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A 8-pinch in semiconductors with bipolar conductivity is considered under the assumption that the 
magnetic field build-up time TH is much larger than both the skin time and the electron and hole 
momentum relaxation times. Approximate solutions are found for the carrier density equations in 
nondegenerate and strongly degenerate semiconductors in the case of cylindrical and .plane geometry 
when the surface recombination rate s is small, such that sa/D « 1 (a is the sample size and D 
the ambipolar diffusion coefficient). It is shown that strong compression of an electron-hole plasma 
occurs in sufficiently strong magnetic fields for which bebhH2/ c2 » 1 (be and bh are the electron 
and hole mobilities, respectively), if THD/a2 « 1 and r » TH (T is the volume recombination 
time). 

1. In semiconductors with bipolar conductivity, a 8-
pinch is possible, i.e., compression of the electron
hole plasma under the influence of a magnetic field 
H(t) that increases with time. Unlike a gas plasma[ 1l, 
where the small skin effect causes the compression to 
occur as a result of a large magnetic-pressure grad
ient (the magnetic field does not have time to penetrate 
into the region occupied by the plasma during the time 
of the pulse), in semiconductors the skin layer as a 
rule is much thicker than the dimensions of the sam
ples, and the 9-pinch results from the drift of the 
carriers in the crossed magnetic and induced electric 
fields (the so-called "non-skin" 9 pinch). 

In the present paper we derive equations describing 
the compression of an electron-hole plasma in nonde
generate and strongly degenerate semiconductors for 
the case of planar and cylindrical geometry under the 
assumption that the duration TH of the magnetic-field 
pulse is much longer than the skin time and the relaxa
tion time of the electron and hole momentum. Approxi
mate analytic solutions are obtained for these equations 
when the rate s of the surface recombination is small. 
It is shown that strong compression of the electron
hole plasma takes place if sufficiently strong magnetic 
fields are reached during the course of the pulse, 
bebhH 2/ c2 » 1, where be and bh are the mobilities of 
the electrons and of the holes. The 9-pinch is most 
strongly pronounced if the magnetic-field pulse dura
tion is much shorter than the characteristic diffusion 
time a 2/D (a-dimension of sample, D-coefficient of 
ambipolar diffusion) and the time r of the volume re
combination. 

2. To obtain the initial equations describing the 
compression law, we use Maxwell's equation BH/Bt 
= -c V x E, the equations of motion of the electrons 
and holes, and the equation of continuity of the quasi
neutral plasma ne = nh = n, assuming the carrier flux 
on the sample surface to be am bipolar. For a nonde
generate semiconductor (the pressure is proportional 
to the density, P ~ n), these equations take the form 

Vn . b, 
v,=-D,-. -b,E--[v,H], 

n c (1)* 
Vn b• 

v. = -D.-+ b.E +- [v.H], 
n c 

dn n-n0 
-d + V(nv,)= ---, 

t T 

dn n-n. 
a;+ V(nv,)= --T-, 

E.=-_!_H E.=-!:_H, 
2c ' c 

The magnetic field is directed along the OZ axis, and 
all the quantities depend on the coordinate r in a 
cylindrical sample of radius a and on the coordinate 
x in a plate of width 2a. It is assumed that the plate 
dimensions in the direction of the OY and OZ axes 
is much larger than the dimension in the OX direction 
(the OZ axis passes through the center of the plate). 
We consider the case of linear volume recombination, 
when the lifetimes of the electrons and of the holes are 
equal. By virtue of the quasineutrality, the ambipolarity 
condition takes the form 

. In Eq. (1), Vi=e,h are the velocities of the electrons 
and holes, Di are the diffusion coefficients, n is the 
carrier density, and n0 is the density in the absence 
of the pinch effect (in the case of an intrinsic semicon
ductor n0 .= np, whe~e np is the equilibrium density). 

The boundary conditions correspond to equality of 
the ambipolar flux on the surface of the sample to the 
flux of the surface recombination (generation): 

nvxlx=±• = s(n- np), nv, I ,=• = s(n- n.). 

The initial conditions are: 

{ no 
n(x,O)= 0 n(r, 0) = { ~·: o.;;;r.;;;a 

r>a 

(2) 

(3) 

The expressions for the ambipolar velocities in the 
plate and in the cylinder take the form 

D 1 dn yHH 
v, = - 1 + yH' --;:; dx - 1 + yH' x, 

D 1 dn yHH r 
v,=-1+vH'n dr -1+vH'2' 

where y = bebh/ c 2 ; 

The equations for the density in dimensionless 
variables are obtained in the form: 

a) in a plate 

aN kli o 1 o'N N-1 (4) 
oT-1+k'odsN)-1+k' -ar=---&-, 
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N(•.0)={1Isl ~ 1. 
"· o lsi> 1 · (5) 

~____!:!:_N --1-!!!...1 = o(N-~) · 
1 + h' 1 + h' as 1=±• no ' 

b) in a cylindrical sample 

aN 1 hn 1 a 'N 1 1 a ( aN ) _ N- 1 
"8f'-Z1+h' pap(p )-1+h' pap pdp ---t}-(6) 

{ 1 o ~ P ~ 1 1 hn 1 aN I 
N(p,O)= 0 p>1 ; -21+h'N-1+h'ap •=• 

(7) 

Here N = n/no, !; = x/a, p = r/a, T = tD/a2," = TD/a2, 
a= sa/D, h = ../YH, h' = ahjaT. 

In a strongly degenerate semiconductor (degeneracy 
of one plasma component, say the electrons, suffices) 
we have P ~ n513, and the diffusion terms in the ana
logous equations turn out to be nonlinear. The equations 
take the following form : 

a) in a plate 

aN h1t a 1 a ( , aN) N -1 (4') 
TT-1+h'as<SN>-1+h'as N'•af: =--t}-, 

-{1lsl .;;;;1. ~N--1-N''•~I 
N(s,O>- o lsi> 1' =F 1+h" 1+h' as I•±• 

=a(N-~); (5') 

b) in a cylindrical sample 

aN 1 hn 1 a . , · 1 1 a ( aN ) N- 1 
af-21+h'pap(pN)-1+h'pap pN''•--ap =--t}-, 

(6') 
N( 0>={10~p~1. _.!.._~N-~1- ,,aNI 

p, o p > 1 ' 2 1 + h' 1 + h' N' ap ••• 

(7') 

The problem will henceforth be solved for semicon
ductors with a pure surface, when a = 0. This corre
sponds to conservation of the number of particles in 
the sample, and the boundary conditions are best 
written in integral form (which is the same for a de
generate and strongly degenerate semiconductor) 

' J dSN(s, r) = 1, (8) 
• 
t 1 
JdppN(p,T)=-. 
• 2 

(9) 

3. In the case of strong magnetic fields, h >> 1, it 
is possible to neglect the diffusion term in Eqs. (4), 
(6), (4'), and (6'). The first-order differential equations 
obtained in this case, at a given initial distribution, h 
have exact identical solutions 

· T/0 d~ J 

N(T) = [1 + h'(T) ]'l•e-rl• { 1 =t J. [1 + h'e(~) ]'!,}. (10) 

which do not depend on the coordinates !; or p. Such a 
distribution takes the form of a shelf, the height of 
which increases during the course of the pulse, and the 
width decreases, since the total number of particles is 
conserved. The solution of Eq. (10) is valid in that part 
of the sample where the particles are concentrated (on 

the periphery, near the surface, the density is equal to 
zero). On the edges of the distribution (10), the solution 
becomes discontinuous, aN/a!;, aNjap - ""• since it 
corresponds to the limiting case D - 0. Inside the 
plasma column, Eq. (10) gives the correct value of the 
density. 

The following conclusions can be drawn from this 
solution: 1) to obtain strong compression it is neces
sary to have large values of the magnetic field, h(T) 
~ 1; 2) if the magnetic-field pulse duration exceeds 
the recombination time TH = THD/a2 > "• then the 
compression is small. The succeeding investigation of 
Eqs. (4), (6), (4'), and (6') will therefore be carried out 
for the case TH << ", when the volume recombination 
can be neglected. Then Eq. (10) greatly simplifies and 
coincides with the equation previously obtained in[2l 

N(T} = (1 +h'(T}]"'. (11) 

4. Let us consider the compression of a nondegen
erate electron-hole plasma in a plate. We can verify 
by direct substitution in (4) that the expression 

N(s, T} = fl•(T}exp(-v,(T}s'] (12) 

satisfies Eq. (4). The boundary condition (8) gives the 
connection between the functions J1. 1(T) and v1(T), 
which takes the form 

y;i' -Y, . ..~-- (13) 2f.tt(T)v, (T)«<I(,v,(T))= 1, 

where <I>( .,fii"JT} is the probability integral. 
Since the functions J.L 1(T) and v1(T) should in

crease with increasing ~agnetic field, it follows that 
at v1(T) ~ 1, when <I>( v1(T)) Rl 1, we can assume, 
with exponential accuracy, that 

f.tt(T} ,= 2n-'hv,"'(T}. (14) 

Substituting (12) in (4), and also using (14), we can find 
the functions J1. 1(T) and v1(T), and the expression for 
the density takes the form 

N(• T) = [ 1 + h'(T)]''• exp[-_.::. 1 + h'(T) ••] (15) 
"' 1 + nT - 4 1 + nT " • 

If TH « 1 and h ~ 1, then the solution (15) can be 
represented in the form 

{ nh's' 
N(s,T)=hexp --4-}. 

which coincides with (11) near the axis !; - 0 . 
~ 1 and h ~ 1, then the solution of (15) is 

- { k's" N(6,T)=(kft'nT)exp - 4T }· 

(16) 

(17) 

As seen from a comparison of Eqs. (16) and (17), 
the 9-pinch is less noticeably pronounced when the 
magnetic-field pulse duration exceeds the characteris
tic diffusion time, and the magnitude of the compres
sion is determined not only by the amplitude of the 
magnetic field but also by the rate of its growth. 

Using similar reasoning for a cylindrical sample 
(Eq. (6)), we find that, with exponential accuracy, we 
have J.L 2(T) = li2(T), and the solution for the density 
turns out to be 

N( T) _ 1 + k'(T) f , [1 + h'(T)J"'} 
p,- A exp~-p A ; (18) 

r 

A= 1 + 4 J d~ (1 + h'(~)]-'''· 
0 
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The figure shows the results of a numerical integra
tion (solid curve) of Eq. (6) with boundary condition (7) 
in the case when the magnetic field increases linearly 
with time. The following parameters were specified: 
These parameters correspond to Hmax = 450 kOe and 
TH = 3 >< 10-5 sec in a cylindrical sample of germanium 
with radius a = 1.5 x 10-1 em. The dashed curve for 
the same parameters corresponds to formula (18 ). As 
seen from the figure, there is satisfactory agreement 
between the approximate solution (18) and the numeri
cal integration of Eqs. (6) and (7). 

5. In the case of a strongly degenerate electron
hole plasma, the process of compression has a some
what different character. Let us consider Eqs. (4') and 
(6') without the right-hand side, " - oo, neglecting the 
volume recombination. 

When the carrier density near the sample axis ex
ceeds during the course of the compression the equili
brium value N > 1, then the particle density on the 
periphery decreases, since their total number is con
served. In the case of strong degeneracy the coefficient 
of ambipolar diffusion depends on the particle density 
D ~ n213, and therefore in the near-surface layers of 
the sample the diffusion spreading decreases and the 
motion of the plasma periphery towards the center is 
more effective. 

It can be shown that the solution 

N(s, T) = <r• (T)[1- s' I 'ljl,'(T) ]'", (19) 

where rp 1( T) and 1/1 1( T) are certain functions of the 
time, satisfies Eq. (4'). The function rp 1(T) character
izes the law of variation of the density near the sample 
axis, and lji 1{T) determines the dimension of the 
region where the plasma is concentrated. The form of 
the solution (19) corresponds to pinching of the 
plasma[ 3 l, inasmuch as we have N{~) = 0 and 8N/8~ 
= 0 when ~ = 1/1 1(T). In such a situation, the boundary 
condition {8) takes the form 

1l~J(T) s dsN ( s, T) = 1. (8') 
0 

Thus, the process of compression of a strongly 
degenerate electron-hole plasma can be represented 
in the following manner. The existing initial uniform 
distribution of the particles is transformed into 
(1- ~ 2 )3/ 2 with increasing magnetic field, since i)I 1(T) 
is still of the order of unity. Further increase of the 
magnetic field leads to a detachment of the plasma 
from the surface of the sample-pinching accompanied 
by a sharp increase of the density near the axis. 

Using {19) and (8'), we obtain the connection between 
the functions rp 1(T) and 1/1 1(T) 

q>,(T)'Ijl.(T) = 16l3n. (20) 
Further, substituting {19) in (4') and also using {20), 
we obtain an ordinary differential equation for 1/1 1( T) 
(or for rp 1(T)). The final solution takes the form 

'ljl,(T) = [l + h'(T)]-'1·{ 1 +8 c:r) dil[1 +h'(~)]'l·r. 

16 { ( 16 •1, T -'1, (21) 
<Jl,(f)= :~)1+h'(T)]'t. 1+8 311 ) sd~[i+h'(~)J'I•} . 

0 

From the obtained solution of Eqs. {19) and (21) we 
see that the initial distribution (5') turns into ( 1 - ~ )312 

when the density on the sample axis turns out to equal 
N(O, T) ~ 16/31T. 

Similar results were obtained for a cylindrical 
sample. In this case 

N(p, T) = q>,(T) [1- p' I .p,'(T) ]'t., 

.p,(T) = [1 + h'(T) J-'1•{ 1 + 10 ( ~ f f d~[1 + h'(~)J-' 1, r" 
2 0 (22) 

<Pz(T) = +[1 + h'(T)] ''• { 1 + 10 ( : )'"S dp [1 + h'(~) J-'1f'l•. 
0 • 

6. The obtained solutions {15) and {18) for a nonde
generate plasma of a semiconductor are exact solutions 
of Eqs. {4) and (6) as J- oo and satisfy with exponen
tial accuracy the boundary conditions (5) and (7), 
starting with the instant of time when v 1, 2 ( T) » 1. 
The distr~bution of the density takes the form of a 
Gaussian curve, the ·width of which decreases and the 
height of which increases with increasing magnetic 
field. 

In the case of strong degeneracy, expressions {19 ), 
{21 ), and {22) are also exact solutions of Eqs. (4') and 
( 6') as J - oo, and the boundary conditions correspond
ing to pinching of the plasma (8') are satisfied exactly. 
The pinching of a degenerate plasma is the conse
quence of the fact that the pressure is P ~ n 513 • 

In conclusion, the authors thank V. "F. Shanski'l for 
the numerical calculations, and A.M. Dykhne and V. N. 
Oraevskii for valuable discussions. 
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