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The interaction between an electron beam and the natural oscillations of a homogeneous plasma 
layer is analyzed by using the collisionless kinetic equation. A correction to the distribution func
tion is determined in the second order of perturbation theory with respect to electric field 
strength of the plasma oscillation. After averaging over time, the correction is found to oscillate 
with respect to velocity and coordinate. This phenomenon has apparently been observed recently. 

A fine structure was recently observed experimentally 
in the distribution function of an electron beam inter
acting with a bounded plasma[ 1l. The purpose of the 
present communication is to attempt to explain theo
retically the observed sequence of peaks in the energy 
distribution function of the beam. 

A beam moving in a plasma is unstable under cer
tain conditions against excitation of plasma waves with 
frequency 

ro = ro,[1 + 'f,(kr.)'], roo= (4nne' I m)Y•, 

r. = (T,/4nne') 'I•, 

where w0 is the plasma frequency, k the wave vector, 
and rd the Debye radius (see, e.g.,[ 21 ). In an unbounded 
plasma, oscillations with a continuous spectrum of 
wave vectors are produced. The existence of bound
aries leads to the appearance of standing waves. In 
addition, owing to nonlinear effects, oscillations with 
frequencies w = mw 0 appear in the plasma. 

Let us consider the interactions of a beam with 
natural oscillations in a homogeneous plasma layer of 
thickness L, bounded by conducting walls at x = 0 and 
x = L. The electric field of the standing plasma waves 
in such a layer is given by 

E(x,t)= LE.,,.sinkxcos(rot+cp.,.), (1) 

"·"' 
where w = mw 0 if we neglect the dispersion of plasma 
waves at krd << 1, k = mr/L, nand m are integers, 
and cp nm is the initial phase. 

The kinetic equation for the beam electrons 

!!_+ v!.f_- eE(x, t) !..!.._ = 0 
at ax m av 

will be solved by perturbation theory, assuming the 
field E to be small. The first-order correction f 1 to 
the zeroth-approximation function f0, corresponding 
to the boundary condition f 1(x = x0 ) = 0, is equal to 

t. =- \"'1 __!_~at. { cos(kx-rot-cp.,.) 
.t..J 2 m av kv - (I) .... 

+ cos(kx+rot+cp.,.) cos[kx0 -ro(t-(x-x0)/v)-cp •• ] 
kv+ro kv-ro 

_ cos[kxo + ro(t-(x-x.)/v)+ cp.,.]} 
kv + ro · (2) 
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In the second approximation we obtain the correc
tion f2 with the same boundary condition f 2 = 0 at 
x = x0, and we average it over the random phases 
(/)nm 11• The averaged increment 1 2 is given by 

J, = _ ...!_~ \"'1 ...!_ ( eE.,,. ) •at. f• clx !'" ... 's"n dcp.,. 
v av .t..J 4 m av 2n 

n,m "0 0 o a,m. 

x [sin(kx- rot- cp~,.) + sin(kx +rot+ cp.,.)] 
X {cos(kx +rot+ cp.,.) + cos(kx- rot- cp.,.) 

kv+ro kv-ro 
cos[kx,- ro(t- (x- x0)/v)- cp.,.] 

kv-ro 

_ cos[kx0 + ro(t -(x- x,)fv)+ cp.,.] } . 
kv+ro 

After calculating the integrals we obtain 

J =-1 \"'1 ( eE.,,. )'~(D !..!.!) 
• 4v .t..J m av ""' av , 

n,m 

where 

u.,. = __!{ sin'['/,(k- ro/v)(x- x,)] + sin'['/,(k + ro/v)(x- x,)] 
v (k- ro/v)' (k + ro/v)' 

2cosk(x+xo) . [ 1 ( · ro) ] 
-' (k -ro/v)(k + ro/v) sm 2 k-.-; (x- Xo) 

X sin[+( k+ :} (z-x,)]} 

(3) 

(4) 

The expression in the curly brackets in (5) is always 
non-negative. The oscillating structure of the distribu
tion function (4) has a finite amplitude even when the 
resonance conditions k = w/v are satisfied. If the 
boundary condition on the distribution function is speci
fied at x0 = 0 and the observation is carried out, for 
example, at x = L, then expression (5) takes the form 

4 s , nn 
D=---cos-6 

kro 1-6' 2 ' 
where 

ro iJD k ( nn · 1 + 6'} 
s=-kv, -=-6 nn!;tg-6+1-2-- D . 

av (I) 2 1- s' 

non the other hand, if the phases of the oscillations are not random, 
but the measuring instrument has a large time constant T > w~1 , then all 
the formulas that follow remain in force, since the time averaging is 
equivalent in this case to averaging over the phases. 
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The points of the extrema of the function D( v) are 
determined by the roots of the equation 

nn 1 +3s' 
nntg2£ = w- s'). 

The amplitude of the peaks of the distribution function, 
which are connected with the oscillations of D( v), de
creases at large .; like C1, and of those connected 
with the oscillations of anjav remains constant. If 
the zeroth distribution function f0 ( v) varies smoothly 
and slowly when the argument is changed by an amount 
on the order of the distance Lw0 between the peaks, 
then the principal term in (4) will be (an;av)(af0 /av). 
The width ·of the peaks is determined by the same 
scale Lw 0 as the distance between them. The ampli
tude of the oscillations of the distribution function con
tains an ordering parameter ( eEL/mv2) 2 , where v is 
the characteristic scale of variation of f0( v). This 
parameter must be small if perturbation theory is to 
be valid. 

The phenomenon under consideration explains the 
main qualitative feature observed in the experiment( 1 J, 

namely the fact that peaks appear only if microwave 
oscillations exist simultaneously. The observed shift 
of all the peaks towards higher energies with increas
ing energy and current of the beam is apparently con
nected with the concomitant increase of the plasma 
density and of the frequency w 0 • We note also that the 
character of the boundary conditions is not very im
portant. A similar phenomenon should take place also 
in the case of dielectric walls. 

In conclusion, I am grateful to L. P. Pitaevski'i for 
a useful discussion during the course of this work. 
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