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We consider the behavior of a gas of polyatomic molecules of the optical isomer type in external 
fields. We establish a selection rule for the matrix elements of the collision operator and obtain ex
pressions for the kinetic cross coefficients in a field. We show that in the case of optical isomers 
cross effects in a magnetic field are possible. The magnitude of these effects should be different for 
dextro- and levo-rotatory isomers. 

1. INTRODUCTION 

IT is well known that the behavior of the transport co
efficients of a number of polyatomic gases in electrical 
and magnetic fields shows an anomalous characterY-aJ 
To explain such a behavior of the transport coefficients 
we must assume that collisions with W /: w' are charac
teristic for these ·gases (W and W' are the probabilities 
for direct and inverse collisions 4' 5 ). Such an assump
tion enables us, in particular, to obtain an expression for 
the thermal conductivity tensor which describes positive 
and negative effects in a field. 

In gases with optically active molecules the collision 
probability is not invariant under an inversion trans
formation. (&J Cross effects which will be considered in 
the present paper are thus possible in such gases in ex
ternal fields. In[5 ' 7 ' 8 1 the cross effect connecting the 
viscosity and the thermal conductivity in an electric 
field was considered for symmetric-top type optically
inactive molecules. It was shown that the effect is pos
sible only under conditions when W is not an even func
tion of a (the component of the dipole moment along the 
angular momentum). For optically active molecules in 
an electric field this condition is not necessary. 

2. INFLUENCE OF SPATIAL SYMMETRY ON THE 
PHENOMENOLOGICAL (KINETIC) COEFFICIENTS 

It is convenient to use for the consideration of cross 
effects the relations of non- equilibrium thermodynam
ics. [91 Because of its generality this procedure makes 
it possible to take into account possible symmetry 
properties. Amongst such properties is spatial symme
try and also symmetry with respect to time reversal. 
A consistent use of this symmetry makes it possible to 
find the most general form possible of all kinetic co
efficients. 

We must introduce into the set of equations of non
equilibrium thermodynamics a pseudoscalar current 
JP and a pseudoscalar thermodynamic force xP since it 
is possible that scalar effects such as chemical reac
tions are different for dextro- and levo-rotatory iso
mers. We must note that although the molecules possess 
a non- zero angular momentum we assume that the aver
age moment of the whole system is equal to zero, i.e., 
we do not consider rotation of the gas as a whole. The 
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viscous stresses tensor is thus symmetric and we need 
not consider the "rotational" viscosity. [9' 101 

In contrast to the isotropic system considered in(9J 
when there is no external field, it is necessary in the 
case of an optically active gas to consider merely sym
metry with respect to arbitrary rotations since there is 
for such a gas no symmetry under an inversion of the 
coordinates. This symmetry can easily be taken into 
account if we use the properties of irreducible Cartes
ion tensors. (llJ 

After a few transformations we can see that the set 
of equations of non-equilibrium thermodynamics for the 
case of a gas with optically active molecules has the 
following form (when there is no field): 

where 

/' = L"X' + L••X•, I• = L••x• + L••X•, 
li'' = atX/' +'azX/', //' = a3Xi"' + a~,X,", 

ld=a~Xd, 

The notation used in (2.1) is the same as in[91, 

(2.1) 

From the form of the set (2.1) we can conclude that 
when there are no external fields there can not be any 
effects coupling viscosity and thermal conductivity. If 
the external field is non-vanishing the properties of the 
system are not invariant under arbitrary rotations and 
symmetry considerations do not forbid such kinds of an 
effect. 

The system has axial symmetry in an external field. 
Consideration of this symmetry can be made in a way 
similar to the procedure used for the thermal conduc
tivity and viscosity in a magnetic field. [91 Using this 
symmetry, the relation between Jf and xfk takes the 
following form: 

I x!1 x~. xis x:. x!. x~. 
J 1"1 0 0 0 0 Lfi,£~~. 
J." 0 0 0 0 L;~L~~' 
J 3 v £;!1 L;~2L;:a 0 0 0 

vt vt vt vt vt vt vt vt vt 0 L123 =- L21a, Lua = L22a, Lau = La22, Laaa + La22 + Lau = . 
vt vt vt vt d vt dd . th f' ld d Lay, La22, Laaa, L11a, an L22a are o 1n e 1e , an 

L~13 and L~a even. One can show that when there is no 
field the cross effects coupling the viscosity and the 
thermal conductivity must be absent when the properties 
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of the system are invariant under a coordinate inver
sion. Bearing in mind that the electric field strength is 
a polar vector we see that the cross coefficients will be 
non-vanishing only if they are odd in the field. In a 
magnetic field these coefficients are non-vanishing in 
the case when the interaction potential of the molecules 
is non-invariant under a coordinate inversion. 

3. SELECTION RULE FOR THE MATRIX ELEMENTS 
OF THE COLLISION OPERATOR 

The basic condition for the optical activity of mole
cules is that there is for them no equilibrium configura
tion of the following symmetry elements: plane of sym
metry and center of symmetryY2 l In that case W f. SW 
and W f. PW (here Sis the operator.of the coordinate 
inversion and P the operator of taking the reflection in 
an arbitrary plane). To establish a selection rule for the 
matrix elements we need thus consider only the symme
try under time reversal. 

We write the collision operator I in the following 
form:[13 l 

1 = I<'> + e/<'>. 
The parameter E characterizes the smallness of the off
diagonal matrix elements of the operator f and corre
sponds to the small parameter used in[14 l for decom
posing the interaction potential of diatomic Amolecules 
into a spherical and a non- spherical part; I <o> is an 
operator which is diagonal in the functio~al space >~ln. 
The eigenfunctions l>lln) of the operator 1< 0 > were given 
in ref. [13 1 and have the form 

I'¥,.)= llm, l,l,, r,r,) = [c,,~~,,m,Y,,m,(u) Y,,m,(M) T,,'•(u')L,,'•(M'). 

We assume that the eigenvalues An of the operator f<o> 
form a discrete spectrum (An= Az 1z2r 1 r 2). The functions 
>lln are orthonormalized: 

('¥., '¥.·> = J art,w.·w •. B •• •. 

We write the operator f< 1 > as a sum [3 1 

/<•) = [,<•> + r.•>. 

f.<•>w. = J f, ('J' n + '¥ •• + '¥ n' + 'J',.') w. ar. dr' dr,'. 
Using the symmetry properties of the collision integ
ral [15 1 we see that the matrix elements of the operators 
fg> and fi:> have the following properties: 

(3.1) 

(3.2) 

Bear~ng in mJnd that the matrix elements of the opera
tors 1~1 > and 1~1 > can not change under time reversal and 
also Eqs. (3.1) and (3.2) we get the following selection 
rules: 

for 1<1 >: if lt + l2 is even, then l1' + l2' is even, c (3.3) 
if lt + l2 is odd, then l~ + l2 is odd; 

for 1(1>: if lt + l2 is even, then lf + l~ is odd, a 
if lt + l2 is odd, then l~ + l2 is even. 

(3.4) 

In the case of molecules with higher symmetry it is 
necessary to consider also the invariance of the matrix 
elements under inversion. Bearing in mind that in that 
case fg> and t;;> commute with the inversion operator 
we can obtain a selection rule which agrees with the one 
obtained in [3 l . 

For a polar gas the eigenfunctions of the operator 
f<o> have the form 

1<1>.)= l'¥.rp,(a)), 

where the functions cps(a) are real and satisfy the rela
tion 

1 +I 

T J darp,(a)rp,•(a)=ll .. •, 

-· 
s = 0, 1,2 ... ' 

for even s the functions CfJs(a) are even and for odd s they 
are odd. Here u has the meaning of the component of 
the dipole moment along the angular momentum. We 
write the operators I~1 > and fi:> in the following form: 

(3. 5) 

The division (3.5) corresponds to the assumption that 
the collision probability can be written in the form 

where W~1~en and W61Jd are, respectively, even and odd 
functions in a. 

The selection rule for the operators ~n> and Q< 1> can 
be obtained by taking into account the invariance of the 
matrix elements of these opPrators under time reversal 
and coordinate inversion. For the matrix elements of 
the operators f~1 > and f~t> the condition l A= z' and Am = m' 
must be satisfied. (Since the operators 1g> and 1~> com
mute with any rotation in the space of the N particles 
they do not change the dimpnsionality of the representa
tion according to which >lln or cl>n transform under rota
tions.) 

We now establish some properties of the operators 
f<t> and f~t>. We show that the operator f~> is Hermitean 
c A 

and 1~1 > anti-Hermitean. Using the symmetry properties 
of the collision integral we have 

<'¥"I i, <•'1 '¥ •. ) = <'l' .. · II, <•> I qr ">·. (3. 6) 

Comparing (3.6) with the matrix element of the trans
posed operator we get 

(i?>( = l?>, 

i.e., the operator fg> is Hermitean. By means of the 
relation 

Jwar• ar,' = J W'dr' ar,' 

we can obtain the following property of the matrix ele
ments of the operator fi:>: 

<'~'~li.<•>1w •. > = -<W •. IJ.<'>Iw.>·. (3.7) 

From (3. 7) it follows that 

(3.8) 

We conclude from (3.8) that the operator fi:> is anti
Hermitean. 
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4. CROSS EFFECTS IN A MAGNETIC FIELD 

The linearized kinetic equation, averaged over the 
fast rotation of the molecules has the form [131 

N + y[MB]~ =- n(fi'> + J<'>)x. (4.1)* 
i.lM. 

Following[13J, we write Eq. (4.1) in a spherical sys
tem of coordinates (we take B 11 z). We write the ex
pression for N in the following form: 

N = n .E,a,,.•A,,., l=0,1,2, lml ~l. (4.2) 
l,m 

The quantities Azm in (4.2) are defined by means of the 
functions 6zm which differ from the ones used in[13J by 
the presence of a phase factor il and normalization to 
41T/(2l + 1). This choice of phase factor is more natural 
from the point of view of the addition of angular mo
menta. [16 ' 171 The coefficients azm are determined as 
follows: 

1 . 
aoo =-d1vv0, 

n 

The expression for azm is the same as the one given 
in[131, We can obtain the values of the coefficients tfr 
and t?m in the same way as was done in[131; The varues 
of th~ coefficients azm in (4.2) are chosen such that the 
volume viscosity and the cross coefficients connected 
with it are taken into account. 

We can look for the solution of the equation in the 
form 

X = - .E a,,. •x, ... 
.... 

Substituting (4.3) into (4.1) and using (4.2) we get 

( 
~ A a ) /(') + e/<'1- V -- Xzm = A,,., 

i.lq>. 

(4.3) 

(4.4) 

Equation ( 4.4) differs from the analogous equation given 
in[131 by the sign in front of ya/acpM but this does not 
lead to any essential change. We can solve Eq. (4.4) by 
the method developed in[131. 

Substituting the expression for Xzm into (4.3) and 
bearing in mind that x is a real function we see that the 
matrix elements of the operators j~> and j~> are real 
numbers. The equations (3.6) and (3.7) now take the 
following form: 

('I'nll}QI'l'n•) = ('l'n•li!') 1'1'.), (4.5) 

(4.6) 

For the evaluation of the kinetic coefficients it is 
necessary to determine the energy and momentum cur
rents. The expressions for the heat current and the 
viscous tensions tensor have the form [131 

q, = nT Y ~ J drf,u,(u' + M'- c.)x, 

cr,. = 2nT J drt.xu.u. = cr,.' +. cr1111,., (4. 7) 

ak corresponds to the usual viscous flux while a 11 is. 
the viscous flux connected with the second (volume) VIS

cosity. Substituting (4.3) into (4.7) we can seP that 

*[MD]= MX B. 

q, = q.' + q," + q,111, cr11 = cr111 +cr.''+. cr:", cr,.' = cr!., + cr~, + cr~,, 

which corresponds to l = 0, 1, 2 in (4.3). 
In correspondence with the phenomenological equa

tions 

q.''=-x,.V,TIT, q~11 =-d,divv,, cr.''=-J.~divv,, 

cr,'' = -d,'V,T IT, cr.''= -t;',.(D,.- 'I,I{J,.D"), 

cr,!, =- £,.divv,, cr!, =- c~,V 1TIT, 

cr,., = - T),. •• (D •• - 'I,B • .V") 

the expressions for the kinetic coefficients have the 
following form: 

c,., = 2Tl'2T I m[ -ih,(h,h,- 'l,fJ.,)C10.,. + i'la(h,h,. + 
+h,h.,) ReC,,,. +l"'/,(fluh• + (j.,h,- 2h,h1h,) ImC11 , u] 

d, = Tl'2T / mh,iC.,, oo, Jl = TC,., .,, d,' = -1''(21' I mh,iC.,, 10, 

s<>' = -2T(h,h,- 'l,fl,.)C.,, ,, (;,. = -2T(h,h,- 'I,B,.)C,., 10, 

c',., = 2Tl'2T I m[ih,(h,h,- '/,fJ .. )C20,., + l"'f,(h,h" + 
+ h,h.,) Re C,.," -l"la(fl~;h, + (j.,h,- 2h.h1h,) ImC,., 11 ] (4.8) 

Here 

In obtaining (4.8) we used the relations 

J drt.x(u' + M') = o. 

One verifies easily that the kinetic coefficients (4.8) 
satisfy the symmetry requirements established in Sec. 
2. The expressions for the heat conductivity and viscos
ity tensors Kik and 11ikpg were given in[131. We note thaf 
if we take into account tlie form of the tensor 11ikpq 
when there is no field[9 J we can prove that 

C,, ., = -Re C,, zz, 

The kinetic coefficients (4.8) must satisfy the 
reciprocity relations. In a magnetic field these relations 
look as follows: 

d,(H) = -d/(-H), x,.(H)= x.,(-H), S,,.(H)= s•<'(-H), 

c,.,(H)=:= -c,.,(-H), '11<>••(H)='11••"(-H). (4.9) 

We note that the reciprocity relation for the coefficients 
cikl and cw can be obtained directly from the kinetic 
equation in a way similar to what was done in[SJ for the 
case of an electric field. The reciprocity relations in 
an electric field will look as follows: 

It follows from Eqs. (10) that in an electric field 
Im Cn,u = lm C21,21 = Im C22,22 = 0. We shall show 
below that this equation is indeed satisfied. 

We note that the Onsager relations are based upon 
the invariance of the laws of mechanics under time re
versal. This invariance holds for a gas whatever the 
structure of the molecules and because of this the re
ciprocity relations are true also for an optically active 
gas. The effect which is odd in the field for the thermal 
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conductivity and the viscosity must therefore be absent 
in an electric field. 

We calculate the components of Kik in a magnetic 
field. On the basis of the selection rules (3.3) and (3.4) 
we can choose such a model for the interaction between 
the molecules that transitions into the states llm, 11) 
and llm, 22) are allowed for I~11 and into the states 
11m, 12) and 11m, 21) for fg>. For molecular-non
isomers transitions into the states llm, 22) and llm, 21) 
will be forbidden. (The indices r 1 and r2 are not taken 
into account to simplify the notation.) 

Using the chosen model we obtain easily expressions 
for ~C~~~ 11 and ~C~~~ 10 which describe the change in the 
components of the heat conductivity tensor in a magnetic 
field. However, because of their complexity we do not 
give these expressions in the present paper. Using Eqs. 
(4.5) and (4.6) in the expressions for ~cl~~u and ~c1~:1o 
we can split off terms ~c· and ~c- describing positive 
and negative changes in the heat conductivity tensor 
components. 

We consider now the case of an electric field. On the 
basis of the selection rules we can choose the following 
model: transitions into the states 11m, 11, 0), 
llm, 21, 1), 11m, 12, 1), and llm, 22, 0) are allowed 
for ~11 , and for fg> transitions into the states 
llm, 11, 1), 11m, 12, 0), llm, 21, 0), and llm, 22, 1) 
are allowed. ~ 

Using the explicit form of the operator K in an elec
tric field we can prove that 

~ 1 fr, 1m 2 (I.I>.JKJ<ll.,) =--- (Cz,m,z2m,) 
An An 

m1+f11:z=m 

x(L,'•(M')M"•<p,(a), (m,)la)'- tm,)laM).. L '•(M')<p .(a)) ... (4.11) 
J..'M'+(m,ya)' ' ' 

Here 

l = l', '\'=dE In. 

It is clear from (4.11) that Im C11 , 11 will vanish if the 
functions cp 8(a) and cps'(a) have the same parity in a. 

We consider the case when the functions cps(a) and 
cps' (a) have different parity in a. Corresponding to the 
chosen model we have 

C/(Z) z ~ ~(l) • ~(l) 
u,u = 8 "-'Au.u {(11,10, OJ I, J11, afl, y)(11, afl, 611. J11,10, 0) 

·.~ 

~ . ~(l) 

X (11, afl, vi KJ11, afl, 6) +<11,10, OJI. 111, a~, 6) 

X (11, afl, vii, CllJ11,10, 0)(11, afl, 6JKI11, afl, y)}. (4.12) 

Here a, f3 = 1, 2; ll = lr- 11; 

_ { 1 when(a+.fl) is even 
v- 0 when(a+JSJ is odd; 

Arm. I'm = ~ ).;;~).;;~.0 (<ll~lo' Arm> (<Dnz•o• Ar·m), 
nzonz•o 

nr0 =Jlm, lO, r1r2 , 0). 

We get easily from (4.11) that 

(11, ap, yJKJ11, afl, 6) = (11, afl, 6IKI11, afl, v>. (4.13) 

Using (4.5), (4.6), and (4.13) we see that c~et1 = 0. We 
verify easily that ca~t1 vanishes for any possible inter
action model. The functions cps(a) and cps'(o) in (4.11) 

can thus only be of the same parity in a and Im C11 , 11 

vanishes thus in an electric field. One can show simil
arly that Im C21,21 and Im C22,22, which determine the 
effect odd in the field for the viscosity tensor compon
ents, vanish in an electric field. 

As in the case of a magnetic field we can in the ex
pressions for ~cg~u and ~c1~:10 split off ~c· and ~c
which describe respectively the positive and negative 
changes in the thermal conductivity. In[18 J the relation 
(T/Kom)(~C1~~10 + Re ~cg~u) = cp(E/p) was studied for 
the optically active gas C4Hg()H (secondary butyl 
alcohol). It was shown that this relation has an anomal
ous nature. The measured quantity showed a maximum 
(- 0.32 x 10-5 ) for E/ p = 30 V /em mm Hg and changed 
sign for E/p = 65 V/cm mm Hg. The anomalous charac
ter of the observed relation can be explained if the co-

ff. · t c<2>· c<2>- Ac<2>• d AC' 2>- · th e 1c1en s ~ u,u, ~ u,u, .... 10,10, an .... 10,10 1n e 
expression for the heat conductivity tensor, which are 
different functions of E/p, are of the same order of 
magnitude. 

We consider now the expressions for the cross co
efficients in a magnetic field. One can show that in 
zeroth and first approximations in t: the expressions 
for the cross coefficients vanish. In second approxima
tion in t: we can obtain for the coefficient c1~:21 in cikl 
the expression 

C~:~,. = e' r, Au, 21 (-1)•H(11, 10II•(')J11,afl) · 
«J,pp•,A 

~(l) X(21,20JJ., j21,afl)l.l>,n{S), (4.14) 

a, fl = 1,2; {;; :; p,p' = c,a; p =t= p'; 

f dd { 1 for a = 1, fl = 1 
P={c,i (a+fl)iso k= 2fora=1,fl=2. 

a, if (a+ fl) is even 3 for a = 2, fl = 1 

In deriving (4.14) we used Eqs. (4.5) and (4.6). The 
model used in (4.14) assumes that transitions into states 
with l1 = 2 and l 2 = 2 have a small probability as was 
established in[19l. 

The functions ~~( ~) have the form 

<I> H- 1 s'- iAus 
' - 21-u 1-u'+s' ' 

<1>," = - ~ r 1 6'- il..,s - 46'- 2il.us ] 
l.ul'5 ~ 2 1..,' + s' J..,' + 4~' ' 

IJ>,H = _ __;,__ [ S2 + 3iAztS ] • 
2l'5t.,. t.,.' + s' t.,.' + s' 

(4.15) 

From the form of (4.14) and (4.15) it is clear that 
when ~ = 0 (when there is no field) cikl vanishes as we 
already noted in Sec. 2. 

We note that when obtaining an exprt>ssion for cg~21 
we took in!o account that in the presence of a field the 
operator K is not a scalar and transitions with a change 
in l (l = lt + l2) are allowed. We prove the reciprocity 
relations (4.9) for the cross coefficients cikl and cikl· 
Using the expression for cikl we get 

c,~,(- H)= 2T V 2! [- ih, ( h,h,- ~ 6.,) C,., .. + V ~ [h,hu 

+ h,h.,]ReCu.u + v!(6"h. + 6.,h,- 2h,h,h,)] ImC,,, ... (4.16) 

From (4.14), (4.15), and Eqs. (4.5) and (4.6) we find 
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C1o, 20 = -C2o. to, Cu, 21 = -C21, 11• (4.17) 

Substituting ( 4.17) into ( 4.16) we find that the cross 
coefficients Cik l and cik l satisfy the Onsager relations 
in a magnetic field. 

We can similarly obtain expressions and prove the 
reciprocity relations also for the other cross coeffi
cients. We note that the coefficients cikl and cikl• di 
and di will be non- vanishing only if the coordinate A 

inversion is not a symmetry element of the operator I. 
This agrees with the conclusions of Sec. 2. It turns out, 
however' that the coefficient c~~:oo which determines 
the cross coefficient ~ ik will be non- vanishing when the 
system is invariant under coordinate inversion (the 
selection rules for the operators fg> and ~1' for that 
case were given in[3 l). The expression for the coeffi
cient c~~:oo which determines ~ ik has the following 
form: 

c.~~~. = e'A,.,oo(20, 20 ll,(l) 120, 22)(00, 00 II}'' IOO, 22).2' ,u (S). 

(4.18) 

We note that the coefficient C20 , 00 vanishes when 
there is no field. The coefficient ~ ik corresponds in the 
general set of equations of non- equilibrium thermo
dynamics to the coefficient L~ which is non- vanishing 
when there is a field even if tn-e system is invariant 
under a coordinate inversion (in that case ~ ik must be 
even in the field). 

It follows from Eq. ( 4.18) that the coefficients ~ ik 
and ~ lk are determined only by "transitions" into 
states with l1 = l2 = 2. As we noted already, transitions 
into such states have a low probability and evidently 
these kinetic coefficients are small compared with the 
ones we consider. 

By means of the selection rules for the operators 
:!foCO and Qcu of (3.5) we can obtain the following expres
sion for the coefficient c1~:2 1 for the case of optically 
inactive polar molecules in an electric field: 

d~~~ = e2Au,u {(11, 10, 0 1.9"1'' 111, 11, 0)(21, 20,0 I Q.(•J 121, 11, 1)F/ (y) 

- (11, 10, Ol#/''111, 12, 0)(21, 20, 0, I Q, Nl21, 12, 1) F/(y) 

- (11, 10,0 I Q,(') 111, 21, 1)(21, 20, 0 I _o/l,C•l 121, 21, 0) F,E ( y)}, 

( 4.19) 

F/(y) =- i2 ( L:'• (M')<p0 (a), ). 112~,0~:ya)' L':' (M')cp,(a)), 

F,'(y) = -,~ < L:" (M')cp,(a), 
l'> 

[ yaM' 2yaM' ]L'" (M') ( >) 
J."'M'+(ya)'-)."'M'+4(ya)' 0 cp, 0 ' 

F,E(y) =-~i (L:'• (M')cp,(a), yaM' L:" (M')cp,(a)). 
2l'5 J.21'M' +(yo)' 

(4.20) 

In exactly the same way we can obtain an expression for 
Cf~!2o· 

The coefficients C20 , 10 and C21,11 satisfy the relations 

Czo, to= Cto, zo, C,.t, 11 = Cu, 21. (4.21) 

Using (4.21) one can show that the reciprocity relations 
for the coefficients cikl and cikl are satisfied. It fol
lows from (4.19) and (4.20) that cikl and clkl are odd in 

the field as was already noted in Sec. 2. One can prove 
that the coefficients di and cti are also odd in the field. 
We note that the cross coefficients are non-vanishing 
also in the case when W = W' (:!fo;i' = Q~1 ' = 0), as was 
shown in [7 J. This statement is valid only for an electric 
field; in a magnetic field the cross coefficients vanish 
when w = w'. 

We note that (4.19) and (4.20) are the classical 
analogue of the quantum mechanical expressions ob
tained in (SJ • 

We can similarly obtain expressions for cikl and 
clkl in an electric field for optically active polar mole
cules and in these expressions there will occur terms 
which are even in the field. One can prove the recipro
city relations in that case, if we bear in mind that 

C,., "= Cto, ,., Re C"·" = -Re Cu.,., Im Czt, " = Im Cu, ,. 

In conclusion we consider different effects for gases 
the molecules of which have rotational powers which 
differ in sign. We write the operator f(l) as a sum: 

i, (I)= i1'' + ~~·>, 
where the operators f!1 ' and f21 ' are defined as follows: 

n''¥. = + s t"<'¥. + '¥,.- '¥.'- '¥,.') (W, + PW,)dr, ar' art', 
(4.22) 

'I!:)'¥.=+ slot('¥ n + '¥,.- '¥ .'- '¥,.') (W,- PW,)dr, df' dr/. 

(4.23) 

~or the sake of simplicity we assume that the operator 
P is the operator for the reflection into the x,y-plane. 
We conclude from the form of (4.22) and (4.23) that f! 1> 

commutes and ~1 ' anticommutes with the operator P. 
Acting with the operator P on the matrix element of the 
operator fg> we get 

(i'>'l"n, j>J~l)'l"n•)=(-1)1,+1~[('Fn, j~t)'Fn•)-('F,., J~l)'Fn•)). (4,24) 

We can conclude from (4.24) that for a gas consisting of 
molecules which are mirror images the matrix elements 
of the operator fg> change in magnitude ( ~imilar con
siderations refer equally to the operator I;f'). On the 
other hand, it is known that the rotational powers of two 
molecules which are mirror images have the same 
magnitude, but opposite signsr12 l so that the above con
sidered effects for such gases will be different. 

In conclusion the authors express their gratitude to 
L. A. Maksimov for detailed discussions of the paper 
and valuable hints. 
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