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It is demonstrated that the equation iol/J/ot + l/Jxx + K 1¢12 1/1 = 0, which describes plane self-focusing and 
one-dimensional self-modulation can be solved exactly by reducing it to the inverse scattering problem 
for a certain linear differential operator. In this case exact solutions can be obtained which describe 
the interaction of solitary wave packets--solitons. It is shown that the amplitude and velocity of inter­
acting solitons do not change, whereas the phase has a discontinuity. It is also demonstrated that only 
paired collisions of solitons occur. The results obtained are used for assessing the nonlinear stage of 
development of self-modulated instability. 

A plane stationary light beam in a medium with non­
linear refractive index is described by the equation£ 1• 2 J 

fJE fJ'E ,6nnll I' 2ik-·-+-=-k-E E. 
f)z ox' no 

(1) 

Here E is the complex envelope of the electric field; it 
is assumed that the refractive index is given by the for­
mula n = no + llnn1l E 12 • The same equation expressed 
in terms of suitable variables can be used to describe 
plane wave beams in other nonlinear media. 

A similar equation (see £s, 4 l) 

• ( o11> ' olfl) 1 " o'11> I I' 1 -+ro•- +-ro. -=q 1j> ljl 
fJt ox 2 ox' 

(2) 

also holds for the complex amplitude l/1 of a quasimono­
chromatic one-dimensional wave in a medium with dis­
persion and inertialess nonlinearity. In (2), wk is the 
wave dispersion law and q 11/11 2 is the nonlinear correc­
tion to the frequency of the wave with amplitude 1/J. 

Equations (1) and (2) can be reduced to a standard 
dimensionless form 

au fJ'u 
i-+-+xlul'u=O. 

fJt fJx' 
(3) 

It is convenient to assign the variable t the meaning of 
time. 

In the present paper we shall investigate Eq. (3) with 
K > 0. As applied to Eq. (1), this means llnnl > 0. Un­
der this condition, Eq. (1) describes stationary two­
dimensional self-focusing and the associated transverse 
instability of a plane monochromatic wave.£ 5 J For 
Eq. (2), the condition K > 0 is equivalent to the require­
ment qwk < 0, which, when satisfied, produces in the 
nonlinear medium longitudinal instability of the mono­
chromatic wave-self-modulation.£ 3 • 4 • 6 J 

Equation (3) can be solved exactly by the inverse­
problem method. This method is applicable to equations 
of the type 

A 

where S , g!'lnerally speaking, is a nonlinear operator 
differential in x), which can be represented in the form 
(see £7 J) 

62 

ai 1 ot=i[L, A]. (4) 
A A 

Here L and A are linear differential operators con-
taining the sought function u(x, t) in the form of a coef­
ficient. If the condition ( 4) is satisfied, then the spec­
trum of the operator L does not depend on the time, 
and the asymptotic characteristics of its eigenfunctions 
can easily be calculated at any instant of time from 
their initial values. The reconstruction of the function 
u(x, t) at an arbitrary instant of time is realized by 
solving the inverse scattering problem for the operator 
i.. 

As can easily be verified, Eq. ~3) canAbe written in 
the form (4), with the operators L and A taking the 
form 

i = i [ 1 + p 0 ] ~ + [ 0 u·] x __ 2_ 
0 1- p ox u 0 ' - 1- p' ' 

A=-p[10]~+[1ul'/(1+p) iu; 1 
01 fJx' -iu. -1!111'/(1-p) 

Without loss of generality, we can assume that K > 2 
and p2 > o. 

(5) 

The inverse-problem method was discovered by 
Kruskal, Green, Gardner, and Miura £a J and was applied 
by them to the well-known Korteweg-de Vries (KDV) 
equation. In tqe case considered by them, the role of 
the operator L was played by the one-dimensional 
Schrodinger operator. They revealed the fundamental 
role played by the particular solutions of the KDV equa­
tion-solitons, which are directly cqnnected with the 
discrete spectrum of the operator L, namely, it was 
established that the asymptotic state as t - ± co of any 
initial condition is a finite set of solitons. In our prob­
lem, an analogous role is played by the particular solu­
tions of Eq. (3): 

( ) _ ,t<J exp {-41(1;'- 11')t- 2il;x + icp} 
u x, t - r~x 11 · , 

ch(2TI(x- x,)+ 811st) 
(6) 

which we shall also call solitons. A soliton, as will be 
shown· by us, is a stable formation. 

In the self-focusing problem, the soliton has the 
meaning of a homogeneous waveguide channel inclined 
to the z axis at an angle 9 = -tan- 1 4~. In the self-
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modulation problem, the soliton is a single wave packet 
propagating without distortion of its envelope and with a 
velocity v = -4~. The soliton is characterized by four 
constants: 7J, ~. Xo, and cp. Unlike the KDV soliton, the 
constant 7J characterizing the amplitude and the constant 
~ which determines the velocity of the soliton are inde­
pendent and can be chosen arbitrarily. 

The soliton (6) is the simplest representative of an 
extensive family of exact solutions of Eq. (3), which can 
be expressed in explicit form. In the general case such 
a solution-we shall call this an N -soliton solution-de­
pends on 4N arbitrary constants: 7Jj , ~j , Xaj , and Cf'j ; 

for non-coinciding ~j this solution breaks up into indi­
vidual solitons if t - ± co, The N -soliton solution thus 
describes the process of scattering of N solitons by one 
another. In this scattering, the amplitudes and veloci­
ties of the solitons remain unchanged, and only their 
center coordinates Xa and phases cp are altered. Just 
as in the case of KDV solitons, r 9 l only paired colli­
sions of solitons contribute to this change. What is 
principally new compared with the KDV case is the 
possibility of formation of a bound state of a finite num­
ber of solitons having identical velocities. In the sim­
plest case of two solitons, the bound state is a periodic­
in-time solution of Eq. (3), and in the case of N solitons 
it is an arbitrarily-periodic solution characterized by 
N periods. As applied to the self-focusing problem, the 
N -soliton solution describes the intersection of N homo­
geneous channels, and the bound state describes an os­
cillating "complicated" channel. 

1. THE DIRECT SCATTERING PROBLEM 

Let us assume that u(x, t) decreases sufficiently 
rapidly as I xI - co, and lej us examine the scattering 
problem for the operator L. To this end, we consider 
the system of equations 

A {"''} L\jl=A\jl, \jl= "'' 
(7) 

and make the change of variables 

\jl 1 = -y'1- pexp{-i-"-x }v,, "'' = 1"1 + pexp{ -i-"-x}v,. 
1- p' 1- p' 

Equation (7) can be rewritten in the form of the follow­
ing system: 

(8) 
q= iu/1"1- p', ~=Ap/ (1- p'). 

In spite of the fact that this system is not self-adjoint, 
the problem of scattering for this system is analogous 
in many respects to the problem of scattering for the 
one-dimensional Schrodinger equation. 

Let v and w be solutions of the system (8) at 1: = 1: 1 

and 1:2 , respectively. Then 

In addition, if v is a solution of the system (8) at 1:1 

= ~ 1 + i7]1, then 

satisfies the system (8) at 1:2 = 1:1* = /: 1 - i7Jp 

We define, for real 1: =~.the Jost functions cp and 
lfJ as solutions of Eq. (8) with asymptotic values 

<p--+ { ~} e-•~· 

\jl-+ {~}e'l• 

as x-+-oo, 

as x-++ oo. 

The pair of solutions lfJ and /i; forms a complete system 
of solutions, and therefore 

rp=a(£);p + b(s)\jl. (10) 

Applying relation (9) to the pair of solutions cp and cp 
of Eq. (8), we obtain 

[a(S)\ 2+\b(s)\'=1. (11) 

The Jost functions cp and 1/J admit of analytic con­
tinuation into the upper half-plane Im 1: > 0. By virtue 
of (9) we have 

a(£)= (rp,\jl,- rp,\jl,) (x, s). 
and therefore a(~) also admits of an analytic continua­
tion. It is clear that 

am-+1 as \~\-+oo, Im~;;;:.O. 

The points of the upper half-plane Im 1: > 0, 1: = 1:j, 
j = 1, ... , N, at which a(1:) = 0, correspond to the ei­
genvalues of the problem (8). Here 

<p (:x, ~;) = C;\jl (:x, \;;), j = 1, ... , N. 

We note also that for real q(x) we have the equalities 

rr (x, -sl = rp' (x, sl. "'(x, -sl = "'' (x, sl 
and consequently 

a(s) =a'(-£). 

Continuing the last equality into the upper half-plane, 
we obtain 

a(~) = a• ( -~'). 

It is clear that in this case the zeroes of a(1:) lie on the 
imaginary axis. 

It fol}ows from ( 4) that the eigenfunctions of the op­
erator L obey the equation 

(12) 

More accurately speaking, if at t = 0 the function I/J0 , 

regarded as the initial condition for Eq. (12), satisfies 
the system (7), then the corresponding solution of (12) 
at an arbitrary instant of time also satisfies the system 
(7) with unaltered value of A. 

From Eq. (12) for the eigenfunctions it follows that 
as lx 1- co, the solution V(x, 1:, t) of the system (8) 
satisfies the equation 

av 1 2 av a'v 
i-=-~v+2i~--p-, 

at p ax a~ 

from which we get that a(/;) does not depend on the 
time, and 

b(£, t) = b(l;, O)e"1", c;(t) = c;(O)e"'". 

2. THE INVERSE SCATTERING PROBLEM 

Let us consider the problem of reconstructing 
u(x, t) from the scattering data a(~), b(~, t),- co< ~ 

(13) 
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< +oo; cj(t), j = 1, ... , N. The values of these quanti­
ties at t = 0 are calculated from the initial data for 
Eq. (3), and their variation with t is indicated in for­
mula (13). In the inverse scattering problem, the time 
t plays the role of the parameter It suffices therefore 
to consider the question of the reconstruction of the co­
efficient q(x) of Eqs. (8) from a(~), b(~), and Cj· 

We introduce the function 

( a-1 (~) rp (x, ~) eibx, Im ~ > 0 

a>(~)== ID (~. x) = ~ {· ,; (xX)} i~x Im ~ < 0 
l -~l,"(x.~') e • 

and denote cp(~) the discontinuity of this function on 
crossing the real axis: 

¢(6) = ID(£ + iO) -ID(!;- iO). 

Assuming the zeroes t1o •.. , I:N of the function a(/;) 
to be simple, we have a formula that reconstructs the 
piecewise-analytic function <P(/;) from the discontinuity 
cf>W and the residues at the poles l:j= 

ID(~)= { 1 }+ t~ rp(x ~.) +-1-T ~d£ 
0 •~' ~- ~. a'(~) 2ni _ oo 1; - 1; ' 

or 

- Ck Q)(2J (t) = _1_+Joo ~ dt, 
c, = a'(\;,) ' ~ 2ni _ 3 - 1; ~ (14) 

The tilde over the Ck will henceforth be omitted. From 
(10) we obtain the following expression for the discon­
tinuity: 

(15) 

The system of equations of the inverse scattering­
theory problem for the function cp(~), ~ < +oo and 
for the parameters 1/J(x, l:j) (xis fixed), j = 1, ... , N, 
is obtained by putting in (14) !; = !; '!', j = 1, ... , N. At 
!; = ~- iO, formula (14) yields 1 

{ ljJ2(x, 6)} e''' = _ ~(1 - /)¢(£)+ a><'l(£). 
-ljJ,"(x,£) 2 

Here J is the Hilbert transform 

(/¢)(£)= :~zt~'~ d~,'. (J<P)·=-J<P·. 

We rewrite the obtained relation in the form 

¢2(x,s)e'''+ '/,(1-J)¢, = ID,<'l(£), 

-lj; 1 (x, 1;) e-••• + 1/2 ( 1 +I) ¢,• = ID,<'J• (s), 

and multiply the first of these equations by c * (x, ~) and 
the second by c(x, 0, where 

( •> _ b(s) ,.,_, 
c x, ~ - a(i;) e . 

Taking (15) into account, we obtain 

1+1 
¢,- c(x, 6)-2- <P; 

~ exp(-i~'x) • • 
= -c(x,6).!.... !;-~, c, ljJ, (x,1;,), 

k=1 

1-J 
c'(x, 6)-2-¢, + <P; 

(16) 

=c'(x,6)+c'(x,1;) ~ e;~~~) c,ljJ,(x,~,). 
k=1 

In addition to Eqs. (16), we obtain 2N equations for 
I/J1(x, l:j) and 1/Jt(x, l:j), putting in (14) !; = tj, j = 1, ... , 
N: . 

(17) 

The system of equations (16) and (17) relative to 

¢(s)=¢(x,£), 'lfl(x,~;) 

makes it possible to obtain these quantities from the 
scattering data. A formula for the reconstruction of 
q(x) from cf>W and 1/J(x, /;j) can be obtained readily by 
comparing the asymptotic behavior of 1/J(x, /;) as !; - oo, 
obtained from the formula (14): 

{ 'lfl.(x, ~)} ., {1} 1 [~ . ( '". ) . ( " ) 
-.p, (x, ~) r'•x = 0 + T k7:l ck exp - '"k x 1jJ x, 'ok 

+ 2~i s ¢! (£) d£] + 0 ( {. ) 

and directly from the differential equation (8): 

q (x) 

.p(x,1;)e-i6x = {~} + 21i1; {JJqJ'(s)ds} +O( ;. )· 
X 

From these two relations we get 

q(x)=-2i~c;exp(-i~'x).p;(x,~)-! J <P2(1;)d£, 

J I q(s) I' ds = -2i ~c. exp(t~,x).p,(x, ~) + ~ J cf>,(s)ds. (18) 
X Jt 

In concluding this section, we present the equations 
of the inverse problem of scattering theory, written in 
the form of an equation of the Marchenko type (see [ 10 ' 

11 l). These equations are obtained from (16) and (17) 
as a result of the Fourier transformation with respect 
to ~. 

Let 

(19) 

Then, after simple derivations, we get from (16) and 
(17) 

00 

K,(x,y)=F'(x+y)+ J K;(x;s)F'(s+y)ds, 

00 

K;(x,y)= ~ JK,(x,s)F(s+y)ds, 
X (20) 
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where the kernel K(x, y) is connected with lfJ(x, ~) by 
the relation 

ljl(x, ~) = e'~· + J K(x, s)e'~· ds, lm ~;;a. 0. 

We note also that in terms of this notation, formulas 
(18) take the form 

~ 

q(x)= -2K,(x,x), J lq(s) l'ds = -2K,(x,x). . 
3. N-80LITON SOLUTIONS (EXPLICIT FORMULA) 

We consider the inverse scattering problem in the 
case when b(~, t) = 0. Then </>(~) = 0, and the solution 
of the inverse problem reduces to a solution of the fi­
nite system (17) of linear algebraic equations. We re­
write this system in a more symmetrical form: 

N A·A. 
1J't;+ .E ~~~~· 1p,." =0, 

k=l 

(17') 

here 

Formulas (18) also assume a simpler form in this case: 
N DD N 

q(x) = -2i ,E A; ,P,;, J I q(s) I' ds = -2i ,E "'•11'••· (18') - -If N = 1 and a(t") has only one zero in the upper half­
plane, then the system (17') takes the form 

,,.,+l!:.L.,.=o •fAf',,+"·"=A· (21) 
'I' 2il) "'' ' 2il) ... "'' • 

It is easy to verify that the system (21) describes 
the soliton (6) with parameters 

I A(O) I' x0 =(2YJ)-'ln---, cp=-2argA(0). 
21) 

In the general case the system (17') describes anN­
soliton solution. This system, as will be shown in the 
Appendix, is not degenerate, and in addition there takes 
place the formula 

~ d 
- ~lq(s)l'ds=i (.EA•1J1,.- ,EA;1p,;) =dx"""lndetiiAII, (22) 

where II All is the matrix of the system (17'). For the 
one-dimensional Schrodinger equation, a similar for­
mula was obtained by Kay and Moses.[ 12 l 

To prove formula (22), we note that 

d 1 2N 

-lndetiiAII =-
1
-
1 

-
11 
~ detiiA.II, 

dx det A ~ 
ll:=l 

where the matrix II ~II differs from the matrix II A II 
by the column numbered k, which is the derivative of 
the corresponding column of the matrix II A II • For 
1 s k s N, the aforementioned column of the matrix 
IIAkll is 

By virtue of the Cramer formula, we have 

iA,1p,.,= det IIA.II I det liAII. 

Thus, 

i tA•1l'••= det~IAII t detiiA,II. 
R=l 11=1 

To prove formula (22), it remains to verify that 
1 2N 

-i _EA;1p,; = det IIAII .E det IIA,II. (23) 
.\=N+I 

To this end we rewrite the system (17') in the form 

N A·Ak 
1J1•;+ ~ ~~~ ~· (-1p,;)= A;, 

N A/ Ao 
- .E r.·-~ 1l'••+(-1p!i")=O. 

11=1 

The matrix of this system relative to { lfl21, ••• , l/J3N, 
-l/Jt1 , ••• , -1/JiN} coincides with the matrix II All, from 
which follow formulas (23) and (22). For the N -soliton 
solutions we obtain finally the explicit formula 

-d' -d' 
lu(x, t) I'= -y'2x-lndet IIAII = l'2x-lndet IIBB" + 111, 

dx' dx' 

where 

"(c1c; 
BJA =---,exp {i(~;- ~·)x}. 

~~-r. 

The dependence of the quantity Cj on the time is given 
by formula (13). 

4. N-SOLITON SOLUTIONS (ASYMPTOTIC FORM AS 
t- :1: ao) 

Let us study the behavior of the N -soliton solution at 
large It 1. We confine ourselves here to the case when 
all the ~j are different, i.e., there are no two solitons 
having the same velocity. In this case the N -soliton so­
lution breaks up as t-- ±ao into diverging solitons. To 
verify this, we arrange the ~j in decreasing order: 
~1 > ~2 > · · · > ~N • 

From (13) we have 

A;(t, x) = A;(O)" exp {-YJ;(x + 4s1t) + i[s;X + 2(6/ -1)/)t]}, 

I A;(x, t) I= I A;(O) I e-•;•;, Y; =X+ 4s;t. 

Let us consider the asymptotic form of theN -soliton 
solution on the straight line Ym =canst as t-- oo, Then 

Yr-~+oo, IA1 I~O for;<m, 
y; ~ -oo, [A;[~ oo for j > m. 

It follows from the system (17') that l/J1j, 1/Jzj -- 0 when 
j < m. In the limit we have a reduced system of equa­
tions relative to 2(N- m- 1) functions of Ym 

namely 
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,JA.,.j' • N 1 
ljl, .. +-2. "'''"=-A,. ~-r--.-. </>,.·, 

11)m .t..J - ;,o 
lz:;;::m+l 

that the fastest soliton is in front and the slowest at the 
rear. At t---oo the arrangement of the solitons is re­
versed. When the time t varies from - oo to +oo, the 
quantity ~m is changed by a factor ~rn/~ffi, corre-

jl.,.j' • . • • f, 1 
-?-. - ljl1,. + ljl2,. = A,. + Am l....J r:--;:- </>,. 
-'11m - ~lr. 

k::::m+l 

(24) sponding to a total change in the coordinate of the soli­
ton center 

and 

.v 1 A ' 
~ --- </>,.· =-__ .. _,.,, . 
.t..Jr •• r r·"''"' 

ll=m+t - \:.11. Y,j- bJn 

I: 1 Am 
--rf>,. = -1---- "'''"' 
r.·-~ r·-.• 

k=m+t 
(25) 

Solving the last system with respect to cp 1k and 
cp~, we obtain (see formulas (A.2) and (A.4) of the Ap­
pendix) the following simple formulas: 

Here 

2i1)m a. 
r/>11, =a,+---.--,-¢, .. A,., 

Orn bh- ~'" 

_, • 2i1)m a; , .. 
'f'2H. =- . ~-. . '¢2111 },,,,. 

a,, <;,11. - ~m 

2 . ITN ~-~; 
a,.= 11),. 

1; .. -1;. 
p=m+l 

Substituting the expressions for cp 1k and cp:k in (24) we 
obtain, using formulas (A.4), (A.5), and (A.6) of the Ap­
pendix: 

p ... +,. . (' +>· , + , rr" ~ .. -1;. 
-?.-'¢tm+¢2m = 1\.m , Am =Am •· 

-11)m r - r 
p=m+t 

(26) 

The system (26) coincides with the system (21) and de­
scribes a soliton with a displaced position of the center 
~ and phase cp+: 

+ 1 f. 1~ .. -1;.1 Xom - x,,. = -l....J In , < 0, 
T)m ~-1;. 

p=m+t 

Analogously, for t--- oo we obtain the system (21) 
with 

• Ilm-t Sm -1;. 
A=A,.-=Am •' 

1; .. -1;. 
·=· 

On the straight lines y = x + ~t, where ~ does not coin­
cide with any ~m as t --±oo, the reduced system be-
e omes asymptotically homogeneous, and the solution 
tends to zero at an asymptotic rate, thus proving the 
asymptotic breakdown of the N -soliton solution into 
individual solitons. 

The obtained formulas make it possible to describe 
the soliton scattering process. As t--oo, theN -soliton 
solution breaks up into solitons arranged in such a way 

AXom = Xom + - Xom-

(27a) 

and a total change of phase 

+ - m-t Sm - ~ N Sm - ~ 
~!pm = cp.. - !pm = 2 E arg ---- 2 I: arg ---

~~~~- ~~~-· ~II-~~/ 
k=l h=m+l 

(27b) 

Formulas (27) can be interpreted by assuming that the 
solitons collide pairwise (and every soliton collides 
with all others). In each paired collision, the faster so­
liton moves forward additionally by an amount 1J ~ 
xln l<tm- l:k)/(l:m -l:k)l, l:m > 1:_~, and the slower one 
shifts backwards by an amount 1J k , 
x ln I (l:m- l:k)/(tm- l:k) 1. The total soliton shift is 
equal to the algebraic sum of its shifts during the paired 
collisions, so that there is no effect of multiparticle col­
lisions at all. The situation is the same with the phases. 

5. BOUND STATES AND MULTIPLE EIGENVALUES 

The rate of divergence of a pair of solitons is pro­
portional to the difference between the values of the 
parameters ~; at equal values of ~. the solitons do not 
diverge, but form a bound state. Let us consider the 
bound state of N solitons, putting for simplicity ~j = 0. 
Then Cj(t) = Cj(O) exp (-4i1Jjt). It is seen directly from 
the general formula (22) that the bound state is an arbi­
trarily periodic solution of Eq. (3), characterized in the 
general case by N frequencies Wj = 41JJ· Actually the 
answer contains all the possible frequency differences, 
and therefore the bound state of two solitons is charac­
terized only by one frequency w = 4( 11~- 1}~), and con­
stitutes a periodic solution of Eq. (3). 

As 1}2 -- 0 we have w- 41Jl, i.e., the period of the 
oscillations tends to a constant limit. A more detailed 
analysis shows, however, that the depth of the oscilla­
tions tends to zero, and the bound state goes over into a 
soliton with amplitude 1J 1 • As 1J 2 -- 1J 1 the zeroes of 
a(t) coalesce; the bound state then becomes aperiodic. 

The limiting state resulting from the coalescence of 
the zeroes and formation of a multiple zero of a(/;), is 
best investigated by starting directly from the Mar­
chenko equations (20). 

Let us consider the kernel F(x, t) of the Marchenko 
equation for a system of two solitons with close values 
of the parameters: 

F(x, t) .= c1 exp {i1;x + 4i1;'t} + c2 exp {i(~ + .&~)x + 4i(~ + ~1;) 't} 
~ exp {i1;x + 4i1;'t} [c, + c, + ic~1;(x + B~t) +· .. ]. 

Going to the limit as AI: -- O, c2 AI: -y, C1 + C2 -- a1 , 

we obtain 

where 

F(x, t) = [a,(t) + a2 (t)x]e•t•, 

a, (t) =a, (0) ( 1 + By~t) e"t'•, 

a,(t) =a2 (0)e''t''. 
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Solving the Marchenko equations, we obtain after trans­
formations 

4T)J.''a,• -2+1'-l'fla,• 
q(x)= 1 + la•l'l'-1' 1 +I11I'IA.I' ' 

= 2T)[a1 + 2(x + 112T))a,J. A= e•t• 
J.1 1 +lazl'l'-1' ' 21)' (28) 

An analysis of this expression shows that as It 1- oo, it 
constitutes a superposition of two solitons with ampli­
tude 71, the distance between which increases with time 
like ln (477 2t). The solutions resulting from the coales­
cence of a large number of simple zeroes are of simi­
lar form. 

6. STABILITY OF SOLITONS 

We do not consider in this paper the evolution of the 
initial conditions of general form, in which an important 
role may be played by the "nonsoliton" part of the solu­
tion, which is connected with the quantity b(~, t). We 
consider only the case when this quantity is small, i.e., 

I b(~. t) I a(s) l=lb(s, O) I am I~ 1, (29) 

and the coefficient a(!;) has in the upper half-plane only 
one zero 1; = l;p Such a choice of the initial conditions 
corresponds to posing the problem of the stability of a 
soliton with parameters ~1 + i771 = 1;1 when the soliton 
is perturbed by a continuous spectrum. 

Let us consider the system (16) and (17) at N = 1 
and express the functions 1/J: (x,1;1 ) and l/J1(x, 1;1) from 
(17) in terms of 

Cll<'>(~··> = ~s <Pm. d6. 
2n' 6-1;, 

After substituting in (16), we obtain a system only for 
the quantities cp1 and cp~ • This system contains as a 
coefficient the small quantity c(x, ~. t) 
=[b(~, t) exp i~x]/aW Accurate to terms quadratic inc, 
we have 

[ 1;.·-~. { 
¢, = 0, ¢, = c(x, 6, t) 1 + 6 _ ~. \1 

From (18) we now obtain 

1 +• 
q(x, t) = q,(x, t)--;-L ¢,'(x, §, t)d§, 

q,(x, t) =(A')' /1 +P•I'· 

Here <lo is the soliton (6) with parameters 
Recognizing that 

( ) b(s. o> {2·~ + 4i;"'t-f c x,!;,t =--exp l;,X 1s , 
a(s) 

(30) 

(31) 

we find that the integral in (31) decreases like 1/..rf, as 
t -co. This means that the soliton is stable against a 
perturbation by a continuous spectrum-as t-oo the 
solution goes over asymptotically into a soliton. 

A perturbation of general form, other than the pro­
duction of a continuous spectrum, shifts the position of 
the zero of a(l;) on the complex plane and by the same 
token perturbs the parameters of the soliton. As t -co, 

the solution tends asymptotically to this perturbed soli­
ton. 

7. QUASICLASSICAL APPROXIMATION 

Let us consider for Eq. (3) initial conditions such 
that the quasi~ilassical approximation can be applied to 
the operator L. To this end, we eliminate the function 
v2 from the system (8). We have for v1 

v.'' + (lql' + b;)v,- (v.' + i1;v,)q' I q = 0. (32) 

In the quasiclassical approximation, q'/q << 1, and 
therefore Eq. (32) can be replaced by the SchrOdinger 
equation 

v.'' + (lql'+~')v, =0. 

It follows therefore that in the quasiclassical approxi­
mation all the eigenvalues of I; lie on the imaginary 
axis and are described by the Bohr quantization rules 

J"ylqi'-T)n'dx=2n(n+'l,), bn=iT) •. 

Actually, the levels do not lie strictly on the imaginary 
axis, but have small real increments, which ensure di­
vergence of the individual solitons. A simple estimate 
shows that the characteristic ratio of the real part to 
the imaginary one, ~/11 ""N-112, where N is the total 
number of solitons, is a large quantity in the quasiclas­
s ical limit. 

We note (see Sec. 1) that if the initial condition is 
pure real, then all the ~n are exactly equal to zero. In 
this case we can neglect the "nonsoliton" part of the 
solution, owing to the exponential smallness of the re­
flection coefficient, and assume that we are dealing with 
a bound state of a very large number of solitons. Such a 
state is characterized by a large number of frequencies 
and can be described in an averaged manner. 

The quantity characterizing this averaged state can 
be the soliton amplitude distribution function f(17 ), which 
is given by 

f(Tl) = on = _!_ J 11 dx. 
OT) 2n l'lql'-11' 

Since the dimension of the soliton is uniquely connected 
with its amplitude, it follows that f('l'/) is likewise a dis­
tribution function with respect to the reciprocal dimen­
sion. If the initial condition is such that u(x, 0) does not 
vanish as lxl-oo, and is only bounded, then we can in­
troduce the average soliton amplitude distribution func­
tion 

Both the function f(T/) and the "average" distribution 
function f<11) are independent of the time. 

Using these facts, we can assess the character of 
the nonlinear stage of development of the instability of 
a plane monochromatic wave with amplitude u0 , within 
the framework of Eq. (3). The instability gives rise to 
a "reversible" one-dimensional turbulence character­
ized by an average distribution function with respect to 
the reciprocal lengths, 

f(Tl) = 1/2nl'xluoi'-T)'· 

The development of the instability will not be accom-
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panied by any systematic energy transfer from some 
scales to others. 

8. CONSERVATION LAWS 

Equation (3) has an infinite set of conservation laws­
this follows at least from the fact that the quantity a(t:) 
is constant in time. Among the conservation laws con­
nected with a(t;) is an enumerable set of so-called poly­
nomial conservation laws. They have the form of an in­
tegral, with respect to x, of a polynomial expression in 
terms of the function u(x, t) and its derivatives with 
respect to x. Let us describe a regular method of cal­
culating such conservation laws. 

The function 

specifies the asymptotic form, as x- +co, of the solu­
tion 

of Eq. (8}: 

<p,(.x,~)e't•--..a(~) as x-++oo; Im~>O, ~=;C~;. 

Alternately, putting cp1 exp it;x = ecp ,we have 

¢(x, ~) -->-lna(~). as .x-+oo, 1~1> R. 

From (8} we obtain the following equation for cp: 

2t~¢' = lql' + ¢'' + q~(.!_ <t>')' 
d.x q 

which makes it possible to calculate, in recurrent fash­
ion, the coefficients of the asymptotic expansion of the 
function cp'(x, t:) in powers of 1/t;: 

(34) 

When lt:l-co, and Im t: ::::0, the function ln a(t:)- 0 
and also admits of an asymptotic expansion in powers 
of 1/t;: 

lna(~) ~ _Ec.;~·. (36} 
n=l 

From (33), (34), and (36), it follows that 
+w 

(2t)"C. = J t.(.x)d.x, n = 1, 2,... (37) 

By virtue of the recurrence formula (35}, the inte­
grands fn of the conservation laws (37) are polyno­
mials of the function q(x, t) and its derivatives with 
respect to x. We present the first five conservation 
laws: 

+w 

2tC, = ; L I u(.x, t) I' d.x, 

+• 

(2t)'C,=-: J (u'u.-uu.')(x,t)dx, 

(2t)'C, =- "2 J (lux!'- "!llul') (x,t)dx, 

(2i)'C,= ;J{uux'x.+3; uu.'iui')<x,t)dx, 

The first three integrals have a simple physical mean­
ing if we interpret Eq. (3) as a nonlinear Schrodinger 
equation. The constants of motion C11 C2 , and C3 then 
coincide, apart from coefficients, with the number of 
particles, the momentum, and the energy. 

For N -soliton solutions it is easy to calculate all 
the constants of motion Cn. In our case it follows from 
(11) that 

a(~) a'(~) = 1. 

It is clear therefore that the function a(t;), which is ana­
lytic in the upper half-plane, is continued analytically 
into the lower half-plane, where it has simple poles at 
points conjugate to the zeroes of t:"j, j = 1, ... , N. Re­
constructing the rational-fraction function a(t;) from its 
zeroes and poles, we obtain, recognizing that a(t;) - 1 
as I t:l- co, 

a<~>=IIN ~-~ •. 
~-v 

p=t 

It is easy to verify now that 
1 N 

c.=--;; .E (~").- ~·. 
li=l 

The presence of an infinite number of polynomial 
conservation laws is a characteristic property of the 
equations to which the inverse-problem method is ap­
plicable. For the Korteweg-de Vries equation, the the­
ory of the conservation laws was developed in detail 
in [ 13 l. 

APPENDIX 

Let t;-1, ••• , t:N be arbitrary complex numbers such 
that t:· * t:k at j * k, and tj * t: k for all j and k. We 
consider a system of linear algebraic equations of the 
type (25}: 

N 1 
\'1---f• = g;, i = 1, ... , N. 
~~-v 
k=l 

(A.l) 

Let 

N N 

a(~)=P(~)/Q(~), P(~)= II<~-~.), Q(~)= II (~-V), 
p::::=t p=t 

1 N N I 

a•=a'(~) =II (~·-6.') /IT (~-~.). 
p=t p=l 

Here and henceforth II' denotes that the factor equal to 
zero has been left out from the product. It is easy to 
see that 

N 

a(~)= 1 + L. a.·m-v>. 
·-· 

Putting here t = tj, we get 

(A.2) 
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We have thus obtained the solution of the system (1) for 
gl = ••• = ~ = 1. 

We introduce also the polynomials 

1 1 . 
P•(b)= b-b. P(b), Q.(b)= b-~.· Q(b). 

It is easy to verify that any polynomial H(l;) of degree 
N - 1 satisfies the identity 

~ Jl(b.) 
ll(b)= L.l Q(b.) a.P.(b). 

k=l 

Putting here l; = l; f, we get 

H(bi') ~ ll(b.) 1 
P(b/) = L.l Q(b.) a. ~;'-b. 

A=l 

For the special choice of the polynomial H(l;) = Q t(t), 
this formula takes the form 

N a. 1 { 0 for l =F i 1: bi' -b. b.- b<' = 1/a,• for l = f •=• 
(A.3) 

It follows from (A.3) that the matrix inverse to the ma­
trix of the system (1) is 

II bl~;~· b. II· 
Returning to the system (25), we see that we have to 

write out the solution of the system (1) for gj 
= 1/(tj- ~::),where 1;0 is a certain complex number 
different from 1;1, ••• , i:N· Let 

Then 

N N 1 

a.= fl <b•-V> /fl (b.-b.), k=o, ... ,N. 
p=O p=O 

- b.-~· a.=--a., k>O. 
b.-bo 

In analogy with (A.3), we have 

of, a. 1 { o, i > o, 
L.J. ~·-b. b.-bo' = 1/ii,•, i=O. =• 

Hence, replacing ak by ak with k > O, we get 

t ~ 1 • 1 
•=• (b/- b.) b.- bo = -2iT)o b;'- bo ' 

(A.4) 

and 

(A.5) 

In connection with (24), we indicate aiso a generaliza­
tion of formula (A.2): 

f,_a_. -=1-~ 
L.J~ - ;., 2iT)o ' 
k=l 

(A.6) 
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