (22) for 
Em ax = Em ax max: 

2 c ( kv0 ) ''• c 
ilu = -.;- - for ilv ~ -, 

.n 3 Vo Wo 'Yo 

we obtain from (24) the following condition on 
Emax max• on the fulfillment of which the analysis 
carried out in this section becomes applicable: 
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i.e., the energy of the wave propagating in the uncom­
pensated beam can considerably exceed the energy of 
the particles of the beam. 

3. At small k (kc « w0 ) allowance for the finite­
ness of the self-magnetic field of the beam becomes 
important for the slow branch of the oscillations. In 
this case we should retain the terms ~11Hz in the 
equations of motion of the beam particles in the direc­
tions perpendicular to the magnetic field (2) and (3). 
As a result, we obtain for the transverse components 
of the velocity the following relations: 

c d { e ) v,- VphdA, v.=v,---(v,-vJ- p.--A. ~v.+--- (27) 
eH, P ds c H, ds 
c d { e ) v,- VphdAu 

v.=-(v,-v~- p.--A. ~ ------. 
~n. p ds c n. dS 

(28) 

We have neglected on the right hand sides of these 
relations addends ~dPxl d~ and dpy I d~ which are 
small in respect of k2c 21w~ « 1. Substituting (27) and 
(28) into the equations for the components of the vector 
potential of the wave Ax and Ay, we arrive at these 
equations 

dA. 4nen,~ph A. (29) 
ds = -----n:- 1 - M · 

d'A 16n'e'n ·~ ' 4ne 
(1- ~ph')-"+---•-phA,= -v,(n-n,). (30) 

d"g,' H.'(1-~pb) c 

To obtain (29) we integrated with respect to ~ with the 
condition dAxl d~ = 0 at the point Ay = 0 and used 
(29) in writing down Eq. (30 ). 

In the leading order with respect to the parameter 
~11Hz, the perturbation of the particle density in the 
wave is determined by the relations (17) and (18). In 
the following order in this small parameter we obtain 
with the aid of the continuity equation 

n = n<o>- n<>> m•c• ( (o)) (31) 
(0) "'(0)3 p, - p, . 

Vz - Vpb ro 

Here, Pz - p~01 is the perturbation of the longitudinal 
momentum of the particles which may be found from 
the energy integral (14): 

(31') 

The index 0 in the formulas (31) and (31') pertains to 
the zeroth approximation with respect to 11Hz. With 
the aid of (31), (31') and (28), we obtain finally the 
following equation for cp ( ~): 

d'q> { 1 - =- 4ne(n- n,) = 4nen, --:---::-...,..--:-· 
d'g,' 1- ~pbY•' 

( ~phyow ) 1 ( dA• 1 + ~p~Y•' 
}w' "':- 1 + ~pbY•' 1 + ~ d'g, w- ~pJ)'olW'- 1 + (\,i,Yo' 

- 1 + e(q>- r.A,) RO = ~. (32) 
w = inc' yo, P c 

The amplitude of the wave propagating in the beam 
is limited by the condition 

(see below). 

-~-'- d'A• ~ 1 
2nen, d'S' 

In such amplitudes the addend ~11H~ on the right 
hand side of (32) is small compared with d2cpld~ 2 in 
the ratio c 2la2w~ and may be neglected. Then we have 
from (32) for kc « w0 and {:lph'Yo R~1, 

me' {[ p d'A ] -'I• } 
q> ~ p,A. + eyo 1 + 2n:n, d'§," - 1 · 

(33) 

Substituting this relation into the right hand side of 
Eq. (30), we obtain the following equation of the fourth 
order for Ay: 

(1- pph'y,') d'A• 16n'e'n,'Ppt A 
y,' d'S' + H.'(1- Ppi.) • 

me' d' [ Po d'Au ] -'/• 
=-~.- 1+---- . 

ey, ds' 2nen, d6' 

(34) 

For Hz -co this equation is equivalent to Eq. (19) in 
the region kc « w 0 • Allowance for the finiteness of the 
self-magnetic field in Eq. (34) becomes essential at 
k ~ k~). 

Besides periodic solutions, Eq. (34) also has the 
solitary-wave type of solutions for which Ay - 0 as 
~-±co. The possibility of an effective use of such 
waves for acceleration in a plasma was pointed out 
in[141, However, solitary waves are possible in a 
plasma only in the case of low-frequency oscillations 
in which charges of both signs participate, for instance, 
ion-acoustic waves[ls] and magnetic sound[lsJ, In an 
uncompensated electron beam, contraction of the elec­
trons in a wave, due to the action of the magnetic force, 
leads to the possibility of the appearance of a solitary 
wave even in the absence of ions. 

Linearizing Eq. (34) and substituting Ay ~ exp (ik~), 
we obtain the following equation for k 2, which coincides, 
as is not difficult to see, with the dispersion relation 
of the linear theory (12): 

, _ , k' 1 - !}6Yo' wo' 1 = 0 
k 000 c' 1-~ph + c'w,/ (1-~pj,)' · 

(35) 

The existence for this equation of roots with ki 
= Im k ;a! 0 indicates the possibility of construction of 
solutions with the asymptotic forms Ay ~ exp (- I ki I ~) 
for ~-co and Ay~ exp(lkil~) for~ --co, which 
correspond to solitary waves. However, it is necessary 
for the construction of such a solution, which is con­
tinuous for all values of ~, to turn to the nonlinear 
equation (34) or to (19) for Hz -co, If Hz -co, then 
ki ;a! 0 when f3ph'Yo > 1, but it follows from Eq. (19) 
that it is impossible in this case to construct a solitary 
wave type of solution which is everywhere continuous 
up to the second derivative. Indeed, integrating Eq. (19) 
under the condition that cp - 0, dcp I d~ - 0 as ~ - ±co, 
we obtain 

(.:!!.)' = Bnn, [ (1-Ppb)~phYo2 

d'S 1- MY.' 1- ~~yo' (36) 
,, 2 2 '( 1 R' ') ] B ,.. (1-Ppf,)lj,J}'o' 

X ,w - m c - l'phY• - eq> - nn""' (1 - ~~yo')' 

It follows from this relation that at the maximum point 
of the potential, dcpld~ = 0, only the value cp = 0 is 

2)The wave propagating in the beam may here, as before, be assumed 
to be one-dimensional. Allowance for a "multi-dimensionality" of the 
wave 3A/3x =I= 0 leads in Eq. (34) to negligibly small corrections: 

1- flpfivo' a• A. "" c 1 - llpfiv•' a• A• 

(1-llp~V•' ax• rooa V•' a'' ' 
4neno a c 1 1 - flp~Vo' a' A• 

(<p-lloAv)"" - · 
H,(1-llpfi) ax rooa llo vo' a~• 
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possible, i.e., a solitary wave is impossible in this 
case. The obtained result is connected with the fact 
that, besides the regions of contraction of the elec­
trons, there should exist in a solitary wave regions in 
which the Coulomb repulsion predominates. Such a 
situation may occur at sufficiently small k when allow­
ance for the finiteness of the self-magnetic field be­
comes essential. In that case Eq. (35) also has roots 
with ki "' 0 when 

2 Cilo 2 2 1 
1- -< flphYo < · 

(J)H 

In the present paper we confine ourselves to the 
analysis of the case 

1- llphYo' = 2~(1- e), e~ 1, 
(J)H 

(37) 

when ki « kr and we may in constructing the solution 
of Eq. (34) limit ourselves to the small nonlinearity 
approximation. In this case we have from Eq. (35) 

k,=k,(i-e/4), k,=kor~2 (38) 

(the quantity k 0 is given by formula (25' )). 
It is sufficient to limit ourselves in Eq. (34) to 

terms up to the cubic in the amplitude of the wave. As 
a result we obtain from (34) the following equation for 
Ay(O: 

We seek the solution of this equation in the form 

A,(~) =a(~) cos (k,~ + 8 (~)) + b(s) cos [2(k,~ + 8(s))], (40) 

where a(~) and 8 ( ~) are the slowly varying-with 
respect to ~-amplitude and phase of the solution. For 
the amplitude of the second harmonic we have from 
(39) 

(41) 

Substituting the solution in the form (40) into Eq. (39) 
and collecting the terms = sin(kr~ + 8 ), and 
cos (kr~ + 8 ), we obtain by the usual methods the 
following equations for the amplitude and phase: 

d2a ko'a [ 1 ( ea ) 2 
( w0 ) 

2 1 ] 
df = 2 8 - 16 mc2y, -;;;;;- 1 - [3pt ' 

de 1 d§ = o. 
The first integral of the equation for a(~), which 
satisfies the condition da/ d~ - 0 as a - 0, has the 
form 

FIG. 2 

(42) 

( da ) 2 ko'a' [ 1 ( ea ) ' ( w, ) 2 1 ] ( 4 3 ) 
df = -2- 8 - 32 mc2 yo -;;;;;- 1 - llph · 

The formulas (40) and (43) describe a solitary-wave 
type of solution, called in the theory of nonlinear waves 
a soliton envelope (an E-soliton)C 17J in the case when 
the derivative da/ d~ changes sign at some point 
~ = ~o (see Fig. 2). At this point the amplitude of the 
wave is a maximum: a = amax· The obtained solution 
will be continuous at ~ = ~ 0 up to and including the 
fourth derivative if we set e = 0, da/d~ I~=~ = 0. From 

0 

the last condition we obtain for the wave under con-
sideration, after making use of (43), a dispersion equa­
tion relating the maximum value of the amplitude of the 
wave to the phase velocity: 

1- Mvo' = 2~ [1-~ (eam••)'(~)'-1-, ]. (44) 
(o)fl 32 {fj 0 (J)H 1 - !I ph 

Characteristic values of the maximum amplitude of 
such a wave (for € ~ 1) are determined from the rela­
tion eamax ~ ~0(wH/w0)(1- .Bph)112 (here, d2A/de 
~ k~a ~ 41Ten0 / ,8 0 ). The corresponding value of the 
energy of the longitudinal electric field in the wave 
coincides, by order of magnitude, with (26) and sub­
stantially exceeds the energy of the beam: 

Ez1max WH 2 (45) 
--- n,8,.-(1- fl b). 

8rr roo p 

The increase in the maximum amplitude of the field is 
also connected with the compensation of the electric 
and magnetic forces when .Bph y0 R> 1. 
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