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The effect of holes on the parameters and the behavior of stable domains in the Gunn diode are con­
sidered. It is shown that holes accelerate domain motion and create the conditions required for the 
formation of domains moving in a direction opposite to that encountered in the case of a purely elec­
tronic semiconductor. For a sufficiently high hole concentration, the domains may move from 
cathode to anode and from anode to cathode with equal velocities, which exceed the electron drift 
velocity and are determined by the balance between the electron diffusion time and the hole Maxwel­
lian time. In this case holes restrict the maximal field in the domain and lead to the possibility of 
existence of a trapezoidal domain. 

1. INTRODUCTION 

IN Gunn diodes the electric field in a domain can be­
come so strong that band-band breakdown takes place 
and as a consequence, electron-hole pairs are gener­
ated. The generation of electron-hole pairs leads to 
the occurrence of a current-controlled negative re­
sistance ( s-shaped characteristic), pinching of the 
current, and other phenomena, the mechanism of which 
is considered in[ 1 l. The characteristic times of estab­
lishment of the S-shaped characteristic in "short" 
samples and of the occurrence of the phenomena asso­
ciated with this characteristic are much longer than the 
domain transit time. However, if the holes have a suf­
ficiently high mobility, they can also qualitatively 
change the physical picture of the "fast" process­
formation and propagation of a strong-field domain. 
The present article is devoted to an investigation of 
the influence of holes on the behavior of domains in 
Gunn diodes. 

In GaAs, which is the material most widely used 
for the preparation of Gunn diodes, the hole mobility 
J.Lp ~ 300-400 cm 2/V-sec is much smaller than the 
electron mobility in a weak field, J..Ln ~ 5000-8000 
em 2/V -sec and the maximum negative differential 
mobility of the electrons (J..Lnd)max ~ 2000 cm 2/V-sec. 
Nonetheless, at a high pair concentration p0 the influ­
ence of the holes on the current-voltage characteristic 
of the sample is significant where J.Lnd is small. This 
occurs, first, in the region of fields close to the 
threshold, and, second, in the region of strong fields, 
where the dependence of the drift velocity of the elec­
trons on the field becomes saturated. In accordance 
with these field regions, the holes can influence the 
threshold field at which the instability sets in, as well 
as the behavior of the already formed strong-field 
domain. The question of the influence of holes on the 
occurrence of the instability was considered in[ 2 l on 
the basis of the linear theory. In the present paper we 
investigate the parameters and behavior of the stable 
domain within the framework of the nonlinear theory. 

To illustrate the influence of holes at large pair 
concentrations, Fig. 1 shows the current-voltage char­
acteristic, normalized to the total number of electrons 
n0 , of a homogeneous sample of GaAs, for two limiting 

..oJn · 10 ~ em/sec 
z 

z 

15 zo 25 
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FIG. I. Current-voltage characteristic of a homogeneous GaAs sam­
ple, normalized to the total number of electrons (j-current density, E­
bias field): curve l-p0 = 0, n0 = nn; curve 2-p0 = n0 ~no; curve 3-
dependence of the drift velocity of the holes in an inhomogeneous sam-
ple on the field; tan ex= JJ. • The dashed curve represents an extrapola-
tion of the experimental data obtained in [3 ]. The shaded areas illustrate 
the area rule for a domain propagating at high velocity u0 in a sample 
with holes. The dash-dot line corresponds to the area rule for a trapezoi­
dal domain. 

cases: 1) Po = 0, n0 = nD, where nD is the donor con­
centration (curve 1) and 2) Po~ n0 >> nD (curve 2). 
Curve 1 is taken fromC 31, and curve 2 was obtained by 
adding curve 1 to curve 3 (for J..Lp ~ 400 cm 2/V-sec). 

In addition to the situation mentioned above, when 
the holes are produced in the Gunn diode as a result of 
impact ionization in the strong-field domain, the prob­
lem of the influence of holes on the domain has a bear­
ing on any case of drift instability in an intrinsic semi­
conductor or in a semiconductor in whose volume 
minority carriers or electron-hole pairs are produced, 
for example by external illumination or injection. For 
concreteness we assume, as before, that the depend­
ence of the electron drift velocity vn on the field E 
has a descending section, and that the differential con­
ductivity of the holes is positive. 

As will be shown below, at a low hole conductivity 
the motion of the domain accelerates, and the domain 
velocity increases with increasing hole concentration. 
Even at a relatively low hole concentration, there can 
exist, besides the domain propagating from the cathode 
to the anode (in analogy with the domain in a purely 
electronic semiconductor), also a domain of the same 
shape but propagating in the opposite direction (from 
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the anode to the cathode) with the drift velocity of the 
holes, corresponding to the maximum field in the 
domain. (At low hole concentration, the occurrence of 
a domain propagating from the anode to the cathode is 
prevented by hole diffusion). At large hole concentra­
tion, the domain can propagate from the cathode to the 
anode and in the opposite direction with equal velocity, 
determined by the diffusion of the electrons and by the 
Maxwellian time of the holes (Dn/u2 ~ Tmp• where 
Dn is the electron diffusion coefficient, u the domain 
velocity, and Tmp the Maxwellian time of the holes). 
Positive conductivity of the holes leads also to the ap­
pearance of a rising section on the current-voltage 
characteristic in the region of strong fields, thus 
limiting the amplitude of the domain. 

2. FUNDAMENTAL EQUATIONS OF THE PROBLEM 

In the presence of two sorts of carriers, the funda­
mental equations of the phenomenological theory of the 
Gunn effect assume the form 

an a [ an] at- ox nv.(E)+D.h = 0, 

(1) 

(2) 

oE 4ne 
{i;" = - 8-(P- Po- n + n0), (3) 

where n and p are the concentrations, jn and jp the 
currents, and Dn and Dp the diffusion coefficients of 
the electrons and holes, respectively, !l p is the hole 
mobility, € is the dielectric constant of the material, 
and n0 and p0 are the electron and hole concentrations 
in the homogeneous sample. (In the case when the 
holes are produced by impact ionization, as for exam­
ple in strongly-doped Gunn diodes, n0 is the sum of the 
concentration no of the ionized donors and the concen­
tration Po of the pairs: n0 = Po + no.) For simplicity 
we assume that Dn and Dp do not depend on the field. 

When !lp- 0 and p = p0 , Eqs. (1)-(3) go over into 
the standard system of equations of the theory of the 
Gunn effect. At a finite value of !lp, holes change the 
picture of the instability. 

A linear theory of instability in a semiconductor 
with two types of carriers was considered in [2l. It is 
shown there, in particular, that the presence of car­
riers with positive differential conductivity makes it 
possible to produce in the sample, besides a growing 
wave propagating from the cathode to the anode, also 
a growing wave propagating from the anode to the 
cathode. 

In the present paper we shall seek nonlinear solu­
tions of Eqs. (1)-(3) that correspond to formed strong­
field domains. All the quantities depend only on 
z = x - ut, where u is the velocity of the domain, and 
the system of equations (1 )- (3) is transformed into a 
system of ordinary differential equations, in which (1) 
and (2) can be integrated. Substituting Eq. (3) in (1) 
and (2), we obtain 

p(J.t.E- u)-D.: = Po(~-t.E1- u), (4) 

dn 
n[v.(E)+ u] +D.-= no[v.(E1)+ u], 

dz 

dE 4ne 
- = -(p- Po- n +no). 
dz e 

(5) 

(6) 

Here E1 is the field outside the domain. Equations 
(4)-(6) can be rewritten in the form 

4neD • .:!!!.._= nv.(E)-n0v.(E1)+(n-no)u (7) 
e dE n - no - p +Po 

4neD. dp J.t0 (pE-p,E1)-u(p-po) (8 ) 
-e- dE= p-p0 -n+no 

Let us consider first the case when it is possible to 
neglect the hole diffusion. The physical reason why the 
hole diffusion can be neglected is that the holes have a 
smaller mobility and a lower temperature than the elec­
trons, since the electrons are heated. We shall obtain 
below criteria for the applicability of the approximation 
Dp = 0 and show that this approximation is good for a 
wide range of parameters, including the values corre­
sponding to GaAs. (The case when hole diffusion is 
significant will be considered separately in Sec. 4.) 

At Dp = 0 we obtain from (7) and (8) one first­
order equation for the space-charge density 
p = e ( p - Po- n +no): 

4nD. dp 
-- p -E = e(nn + p 0) [v.(E)- v.(E1)) 

e d · 

[ + (E)] [ + epof.tp(E- E1)] + 4neD.pof.tp ( E) 
·- u v. 1 p 2 u- f.tp 1 p. 

~-t.E-u e(~-t.E-u) (9) 

We confine ourselves first to the case of large sta­
tionary electron concentration n0 • As will be shown 
below, the space-charge density in the domain is small 
in this case (p/ en0 « 1 ). A large stationary electron 
concentration n0 can arise in the sample either as a 
result of a large concentration of electron-hole pairs 
produced in the sample by illumination or impact ioni­
zation11 (no =no +Po). 

We seek the solution of (9) in the form of a series 

p = p(OJ+ p(1J+ ... 

p<o> and p< 0 are determined from the equations 

4nD. dp(O) 
-- p<0>-- = e(nn + Po) 1[v.(E)- v.(E1)} 

E dE 

epof.tp(E- E1 ) · 
-[v,.(E.)+u} E ==eF(E,u), 

f.tp - u 
(10) 

2nD. d 4neD.Poll• · )} o ( 11) ----(p<0>p<1>) = (u- ~-t.E 1 )p<0>- [u + v.(E p< >. 
e dE e(~-t.E-u)'' 

Using (10), we can rewrite (11) in the form 
d 2 d( (0l)' 

-(p<olp<11) = - P ~ F (E u)p<0> (12) 
dE 3e(nn + p0) dE 1 ' ' 

F1(E, u) = _e_{u + v.(E1)-.4neD.pof.tp(u- ~-t.E1) 
2nD. e(!J.pE- u)' 

+ Pof.tp(E-E1) } 
(nn +Po) (~-tf- u) [u + v;,(E)] . (12a) 

From (10)-(12) we get 

(pl01)' = ~ J F(E', u)dE', (13) 
2nD""• 

2(p(0J)' 1 E 

p(1l =- --s dE'p<0i(E')F1(E',u). (14) 
3e(nn +Po) p<0l(E) E, 

As !lp - 0 or Po - 0, the solution (13) describes a 

nwe note that impact ionization in GaAs Gunn diodes is usually 
observed in highly doped samples (n0 ~ 2.5 X I 0 15 cm-3 ), when, as 
shown in [4 ], the condition (n-n0 )/n0 < 1 is satisfied. 
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stable strong-field domain in a strongly doped sample 
(see[41). 

We seek a solution describing the strong-field do­
main. From the Poisson equation it follows that at the 
maximum value of the field in the domain Em the 
space-charge density is p 101 (Em = 0). It follows from 
this condition that 

J F(E, u)dE = 0. (15) 
E, 

On the other hand, as is seen from (14), in order for 
p< 11 to remain finite at the point Em, it is necessary to 
have .. ,. 

s dEp<0l(E)F,(E,u)=O. (16) 
E, 

Simultaneous solution of the integral equations (15) and 
(16) determines the maximum value of the field in the 
domain Em and the velocity of the domain u. 

3. CASE OF LOW HOLE CONCENTRATION 

In the case of sufficiently low hole concentrations 
(in which case the solutions (13) and (14) are valid at 
large nD), p< 01 has the same form as in the absence of 
holes. It follows from (15) that Em is determined in 
this case (accurate to small corrections) with the aid 
of the usual "area" rule in the theory of strong-field 
domains[s,sJ. Therefore in the zeroth approximation 
there is likewise no change in the dynamic character­
istic of the sample with the domain (see[41 ). 

It follows from the form of the function F 1( E, u) 
that Eq. (16) should have roots 

u, = -v.(E,) + t.u,, (17) 

(18) 

where ~u 1 and ~u2 are small corrections proportional 
to the powers of p0. The root u1 is connected with the 
vanishing of the first (large) term in F 1 (see formula 
(12a)). The root u 2 is connected with the fact that as 
u - J.LpEm a small quantity ~u2 arises in the denomi­
nators of the second and third terms and compensates 
for the smallness of the quantity in the numerator. We 
note that as p0 - 0 or J.Lp - 0 the root u1 goes over 
into the usual expression for the velocity of the strong­
field domain (u = -vn(E1) in the standard theory of the 
Gunn effect[sJ). 

From (16) and (12a) we get 

Here 

4neD. , 
ilu, = u, + v.(E,) =- --Poll•[v.(E,)+ fL•Ed 

e 
.o,. E,. (19) 

dE[n<0l(E) n] { }-' 
X S - 0

, JaE'[n<0l(E')- no] . 
c,[v.(E,)+j.LpE] E, 

[n<0l(E)- n0 ]' = ~ j dE'[v.(E')- v.(E,)] 
2nD.-, (20) 

is the deviation of the electron concentration in the 
domain from the equilibrium value (compare with[41 ). 
As seen from (19), the holes accelerate the motion of 
the domain. Estimates of the integrals in (19) and (20) 
are given in the Appendix. They were made for the 
most nontrivial case of mobile holes: J.LpEv <vn(E1) 

< J.LpEm ( Ev is the value of the field above which vn 
becomes independent of E) and lead to the result 

-~~ + 6neD,.p, < 1_ (21) 
v.(E,) eEmv.(E,) 

In order for the results to be valid, it is necessary, 
besides satisfying inequality (21 ), that the second term 
in (10) be small compared with the first and the charge 
density p< 11 be small compared with p 101 in the field 
region Ev < E < Em, in which this requirement is 
most difficult to satisfy. The corresponding estimates, 
which are analogous to the estimates given in the Ap­
pendix, lead to the following inequalities: 

Bj.L.E. 
no~ ncr ==--(E,-E,) 

4neD. 
(22a) 

(this inequality corresponds to the condition of 
"strongly-doped" samples, obtained earlier in[41 ) and 

(22b) 

(We note that in this case the second term in the right­
hand side of (14) turns out to be larger than the second 
term in the right-hand side of (10)). 

All the numerical estimates will be made for GaAs, 
with the following parameters: E: = 12.5, J.l.n = 6000 
cm 2/V-sec, J.i.p = 300 cm 2/V-sec, E1 = 1.5 kV/cm, Et 
= 3 kV/cm, Dn = 400 cm 2/sec, Em:::::~ 90 kV/cm, and 
Ev :::::~ 15 kV/cm. We then obtain from (21), (22a), and 
(22b) that ncr:::::~ 2.5 x 1015 cm-3 , and from inequalities 
(21), (22a), and (22b) it follows that 

Thus, the results obtained above describe, for example, 
Gunn diodes at their relatively low level of impact 
ionization (see, for examplePl). 

We now consider the root u2 (see formula (18). 
Just as for u1, the first two terms are of importance 
in the calculation of the integral in (16), the main con­
tribution from the second term to the integral being 
made by the field region Em. The calculation of the 
integral (16) yields 

t.u, { 3n'D.ep0 }' 1 (23 ) 
~'-•Em = eEm [!'.Em+ v.(E,)] < . 

Just as in the case of root u1, in order for the em­
ployed approximations to be valid it is necessary, in 
addition to satisfaction of inequality (23), that the sec­
ond term in (10) be small compared with the first and 
the charge density p 111 be small compared with p 101 in 
the field region Ev < E <Em. The corresponding 
estimates lead to the following inequalities: 

!2_ > 3: ( ncr)'A', 
nD 9n- nv 

"/,A'< nv /ncr 

(24a) 

(24b) 

As before, it is necessary also to satisfy the inequali­
ties (22a). 

Numerical estimates for GaAs, make for the indi­
cated values of the parameters, yield in this case 

p, < 2,5 ·10" em -a, Po/nv > ( 1. 7 ·10" /nv) ', ncrfnv < to-', 

i.e., nD > 2.5 x 1018 cm-3 • 

The hole concentration in the domain is 
fL.E 1 - u 4nD•I'•Po(u- f!.E,) (25) 

P = Po E + ( E ) , P· 
~'-• - u e ~'-• - u 
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Expression (25) was obtained from (8) by formal ex­
pansion with respect to Dp. In the derivation of (9) we 
took into cons ide ration only the zeroth term of the 
expansion (25). From (25), (18), and (23) it follows that 
the hole concentration in a domain moving with velocity 
u2 increases with decreasing hole concentration Po 
outside the domain. Therefore the hole concentration 
gradient increases with decreasing p0 and, conse­
quently, the diffusion of the holes becomes all the more 
appreciable. At excessively small concentrations p0, 

the hole diffusion makes it impossible to realize the 
domains corresponding to the root u2 • Therefore the 
solution obtained by us is valid down to concentrations 
satisfying the inequality 

4:rr:D•Il•PI e(du2)'~ 1, 

as follows from a comparison of the second term with 
the first in (25). Substituting in this inequality the esti­
mate given in the Appendix for the charge density as a 
function of the electric field, we obtain an upper bound 
on the hole density: 

(26) 

Substituting the numerical estimates given above for 
GaAs, we obtain at eDp/ J.Lp = T = 300°K: 

Po Inn> &(ncr/ nn) '1•. 

Thus, as shown above, in the presence of holes, 
unlike a semiconductor with one kind of carrier, there 
are two types of solutions corresponding to strong­
field domains. The solution of the first type (root u1) 
describes a domain propagating, just as in the absence 
of holes, from the cathode to the anode, with the holes 
accelerating the motion of the domain. Solutions of the 
second type, which are realized even at relatively low 
values of p0 , correspond to a domain propagating in 
the opposite direction, from the anode to the cathode. 
Which of these two solutions is realizable in the ex­
periment depends on the boundary conditions at the 
contacts as determined by the technology of their 
preparation. 

4. CASE OF SUFFICIENTLY HIGH HOLE DENSITY 

As follows from the solutions obtained in Sec. 3, 
the absolute value of the domain velocity increases 
with increasing p0 • (This is valid for both roots.) One 
can therefore expect that at sufficiently large hole 
densities there will be realized a situation in which 
u >> J.LpEm + vn(E1). We then have from (10) and (15) 

E 
.m 

J {(nn + p,)[v.(E)- v.(E,)J+ P•ll•(E -E,)}dE = 0. (27) 
E, 

Expression (27) is a generalization of the area rule of 
the standard theory of strong-field domains[s,sJ. This 
rule connects the density of the external current 
j = ep0 J.LpE 1 + en0vn(E 1)) with the maximum field in 
the domain Em (see Fig. 1). From the area rule (27) 
it follows that the maximum field in the domain Em 
cannot be larger than a certain critical value Emax 
that depends on the hole conductivity, even if the char­
acteristic vn( E) does not impose any limitations on 
the amplitude of the domain in a purely electronic 

p/e 
p -p. 
n-n0 

a 
b 

f 

FIG. 2. Schematic field dependences of the space charge density 

{ 

p/e (curve 1), of the excess hole density p-p0 (curve 2), and excess 
electron density n-n0 (curve 3) in the domain walls: a-for a domain 
propagating from the anode to the cathode, b-for a domain propagat­
ing from the cathode to the anode. In the upper right corner of Fig. 2a 
are shown the distribution profiles of the space charge and of the field 
along the sample, corresponding to the strong-field domain. K-cathode, 
A-anode. 

semiconductor (see Fig. 1). Thus, in a Gunn diode with 
two kinds of carriers there can exist a "trapezoidal" 
domain with a constant amplitude Emax, the width of 
which increases with increasing bias voltage. 

Using the condition u » J.LpEm, vn( E1), we obtain 
from (12a) and (16) 

[ 4:rr:eD. ]''' 1/Dn u = ± u, = ± --J.tpPo == ± y-, 
8 Tmp 

(28) 

where Tmp is the Maxwellian time of the holes. 
Just as in the case of relatively low hole density, 

the domain can move not only from the cathode to the 
anode, but also in the opposite direction, and in this 
case the domain velocity is the same in both directions. 
The concentration of the electron-hole pairs in the 
domain varies with the direction of the main motion: 
in the case of motion from the cathode to the anode, the 
concentration of the electron-hole pairs in the domain 
is smaller than outside the domain, while in the case of 
motion in the opposite direction the pair concentration 
in the domain is higher. At the same time, the distri­
bution profiles of the space charge and of the field in 
the domain do not depend on the direction of its motion 
(see Fig. 2). As a already noted above, the choice of 
the domaih-motion direction may be determined by the 
conditions on the sample contacts. 

Let us consider now the criteria for the applicability 
of the results obtained for the case of relatively high 
hole densities. From the conditions u » J.L pEm, vn( E 1) 
we obtain lower bounds for the hole density: 

Po :li> ev.'(E,) I 4:rr:eD.J.t., 

Po ::l!> Ef.IPEm 2 I 4:rr:eD •. 

(29a) 

(29b) 

Inasmuch as in the case of high hole dEmsity the field 
amplitude in the domain is bounded (Fig. 1), we as­
sume for numerical estimates Em ~ 30 kV /em. Then, 
using the numerical values given above for the remain­
ing parameters, the criteria (29) yield p0 > 1016 cm-3 • 

Such hole-density values in Gunn diodes correspond to 
the experimental situation (see, for examplePl). 

The value of Em used for the estimates pertains to 
the case no« no~ Po (see Fig. 1). If no» p0 , the 
h6les can also strongly alter the velocity of the domain, 
even if Em is approximately the same as in the do­
main propagating in a purely electronic sample. The 
hole density, which increases appreciably the velocity 
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of the domain, will in this case be larger in absolute 
value and will increase in proportion to .fiiD, since in 
a purely electronic sample the value of Em is larger 
and increases in proportion to n~4 [ 41 • The hole charge 
in the domain 

e(p -p )- e11,Em E 1/ IL•P• 
0 ---Po= my-­

U 4neD. 

is in this case small compared with the electron charge 
Pn ~ e ..fnoncr· The reason why the holes can alter the 
velocity of the domain strongly even in this case is as 
follows. In strongly-doped samples (n0 » ncr) the 
electron space charge e(n101 - n0) is small and, in 
first approximation, independent of the domain velocity 
(see[41 ). The domain velocity is connected only with 
the small correction en1 11 to the space charge of the 
electrons. Therefore in order to change the velocity of 
the domain, it suffices for the hole charge to be com­
parable with the small correction en1 11 . 

From the inequalities (29) follows the condition 

ncr E.(E,- E,). 
(29c) 

(The inequality (29c) is obtained by multiplying the in­
equalities (29a) and (29b).) It follows from (29c) that 
the domain can propagate with velocity ±u0 only if 
Po» ncr, since E1 ~ Et - E1 and Em » Ev· The 
electron and hole density oscillations in the domain, 
just as in a strongly-doped n-type sample (at no» ncr• 
see[4 l), are small in this case in comparison with the 
stationary density. When Po>> nn the charge density 
p in the domain is proportional in the case under con­
sideration to ..[p;, just as n - n0 = ~ and p - Po co 

..[p;. 
We shall show that in order for the results (27) and 

(28) to be valid it is necessary only to satisfy the 
criteria (29 ), and the validity of (27) and (28) is not 
connected, for example, with the approximations used 
in the derivation of (10)-(12}. Indeed, at u » j.l.pEm, 
vn(E1) we have from (9) 

2nD• dp' = e(nD + p0 ) [v.(E)- Vn(E,)] + epoflp(E'- E,)- pu ( 1-~). 
e dE u' 

From (30) we get 
(30) 

2nfln p' = e j dE'{(nD +Po) [vn(E')- Vn(E,)] 
e EJ 

+ ll•Po(E'- E,)}- u ( 1- u::) I, p(E')dE'. 

(31) 

The strong-field domain consists of an increasing-
field region, in which p > 0 everywhere, and a decreas­
ing-field region, in which p < 0. Therefore the sign of 
the second term in the right-hand side of (31) at u2 

;&! u~ will depend on the region (of increasing or de­
creasing field) to which the integration path corre­
sponds. Therefore when u2 ;&! u~ it is impossible to 
satisfy the condition p ( Em) = 0. Thus, it remains to 
put u = ±u0 (see formula (28)). Using the condition 
p (Em) = 0, we then obtain from (31) the formula (27 ). 

The picture of high-velocity domain motion is best 
considered for the limiting case of a trapezoidal do­
main, the motion of which constitutes synchronous 
motion of two charge layers separated by the width of 
the flat top of the domain. Neglecting diffusion, these 
layers are discontinuity planes moving through the 

semiconductor. When the discontinuity plane moves 
with velocity u, the laws for the continuity of electron 
and hole flow through this plane should be satisfied. 
Changing over to a coordinate system in which the 
discontinuity plane is at rest, we obtain, by equating 
the fluxes of electrons and holes on both sides of the 
discontinuity surface, the following relations: 

(u -!LPEm)Pm = (u- ll•E,)po, (32) 

[u + vn(Em)]nm = [u + Vn(E,)]no. (33) 

Here nm and Pm are the electron and hole densities 
in the domain at a field E =Em· From (32) and (33) 
we find that in the case of a discontinuity surface mov­
ing with a velocity greatly exceeding the drift veloci­
ties of the electrons and the holes, the concentration 
jumps n1 = nm - no and P1 = Pm - Po are equal to 

ILPEm 
p,=--po, 

u 

Vn(Em)- vn(E,) 
nt=- no, 

u 

with P1 = -n11 since p(Em) = 0. Thus, J..LpEm = Vn(E1) 
- Vn(Em). 

The electron diffusion smears the discontinuity sur­
face out into a layer, the order of magnitude of whose 
width d can be estimated by starting from the fact that 
the diffusion flux in the layer is of the same order as 
the flux connected with the electron drift: 

Hence d ~ Dn/u. As follows from the Poisson equa­
tion, the field jump is connected with the space charge 
in the layer: Em - E 1 ~ ( 4n/ E;) pd. Since inside the 
layer we have p1 ~ n1 ~ (j.LpEm/u)p0, it follows that 
Em~ (41Tj.l.p/E;u)Empod, i.e., d ~ E;u/41Tepoj.Lp. Com­
paring the two relations d ~ Dn/u and 
d ~ E;u/41Tep0j.Lp, we obtain an expression for the 
velocity with which the discontinuity surface can move 
through the electron-hole plasma of the semiconductor. 
The motion of such a discontinuity surface causes the 
uncompensated charge in the layer into which this sur­
face becomes smeared out. In order for the system to 
remain neutral, it is necessary that there exist a 
second discontinuity surface, with an equal and oppo­
site charge. This is possible only as a result of the 
presence of negative differential conductivity of the 
electrons. The charge pd on the surface is uniquely 
connected with the velocity of the surface. Thus, the 
trapezoidal domain constitutes synchronous motion, 
with velocity ±u0, of two discontinuity surfaces that 
are smeared out by diffusion. 

The picture presented above for the motion of the 
trapezoidal domain makes it possible to estimate the 
upper limit of the domain velocity, i.e., the upper 
value of the hole density, at which our theory is still 
valid. The smeared-out width of the domain wall can­
not be smaller than the electron mean free path l, 
since the smearing of the discontinuity surface is con­
nected with diffusion of the electrons: 

d ~ Dn/u > l. 

Substituting the estimate Dn ~ lvT, where VT is the 
thermal velocity of the electrons, we obtain VT > u, 
i.e., the trapezoidal domain cannot move with a velocity 
exceeding the thermal velocity. The thermal velocity 
of the electrons in the domain can be estimated by 
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using the results of[sl. Assuming for GaAs that 
T ~ 104 °K and m* = 0.40m (for heavy electrons), we 
obtain VT ~ 7 x 107 em/sec. Thus, Umax ~ VT ~ 7 
x 107 em/sec, i.e., p0 < ~v.J./47TeDnJ-I.p ~ 2 X 1017 cm-3 • 

At large values of p0 it is necessary to take into ac­
count the temporal and spatial dispersions of the 
kinetic coefficients. 

Another limitation on the region of applicability of 
our theory may be connected with the fact that we have 
assumed J.l.p to be independent of the field. We note that 
if the drift velocity of the electrons becomes saturated 
in strong electric fields, then all the effects connected 
with the influence of the holes on the parameters and 
on the behavior of the strong-field domains will be 
less strongly pronounced. However, as shown by the 
experimental data [s], the dependence of J-1. p on the 
field in GaAs becomes significant only in fields on the 
order of 60 kV /em and above. Therefore, as seen from 
the foregoing estimates, this limitation is immaterial 
as applied to GaAs. 

Let us see now how the hole diffusion changes the 
domain parameters in the case of large hole density. 
The hole density is determined in this case by formula 
(25), which is an expansion in terms of the reciprocal 
of the high velocity u. Substituting (25) in (7) and 
using the inequality u » JJ.pEm, vn( E 1), we obtain 

2:rtD. dp' ( D.u,') ] E ) ---- 1-t--2 =n0 [v,(E)-vn(E,) +Pof!,(E- • 
ee dE D,u (34 ) 

- u_( 1- u,,') _!l__- 12:rtD~ fl,,u,'p'. 
u~ c ceu-3 

Just as for (30}, the term linear in p in the right-hand 
side of (34) has opposite signs in the increasing- and 
decreasing-field regions in the domain. We can there­
fore conclude that the hole diffusion does not change 
the velocity of the domain u2 = u~. By obtaining the 
domain velocity, we can get the p(E) dependence from 
(34): 

2 ee E , [ 6DtiJ.Lp , 
p (E)= dE exp -----(E -E) 

2:rt(D, -tD") J 11(D, -tD") ] 
X {n,[v.(E')- ~ .. (E,)]+ PoJLp(E' -E,)}. 

In order for the hole diffusion to be significant, it is 
necessary to satisfy the condition 

(35) 

(36} 

which follows from a comparison of (35) and (27}. How­
ever, since u > JJ.pEm and Dn + Dp > Dn, condition 
(36) cannot be satisfied in the case of a large hole 
density. Thus, in this case the hole diffusion exerts 
practically no influence on the parameters and velocity 
of the domain. 

APPENDIX 

Let us estimate the integrals (19} and (20}. Using 
the results of[4 l, we can obtain for the case of strongly­
doped Gunn samples in the region Ev < E < Em: 

enoJLn ( E ) (A 1} (n<'>-n,)'---E,(E,-E,) 1--E , • 
4neD. , 

where Et is the field corresponding to the maximum 
of the vn(E) curve (see Fig. 1). The maximum value 
of n<ol - n0 is reached in a field E ~ Ev (for GaAs, 
Ev/Em « 1 as Po - 0}. Using (A.1), we get 

S dE(n(')- no)- Em[ EnoJL .. Ev (E,- E,)] •;,. (A.2} 
E, 9neD. 

In obtaining the estimate (A.2), the integration was 
carried out in the region from Ev to Em. The region 
of values of E from E 1 to Ev does not make a notice­
able contribution to the integral. (This can be verified 
by replacing n< 0l - n0 in this region by the maximum 
value, which is reached at E ~ Ev.) 

We estimate the second integral in (19} by assuming 
for simplicity JJ.pEv < vn( E 1 ) < JJ.pEm (which is satis­
fied in strongly doped GaAs samples). Then the main 
contribution to this integral is made also by the region 
E ;G Ev, and the estimate of the integral takes the 
form 

fdE(n('>(E)-n,]- 1 ·[enoJL.E.(E,-E,) ]''• 
E, [v.(E,)+ JL.E]' JlpVn(E,) 4:rteD. · (A,3} 

Substituting (A.2) and (A.3) in (19}, we obtain the cor­
rection to the velocity: 

(A.4) 
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