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The effect of voltage fluctuations in the external circuit on the volt-ampere characteristic of a 
superconducting microjunction near Tc is investigated. At temperatures exceeding the critical 
value, voltage fluctuations weaken superconductivity induced by fluctuation pairing. Stimulation of 
superconductivity is possible on the negative part of the volt-ampere characteristic below Tc. It 
is shown that fluctuations introduced from the external circuit reduce the critical temperature of 
the microjunction. 

To describe correctly the properties of superconduc
tors at temperatures close to critical, it is necessary 
to take into account the fluctuation pairing and unpair
ing of electrons resulting from thermodynamic fluctua
tions in the superconductor and from voltage fluctua
tions coming from the external circuit. For bulky 
samples, the fluctuation pairing of the electrons is 
significant in a very narrow temperature region near 
Tc, on the order of 10-4-10-15 deg[ 11 • For samples 
having a small parameter d << ~ 0 ( ~o is the coherence 
length), the temperature interval in which the thermo
dynamic fluctuations are significant increases[ 21 • 

From the microscopic theory developed by Aslamazov 
and Larkin[3 l it follows that allowance for fluctuation 
pairing above Tc leads to the appearance of incre
ments to the electric conductivity, to the specific heat, 
and to the sound-absorption coefficient in the metal, 
which diverge at T = Tc, and alters significantly other 
dynamic and static characteristics of the superconduc
tor. 

Another mechanism of fluctuation pairing above T c 
was proposed by Maki[ 41 • Maki took into account, in 
first order, the contribution made to the electric con
ductivity by the interaction of the Cooper pairs with 
the background of the normal electrons. In the three
dimensional case, this contribution is finite, but in the 
two-dimensional case it diverges logarithmically. As 
shown by Thompson[ 5 l, the presence of a weak inter
action that lowers Tc makes Maki's expression finite 
in the two-dimensional case, and a large disordering 
interaction suppresses it. The electron-electron and 
electron-phonon interactions produce too small a shift 
of T c to explain the experimental results [G-al. The 
change of Tc can be due also to paramagnetic impuri
ties in the film and to imperfections in its structure. 

We shall show below that the shift of T c may be 
connected with voltage fluctuations in the external 
electric circuit. Such fluctuations will also distort the 
current-voltage characteristic of the film. The voltage 
fluctuations introduced into the film from the external 
circuit lead to the need for statistically averaging the 
nonlinear current-voltage characteristic of the fluctua
tion current (which is due to the fluctuation pairing of 
the electrons) with a certain distribution function. At 
temperatures above Tc, the nonlinear current-voltage 

characteristic of the film was calculated by Schmid[9 l 
(see also[Iol). With increasing field intensity E on the 
film, the superconducting component of the current j 
first increases linearly, but then takes the form 
j ""'E 113• For films in the resistive state below Tc, as 
shown by Gor'kov[uJ and by Kulik[ 121 , j decreases 
with increasing E, reaches a minimum, and then again 
takes the form j ~ E 113• From an elementary analysis 
it follows that under voltage fluctuations with small 
amplitude, the current at a given E can either in-
crease or decrease, depending on the sign of the 
second derivative j"(E). If j"(E) > 0, then the current 
increases and in this sense one can speak of stimulat
ing superconductivity by external fluctuations. For 
j"(E) < 0, the superconducting component of the cur
rent decreases, i.e., the superconductivity is suppressed. 
The expression obtained for the current in[ 9 • 11• 12 l is 

j= e'TE J~d'Aexp(-)"signr-(!_)'~). (1) 
2nd I r I " E, 3 

where r = 81T- 1(T - Tc), Ec = 21 I' 1/eHT), and HT) 
is the temperature-dependent coherence length. 

It is Sflen from relation (1) that above T c we have 
j " (E) < 0 at all values of E, and below Tc we have 
j"(E)>O if E<Eo and j"(E)<Ofor E>Eo (E 0 

;..>;; 2Ec/9). Consequently, for T > Tc the superconduc
tivity is suppressed by the voltage fluctuations and, as 
will be shown below, a noticeable lowering of Tc is 
possible under definite conditions. 

1. Tsuzuki[ 131 confirmed microscopically the pro
cedure proposed by Schmid[ 9 l of using the Ginzburg
Landau time-dependent equation [Hl, supplemented with 
a fluctuation term 

~+ r(1-I1Jol' )1Jl- n( v -~A) 21Jl = S(r, t), (2) at ljJ,' c 

with 

S(r, t)S(r', t') = 0, 

S(r, t)S'(r', t')= 4mTDd-'6(r- r')o(t- t'). 

Here 1/Jo is the ordering parameter in the absence of 
an electromagnetic field and fluctuation pairing, 
D = v0Z/3 (v0 is the Fermi velocity and l is the mean 
free path of the electrons), and d is the film thickness. 
We assume a film of length L in the direction of the 
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x axis, situated in a constant electric field E = Ei. 
The voltage fluctuations lead to the appearance of a 
potential difference U(t) between the points x =0 and 
x = L. The vector potential A(t) can be chosen in the 
form 1> 

1 • 
A(t) =- ic [ Et +~:I d,;U(;) l (3) 

In order to find the connection between A( t) and the 
field outside the film, it is necessary to supplement 
Eq. (2) with the boundary conditions for 1/1( r, t) and the 
corresponding Kirchhoff equation. We shall not be in
terested, however, in a solution of the external prob
lem. 

The solution of Eq. (2) without allowance for fluctua
tion pairin~ ~) = 0) was obtained by Gor'kov and 
Eliashberg 15 • Since the spatial dependence of the 
vector potential is not taken into account, 1/J is inde
pendent of the coordinates in this approximation, and 
thus 

1 a 1 ' '• 4 ' 
f(t) = -2fffdlln{];""""- 2f I dt,exp (- 2 I d•[ r + ~DA'(,;) ])} 

1 a ) 
= ---lnF(t) (4 

2f i)t ' 

where f(t) =I 1/J 1 211/1~, and f0 is the value of f at t = 0. 
Let us calculate the average value of the square of the 
ordering parameter and the current in a film acted 
upon by an alternating electric field with frequency 0. 
In this case 

2e p 2eU0 ~ 
--c-A(t)=Po+P,sinQt, 1 =~1, 

Po is the "superfluid" momentum. The time-average 
value of f(t) is calculated from the formula 

_ 1 ' P,' 
f = lim-f dt,f(t,) = 1- 6'(T) [Po'+-] (5) 

t--~o-oo t 0 2 

Here e(T) = D/1 r I. Expression (5) coincides with the 
condition, obtained in [!5 ], for the independence of the 
solution (4) of the initial conditions. It is seen from 
(5) that an alternating voltage reduces the critical 
temperature of the film: 

T/ = T,- ; 6 DP,'. (6) 

The superconductivity is destroyed if the specified 
voltage is larger than the critical value U0c: 

Uo, = QL/l'2e6(T). (7) 

The critical value of the current in the film is obtained 
by calculating the average value of the current: 

J = ~[P,f +Pd(t)sinQt] = J' + J" 
m 

at the extremal value of P0 • The expression for the 
critical current consists of two parts: j c = j ~ + j ~. The 
current j~ was calculated by Kulik[ 16 l: 

i/ = ioo(1- P,'6' I 2)'", (8) 

where j 0c is the critical value of the current in the 
absence of an alternating field. The increment j~ ap-

1lit is assumed that the dimensions of the microjunction are such 
that the spatial dependence of A(t) can be neglected. This means that 
the noise spectrum should be cut off at frequencies w ~ c/L. 

pears upon averaging of the oscillating part of the 
potential with the time-dependent value f(t); it can be 
either positive or negative. For f « w = 0/21 I' I we 
have 

. " . , P,'6' I,(P,'s'/w) 
1' = 1'----;;"" I,(P,'6'/w) 

For P~e/w « 1 we have 

j/' =- j/P,'6'//cl2 + w') 

(9) 

(10) 

From formula (4) we see that at a constant voltage 
on the film the value of f tends to zero as t - co, but 
it is finite for finite times. Allowance for the fluctua
tion pairing causes the ordering parameter to differ 
from zero in the resistive region. Linearizing Eq. (2) 
with respect to the fluctuation increment 1/1 1(r, t) 
(1/1 = f112 + l/J 1), we obtain an equation for I/J 1(r, t): 

~~· + [ r -D 'v- 2;e A)'] W•- f/{2'1>, +w.-) = S(r, t). (11) 

Here A(t) is determined by formula (3). 
Changing over to the Fourier representation, we 

obtain for the mean value of the current, after averag
ing over S( r, t), 

i(t) = BeDT ~ j dt, L{TJ• + cp1)i + k,i]exp{- 2f{t- t,) 
dL,L, ~ 

k 0 

f' )' k ']} { F,,' F,, } -2D d,;({TJT+cpT + y 7i'+p , 
' ' t ' 

(12) 

where L 1 and L 2 are the dimensions of the film in the 
directions y and z, k is the two-dimensional wave 
vector, and 

TJ• = k. + 2eEt, 
2e ' 

cp, =-f dt,U(t,). 
L o 

In order to exclude transient processes from consider
ation, it is necessary to change over to the limit 
t- co in expression (12) after averaging over the 
random quantity Cf't. 

We consider first the case Cf't = 0. Then, changing 
from summation with respect to k to integration in 
accordance with the rule 

~ = L,L, fdk 4 (2n)' ' 

we reduce expression (12) to the form 

e'TE ~ { e'')..'} i=---JdA.exp -'J,.signf-- {G'(A.)+G{A.)}, 
4ndlfl 0 3 

where E = E/Ec and 

G{A.) =lim F(t) 
·-~ F{t+A./2Ifl) 

(13) 

(14) 

From the definition (4) it is seen that the integral in 
F(t) depends little on the upper limit at large values of 
t. Therefore 

G{A.) = 1. 

Expression (13) then goes over into (1). Thus, allow
ance for the ground state of the superconductor in first 
order does not exert any influence on the fluctuation 
increment to the current. 

2. Let us now take into account the influence of the 
external fluctuations with arbitrary spectrum. To find 
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the current averaged over the voltage fluctuations, it is 
necessary to calculate the quantity 

t 

N = ( (TJ, + <p,)exp{- 2D J d,;(<p,' + 2<p,fl,)}), (15) 
'• 

where ( ... ) denotes averaging over the random 
quantity (j}t. We assume that (/}t has a normal distribu
tion[17l 

1 t 

P[<p,]=exp{--J d,;d,;,B,,<p,<p,,}, (16) 
2 '• 

with the kernel Brr 1 connected with the correlation 
function 

'¥,, = (<p,<p,,) (17) 

by the relation 
t 

J dsB,.'¥.,,=6(,;-,;.). 

'• 
Using the distribution (16), expression (15) can be 
written in the form 

(18) 

1 ' 
N = ~ J D(<p,]P[<p,](TJ, + <p,)exp {- 2D J d,;(<p,' + 2<p,fl,)}; (19) 

'• 
Here 0 = f Dl(/}r J P(qJT J, where D(qJr J is the func
tional differential. 

We introduce a new distribution function 

P, [ <p,) = exp {- 'f, J dTdT,C,,<p,<p,,}, 
'• 

(20) 

where 

c,, = B,, + 4Dil(T- ,;,). (21) 

Using relation (20), we obtain after simple transforma
tions 

1 ll 1 • 
N = ( Tl•- 4D llTJ• ) mJ D[<p,]P,[<p,]exp{- 4D [ dT<p,fl, }· 

The integral in the numerator of this expression can 
readily be evaluated 

1 o ' m 
N = (r1,- 4D~) exp{ BD' { d,;dT,TJ,TJ,,M,,} m', 

!l), = s D(<p,]P,[<p,]. 

The kernel Mrr is the inverse of CTT : 
1 1 

• 1 dsM,.C.,, = 6(,;- ,;1). (22) 
'• 

Using Eqs. (18), (21), and (22), we obtain an integral 
equation for MTT 1 : 

• 
M.,, + 4D J dsM,.'¥,,, = '¥.,,. (23) ., 

It remains to calculate the quantity 

expF(D) =!l>,/!l>, F(O) =,0. 

Differentiating this ratio with respect to the parameter, 
we obtain 

aF 2 ' 
- =-2if s d,; s D[<p,]P,[<p,]<p,'. an .,, (24) 

To calculate (24) it is convenient to introduce the 
characteristic functional <I>(krJ of the normal distribu
tion function P1((/JT J: 

1 • 
«ll(k,]= exp{ -2~. d,;d,;,k,k,,M,.,} 

1 . • 
= !l>, JD[<p,]P,(<p,]exp{ i.! dT<p,k,} (25) 

From (25) it follows that 

Hence 
• D t 

oF/oD =- 2 s d,;M,, F == - 2 S dD J d,;M.,. (26) 
'• 0 '• 

Substituting the obtained value of N in (12) and recog
nizing that G(A) = 1, we get 

~E ' ' 
(j(t)) = _e_ J dt,[(t- t,).K,]-''•{2 (t- 4D J d-r:M,.,;) 

:rtd 0 tl 

t _K D t 

- (1-4D J d,;M,,)-'lexp( -{2r(t-t,)+2 J dD J dTM., 
tl ..,1{2 J 0 tl 

4 t .K 2 

+ 2De'E'[ a(t'- t,')-16D ~ dTdT,n,M.,, -- .K', ]}) 

.K, = t'- t,' -8D f dfd,;,TM.,, 
'• 

.K, = t- t, -· 4D s dT d,;,M,, (27) 
'• 

Let us calculate the current-voltage characteristic for 
two forms of the external-fluctuation spectrum, which 
are of practical interest. 

a) Low-frequency fluctuations. This case is 
realized if the spectrum is bounded by a maximum 
frequency Wmax much lower than the reciprocal times 
of significance in (27), wmaxteff « 1. Then 

, l '¥,, = ( 2e;:,) 'n, = 'l',n., (28) 

where U0 is the effective voltage of the noise source. 
The integral equation (23) with kernel (28) can be 
easily solved: 

-, '¥~ ~) 
M.,,- 1 + 'f,D'l',(t'- t,') 

Substituti:'g the sol~on (29) into (27) and taking the 
limit as t - oo, we obtain 

'TE ~ d'J.. 8 1A3 }) 

<i>= 2:dlrl ~ (i+f..'/Q']''•exp(-{f..signr+ 3(1+f..'/Q'] , 

(30) 

where Q = 21.£' 1/ ( 7'3 Dv0 )1/3 • 

The condition of applicability of the low-frequency 
approximation can be deduced from the integral (30): 
wmax should be much smaller than the larger of the 
two quantities 21 r I and (Dvo/3)1/ 3• It is interesting 
that relation (30) can also be obtained by statistically 
averaging the initial current-voltage characteristic 
(1) with a normal distribution: 

W(U)= 1 __ exp (-.!!:____). 
'/2rr.U,' 2Uo' 

We see therefore that the low-frequency approximation 
corresponds to adiabatic change of the fluctuation vol
tage, at which there is realized, at each instant of time, 
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the usual current-voltage characteristic connected 
with the fluctuation pairing. Since T < Tc, the current 
in the absence of voltage fluctuations diver'fes expo
nentially at small E (j (E)~ exp(2Eci3E) 11• 121), and 
formula (30) leads to a divergent expression for the 
mean value of the current. This means that the use of 
the linear approximation below T c in the presence of 
low-frequency fluctuations is not more legitimate even 
at finite E. If T = Tc + 0, then the fluctuation conduc
tivity a', as seen from (30), is finite: 

a'= 0.93 e'T, (-3-)'". (31) 
nd D'JI, 

The infinite jump of conductivity at the point T = Tc 
should not be given any physical meaning. 

There is no shift of the critical temperature as a 
result of the low-frequency fluctuations, inasmuch as 
the adiabatic averaging of the current-voltage charac
teristic does not lead to additional unpairing. The 
results of a numerical calculation of the current
voltage characteristic in terms of the coordinates 

I _ ') j 13e'TE, 
'- (J 

2ndlfll"Q 

and ~ = ~ 2Q3I3 at the different values of Q are given 
in Fig. 1. 

b) "White" noise. The correlation function for 
"white" noise is 

(U(t)U(t,)) = all(t- t,). (32) 

In the case when the "white" noise represents thermal 
fluctuations introduced from the outer circuit, we have 
a= 2R1T1, where R1 and T1 are the resistance and 
temperature of the external circuit, A correlator of 
the type (32) corresponds to noise with unlimited spec
trum, and the solution (12) is suitable only in the case 
when w « ciL. However, if it is recognized that in the 
integral (12) cutoff occurs at times on the order of 
['1;' - Tc( un-t, then the approximation (32) can be used 
for [T- Tc(U)] « ciL. 

It follows from (32) that 

'¥,, = C[-r +a (-r- -r,) (-r,- -r)], C = a(2e I L)', (33) 

O(x) is the usual step function. Equation (23) with 
kernel (33) becomes a Volterra equation with a differ
ence kernel. Its solution takes the form 

M,, = !!__ [ sh b(-r- t,) + bt, ch b(-r- t,) 
b ch bu + bt, sh bu ch-b(t- -r,) 

+ 9(-r- -r,)sh b(-r,- -r)] (34) 

where b 2 = 4DC and u = t - t 1• 
After simple but rather cumbersome transforma

tions we obtain 

FIG. l 

e'TE - N d'J... [ 1 - e-"'•] '/, <i> = -- 1q s exp {- 'J...(sign r + q-' + e'q')} 
nd 1 r 1 , y'J... [ 1 + e-"'•J"· 

( 1- e-"1•) 
X exp e'q' · 

1 + e-"1• ' 

(35) 

Here q = 41 r lib. 
The fact that the conductivity of the microjunction 

at E = 0 is finite in a certain region T < Tc can be 
treated as a lowering of Tc· The new value of Tc will 
be close to the temperature T~ at which the integral 
(35) diverges for E = 0: 

T,' = T,-nb/32. 

At temperatures lower than T~, the film goes over 
into the resistive state at an electric field intensity 
above E~, 

b ,;~ 
E.'= 2;f V 1-q. (36) 

We note that without voltage fluctuations, the resist
ive state below T c is realized formally at arbitrary 
E[11 121 . The limitation on E is due only to the fact that 
the linear approximation is not valid, so that the result 
for j( E) is actually valid only if j is not too close to 
the critical value of the current. The occurrence of a 
certain E~ in the presence of fluctuations indicates 
that the linear approximation is violated at larger E 
than in the absence of fluctuations, i.e., this corre
sponds to stimulation of superconductivity. 

Figure 2 shows the current-voltage characteristic 
of a film with external fluctuations 
( J 2 = ( j ) I ( e 2 TEe I 1rd I r I .fCj.), v = ~ 2 q3 ) at different 
values of q. 

We note that the applicability of the results is de
termined to a considerable degree by the experimental 
conditions. If the external circuit used in the experi
ment satisfies the quasistationarity conditions, then 
the spectrum of the noise introduced into the micro
junction will be cut off in natural fashion at the charac
teristic frequencies of the circuit. The latter, as a 
rule, are smaller than the reciprocal relaxation time 
of the ordering parameter. In this case Eq. (2) is valid 
and, as seen from the results, a lowering of Tc occurs. 
On the other hand, if the quasistationarity conditions 
are violated or the junction is irradiated by an external 
microwave source, then, as shown by Eliashberg[18l, an 
inverse effect is possible, owing to the nonequilibrium 
distribution of the electronic excitations at sufficiently 
high frequencies ( w ~ 1010 Hz). 

The lowering of the critical temperature under the 

«IG. 2 
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action of thermal fluctuations can be discernible. Thus, 
for a microjunction of length L ~ 10-3 em and at a 
circuit resistance R 1 ~ 1 ohm we have (Tc - T~)/Tc 
~ 10-1 in a pure superconductor (l ~ 10 ~ 0 ) and 
(Tc - T~ )/Tc ~ 10-3 for a very dirty superconductor 
(l ~ 10-7 em). It is of interest to compare the fluctua
tion conductivity at Tc with the conductivity a in the 
normal state. For the parameters indicated above we 
have a'ja ~ 1 in a dirty metal and a'ja ~ 10-2 in a 
pure one. It is seen from the foregoing estimates that 
the influence of the external fluctuations can be ap
preciable, and they carry much stronger effects on 
pure superconductors. 
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