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We develop a method to study the Josephson transition which is based upon the Frohlich Hamiltonian 
which takes the electron-phonon interaction directly into account. We show that when the electron­
phonon interaction is taken into account long-wavelength lattice vibrations with the Josephson fre­
quency may occur. We consider the influence of resonance generation of sound on the shape of the 
current-voltage characteristics of the junction. 

AFTER Josephson's discovery[ll of weak supercon­
ductivity in a system consisting of two superconductors 
separated by a thin layer of dielectric, different as­
pects of the theory of this effect have engaged many 
authors (see, e.g., the survey in[ 2l). 

The superconducting Josephson current changes with 
time[ 1 J when there is a non-vanishing potential at the 
junction, and this causes the appearance of a variable 
electromagnetic field inside the junction. [3 ' 4 l The con­
nection between the current and the field induced by it 
is given by the appropriate Maxwell equation.[ 4 J When 
studying this interaction one usually starts from the 
standard model scheme suggested by Cohen, Falicov, 
and Phillips[ 5 J; Prange[6 J and one of the present 
authors[7 J showed how this model can be based upon the 
BCS theory. One should expect that taking the electron­
phonon interaction explicitly into account, apart from 
modifying the effective matrix element for the interac­
tion of two metals which was obtained in[7 J, would 
admit of processes involving the emission and absorp­
tion of phonons during the electron tunneling. Hence 
the generation of phonons with the Josephson frequency 
should be possible because of the presence of an oscil­
lating component in the electron current. One sees 
easily that for typical experiments in which the radia­
tion from superconducting tunnel structures are 
studied[a-lo) only "long-wavelength" (A~ 10-3 to 
10-5 em, A is the wavelength) acoustic phonons are 
possible. For such wavelengths the sizes of the usual 
tunnel junctions can be resonant and when one makes a 
suitable choice of magnetic field and voltage one can 
achieve a resonance generation of sound with an ap­
preciable amplitude of the vibrations. 

TUNNEL HAMILTONIAN IN THE FROHLICH MODEL 

Following[ 7 J we write the creation and annihilation 
operators for electrons at the point r with spin z­
component a in the form of an expansion 

(1) 

Here apa and f3pa are annihilation operators of parti­
cles in states with quasi-momentum p and spin a in 
the right-hand and left-hand side metal, respectively; 
{f~} is a complete orthonormal set of functions which 
was used in[7 J to obtain a splitting of the Hamiltonian 
into Hamiltonians of the left-hand and right-hand side 
electrons and a single-particle interaction Hamiltonian. 
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The states Fp are corrected single-particle wave func­
tions x~ for electrons whic. h are incident from the 
right (+J and the left (-)on a symmetric barrier 1> 

t.± = x.± + 1: (x,±•x.±)x, +. 
k 

The symbol ( ... ) indicates a scalar product. The 
quantity (xi/ Xp) is of the order of .fD ( D is the bar­
rier transmissivity). 

In terms of the operators apa, f3pa the tunnel 
Hamiltonian has the usual form :[7 J 

H = E r.,a.o+~ga + h.c. 

where Tpg is the matrix element of the effective in­

teraction between two bulk metals (:li = 1): 

1 ( ax - ax +• ) I r •• =zmS drl. x.+·-----t;--x.-+z ,~; 
m is the electron mass. 

(2) 

(3) 

If the oxide film serving as an insulating layer be­
tween the superconducting metals is a good dielectric, 
phonons incident from the metal on one side of the 
film will be partially reflected and partially go into the 
other metal without any appreciably attenuation. If the 
oxide is strongly disordered the phonons may be ap­
preciably damped in the barrier region. However, if 
we bear in mind that only long-wavelength phonons 
with A» d (d is the thickness of the oxide, 
d ~ 10-7 em) are important for the generatim:l of sound 
we must assume that there will be practically no damp­
ing in the barrier region. Hence, we can not assume 
that the barrier is for the phonons an obstacle with a 
small transparency, as it is for the electrons. On the 
contrary, the transparency of the barrier for phonons 
will be of the order of unity. We shall therefore con­
sider a single system of phonons in our transition and 
not split it into a left-hand side and a right-hand side 
part. The phonon operator o/ can then be written as an 
expansion: 

A 1 ~ 1/ w:(k) (4) 
'<p(r)=-=-~ V --[b,'¥.(r)+b.+W.+(r)). 

-yv , 2 

Here {ilk} is a complete set of phonon functions in the 
transition studied; b}i: and bk are creation and annihila-

1>For the sake of simplicity we restrict our considerations to the case 
of a symmetric barrier. 
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tion operators for phonons with quasi-momentum k; 
w0(k) is the phonon frequency. 

The lattice energy operator can in the isotropic 
case in the continuum approximation be written in the 
form[ul 

1 J [· . aP aP ] 
Hph= 2 drp(r) P2 + s2 (z) -- , 

&x,&x, 
(5) 

where p is the density, P the displacement of a point 
of the medium, s the sound velocity ( cP = .fii s div P). 

We assume that the sound velocity and the lattice 
density in the different metals are the same and equal 
to s 1 and ph and in the dielectric they are equal to 
s2 and P2• 

The mechanism of the electron-phonon interaction 
consists in the fact that the vibrations of the medium 
lead to the appearance of a lattice polarization. As a 
result we must add to the sum of the electron and 
phonon energy operators a term[ul 

ea2 Jc(z)'l'.+(r)'l'.(r}divPdr. (6) 

Here C is a constant of order ZeN/V ( N/V = n is the 
number of ions per unit volume and Ze their charge) 
and a the lattice constant. 

If we use the expansion (1) the electron-lattice in­
teraction Hamiltonian (6) splits into three parts. The 
interaction of the electrons with phonons ins ide each 
of the metals will have the operator structure cP 01. + 01. 

and cPf3+ {3. This interaction leads to the appearance of 
superconducticity and it is sufficient to consider it 
without taking into account the renormalization follow­
ing from the tunnel junction of the two metals. 2> More­
over, there is a term giving the contribution to the 
electron tunneling: 

(7) 
P,g,cr 

Tpg contains here a phonon operator: 

r •• = g J dr~(r)x,+'(r)x.-(r), ' (8) 

where g = (27T2 ~/pom)l/2 ('is a dimensionless con­
stant of order unity), p0 is the Fermi momentum so 
that Eq. (7) describes the tunneling of electrons from 
the one metal into the other with the emission or ab­
sorption of phonons. 

The resulting tunneling Hamiltonian consists of the 
Hamiltonian (2) describing elastic tunneling processes 
of the electrons, and the Hamiltonian (7). 

SET OF SELF-CONSISTENT EQUATIONS DETERMIN­
ING THE JOSEPHSON PHASE AND THE INDUCED 
LATTICE VIBRATIONS 

When we connect the superconducting tunneling 
junction to an external circuit there arises in the 
neighborhood of the barrier an electromagnetic field 
which most simply can be taken into account by modi­
fyinF the matrix elements in the tunneling Hamilton­
ian. 12•131 If we introduce the Josephson phase q; which 

2lTaking the renormalization of the matrix elements into account 
in the interaction of the electrons with phonons inside the metal leads 
to a correction in the tunneling current - D2 and hence lies beyond the 
limits of accuracy of the model scheme with a tunneling Hamiltonian 
(see [7]). 

is connected with the electric and magnetic fields 
E(r, t) and H(r, t) in the barrier through the equa­
tions[3'4l 

a 2 2eA (9)* 
0~=2e JE,(r,t)dz, V<p= 7 [H(r.L,O,t),n], 

l 

we get instead of (3) and (8)[121 

In Eqs. (9) n is a unit vector normal to the surface of 
the oxide, A the effective thickness of the layer in 
which H is non-vanishing, A = d + 2Xs, where As is 
the depth of the penetration of the field into the super­
conductor. 

Using the Maxwell equations to eliminate E and H 
we get an equation which connects the phase with the 
current through the transition 

V2<p- :. ( ~:; +iY z }= i~~;:: , (11) 

where c = cd/2~As is the propagation velocity of re­
tarded waves in the tunnel structure, ~ the dielectric 
constant of the junction, xj = c2/167TeAsjs is the square 
of the "Josephson penetration depth" (js is the Joseph­
son current amplitude), and y the effective damping 
inside the junction. 

For the sake of simplicity we shall below consider 
a "linear" Josephson junction, i.e., a transition for 
which the difference in phase q; is a function of time 
and of one spatial coordinate x. The experimental 
situation is such that q; always depends on two spatial 
variables. However, as a rule the dependence on one 
of these variables is very slow. In view of this the 
theories developed to describe "linear" junctions are 
well corroborated by experiments. 

We determine the current density in (11) by taking 
the variational derivative of the average value of the 
Hamiltonian 

H \"1 (r<•> '/'<•> + h =~ •• + •• )a,.~ •• + .c. 
P,g,cr 

with respect to q;(rl, t): 

j(r, t) = ei)(H) / 6rp(r.1., t). (12) 

Using Eq. (10), bearing in mind Eqs. (2) and (12), 
we get 

j(r,t)= -2elm1: (T,.'(r,t)a,.+(t)~ •• (t)), (13) 
P,g,cr 

where the angle brackets indicate averaging over a 
non-equilibrium ensemble, 

, <'> (2) [ 1 ( +>ax.- _ax,+•)·l· r,.(r,t)=T,.+r •• =- x. ---x. --
2m oz . oz '.•=• 

+g J dz~(r)x:·x.-] exp[ --i-cp(r.L,t)] (14) 

a(t), {3(t) are the operators 01. and {3 in the interaction 
representation. 

We write out the average in Eq. (13), dropping 
terms of order D, g2D: 

* [H, n] = H X n. 
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j(r, t) = 2e Re ~ dt'~ {(T~g (r, t') (T~"J-g(t) + T~~-g(t)]) 
p, g 

xiF" (t', t) Fg (t, t')- F" (t', t) Fg (t, t')J + (T~g(r, t') [T~g>· (t) + n~· (t)]> 

X[Gp (t' ,t) Gdt, t') - Gp (t'' t')Gg (t, t')J}. (15) 

In this equation we also neglected a term containing the 
average ( Tp~ T~l•(t')) as it is of order wn/EF 

where wn is the Debye limiting energy and EF the 
Fermi energy. 

The equal-time Green functions are evaluated by 
means of the equations 

v a; (t, t') = ~ d(J)e-iw(l-t'l (=t= i) Ap ((J)) 1± (w), 
-00 

00 

"f';(t, t') = ~ d(J)e-i<»(t-t')l+ i)Bp(w)ft (w), 

j±(w) = [1+e±'•1-'; ~= 1/2T, 

where Ap( w) and Bp( w) are spectral intensities. 

(16) 

Zubarev[ 141 has made the necessary calculations 
for Ap( w) and Bp( w) in the thermodynamics of the 
superconducting state on the bas is of the Frohlich 
Hamiltonian. The expressions obtained in[ 14 J for the 
spectral intensities are rather complicated relations. 
As we are solely interested in the problem of the 
sound generation and not in the modification of the 
corresponding expression for the Josephson current, 3l 
we use for our calculations the functions Ap( w) and 
Bp( w) from the BCS theory: 

A.(w)=+[( 1+;: )~>(w-E.)+ (1- ;:)6(w+E.) ]• 

i ~ 
B.(w)=-"2E[I\(w-E.)-6(w+E.)1. (17) 

p 

Here t::.. is the gap in the elementary excitation spec­
trum, Ep = /(Ep + t::.,2) the elementary excitation 
energy. 

Substituting Eqs. (16) and (17) into Eq. (15) for the 
current we get after standard transformations [7 J and 
averaging over the atomic spacings in the plane of the 
tunneling junction 

~ 1 
j (r, t) = ( 1- 6 div(P)) L dt' { K,(t- t') sin T[ cp(r.L, t) + cp(r.L, t') 1 

+ Kn(t- t') sin 'f,[cp(r.L, t)- cp(r.L, t') 1}, 
where 

sinE, (t- t') cos E,(t- t'), 

, 1 ~J ~J . ( E, 1;,1;, E, ) Kn(t-t )=-- di;,di;,v(i;,)v(6z) th---. -th-,-
neRN 2T E,E, 2T 

-EF -EF 

x sinE, (t- t')cos E,(t- t'), 

_,, 4~ s d 
S- V 3[v(O)- eF1 zPo ' 

(18) 

Here v is the relative density of states ( v( 0) = 1 ), 
~ 1 2 = p2/ 2m - E F is the energy reckoned from the 
F~rmi level, RN the resistance of the junction in the 

3lThese calculations were done in [ 16 ] on the basis Illiashberg's 
theory. [15 ] 

normal state, v( 0) the height of the energy barrier in 
the point z = 0, and M the ion mass. 

One can see that (15) is a rather complicated 
integra-differential equation determining the phase cp. 
Its solution must be expressed in terms of the average 
value ( ~) of the phonon operator, the equation for 
which in turn includes the phase cp. 

We write down the equation of motion for the opera­
tor 'IT = p P which is canonically conjugate to P: 

em ,a'P 'C a ~ ( ) - = ps - + ea - n r . 
dt ar' ar 

(19) 

In (19) n is the density operator of the electron gas. 
Using the expansion (1) for the operator llfa we can 
write fi' in the form n = nl 1 + n2,2 + nl 2, where ill, 1 

~ ' ' and n2 , 2 are the operators of the electron density in 
the first and second metal which can be expressed in 
terms of the operators a+ a and {3+{3, while nl,2 is the 
interference term containing the operator products 
a•f3 and f3•a. The electron densities n1 , 1 = (n1 1 ) and 
n2,2 = ( ;;2,2) oscillate over atomic distances b~cause 
the functions ft are not plane waves, while n1 , 2 

= ( n1, 2 ) both oscillates and changes in the direction at 
right angles to the barrier plane over distances of the 
order ~ d and in the plane of the barrier over distances 
of the order of the wavelength of the electromagnetic 
wave induced in the tunnel structure by the current. 

Averaging Eq. (19) over the non-equilibrium statis­
tical ensemble and over atomic spacings we get an 
equation for ( P) in the metals: 

( a' a' ) 1 ( a' a ) (20) ax' + a;_;: (P) - -;;z di' + y, fit (P) = 0, 

and in the dielectric: 

( a' a• 1 a' a g ~ -+-) (P)--(-+v,-)(P) = --=-V(n,,,). (21) 
ax' az' s,' at' at s,y P• 

In (20) and (21) we have introduced terms with first­
order time derivatives which take the damping of the 
phonons into account ( y 1, 2 are the damping coefficients 
of the sound vibrations). A .. 1 · •. ~ 

If the transition region the ifldut'ed force acts in the 
direction uf the x-axis. It is determined by the aver­
age value of the density of the electron gas in that 
region: 

(;;,,,) = 2 Re J dt' { L, exp [- +cp(r.L, t)] 
-oo P,g 

... 
xx.•·x.-<[~.•(t)a.(t),H(t')]-> }· (22) 

It is necessary to complement Eqs. (20) and (21) by 
boundary conditions (see[ 171 ): 1) the tangential com­
ponents of the deformations and of the stresses must 
change continuously at the boundary of the partition of 
two solids when we go through the boundary plane; 
2) the normal component of the stresses at the free 
end must vanish. This condition corresponds to total 
reflection of the sound wave from the boundary of the 
transition as a result of which the displacement P has 
a node near the boundary. 

The set of Eqs. (11 ), (20 ), (21) together with the 
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boundary conditions can be applied to describe the 
interaction of the variable Josephson current with the 
sound created by it. To do this it is necessary to ex­
press Eq. (22) in terms of the kernels Ks and Kn 
which were introduced earlier: 

• f m 

(n,,,) = J dt'{K,(t-t')cos'l,[cp(rJ.,t)+cp(rJ.,t')] 
el'2[v(O)-e.]Y• -~ 

+ Kn (t- t')cos 'l,[cp(rJ., t)- <p(rJ., t')]}. (23) 

SOUND IN A JOSEPHSON JUNCTION 

In the Josephson case, i.e., the case of low tem­
peratures ( T « ~) and small voltages ( e V « 2 ~) the 
terms in (18) and (23) which contain Kn give, as 
usuallyr7l, a small contribution ~ exp (- ~/T) while 
terms with Ks can be transformed up to terms of 
order ~e VI 2 ~ to quantities ~ sin qJ, cos qJ so that we 
get 

a•w 1 ( a• . a ) 1 - 6 div <P> . 
iJ:x'- C' at'+ Yfit <p = 'A;' smcp, 

( 
i)' iJ' ) 1 iJ' i) 
-+- P--(-+y,-)P =Esinq~Vq> 
iJ:x' iJz' s,' Ot' iJt ' 

E = Sj, I 2edp,s,'. 

(24) 

(25) 

By P in Eq. (25) we understand ( P). To simplify the 
notation here and henceforth we drop the brackets ( ) . 

We note that Eqs. (24), (25) can be obtained from the 
following phenomenoligical Hamiltonian: 

1 s { :1t2 iJP 8P H=- dr -+ p2s.'-. ---
2 " P• a:x, a:x, 

1 e• · 
+ d[--;- + ~-tC'(Vcp)'- '; (1- 6 div (P) )cos cp]}, (26) 

. 
if there are no dissipative processes in the system 
(y = ')11 2 = 0); here® is the momentum which is can­
onically conjugate to qJ, J.1. = t:/167Tde2. 

The integration in Eq. (26) is over the region il of 
the dielectric. The first two terms in the braces are 
the lattice energy density. The square brackets con­
tain the energy density of the Josephson junction taking 
into account the interaction with the elastic and elec­
tromagnetic fields. If /; = 0, this will be the normal 
expression for the Josephson energy density (see, 
e.g.,r2• 12 l). One can easily obtain the term containing 
the interaction from the following simple arguments. 
The amplitude of the Josephson current is 

d/2 
j,- exp{- 2 J dz l'2m[v(z)- e,]} ~ exp {- 2d l'2m[v(O)- e.]} 

-d/2 

(we assume that the shape of the potential barrier is 
nearly rectangular). The quantity v( 0) has the physical 
meaning of the bottom edge of the conduction band of 
the dielectric layer. In the approximation of the de­
formation potential theoryr 181 the bottom of the band is 
distorted when the elastic deformation of the crystal 
is taken into account and shifted by an amount 
(21T2/;P2/pom)112 s2div P. Expanding the exponent in js 
in terms of the small magnitude of the band edge dis­
placement we obtain Eq. (26). We note that the quantity 
~ may be rather larger, but that I ~ div PI « 1. 

To solve the set of Eqs. (24), (25) which we have 

obtained we shall use the method of successive approx­
imations developing the perturbation theory in terms 
of the non-linear term in (24). In zeroth approxima­
tion we have for qJ 

Cflo = k:c + wt, w = 2eV, k = 2eAH I c. (27) 

Using (27) we can rewrite Eqs. (20), (21) which 
determine the displacements of the lattice in the 
metals and the dielectric as follows 

(P,=P,=O, P,=P): 

( i)' i)' ) 1 ( i)' i) 
i):x'+a;z P- s,' w+Y•at)P=O, 

r r 1 r a 
(-+-)P--:-(-+v•-)P = kEsin(k:x+wt). (28) 

i):x' i)z' s,' i)t' at 

We write the boundary conditions in the form 

aP<'> aP<'> 
ll··a; '·~±d/2 = ll• a; '·~±d/2' 

P<'>l -P<'>I 
z=±d/2 - z=±d/2 ' 

apl =o aPI =o 
i}z z=±{L+d/2) ' ax x=±l/2 • 

(29) 

where L is the thickness of the superconductor, l the 
dimension of the transition in the x-direction; J.1. 1 and 
J.1. 2 are the shear moduli in the metal and the dielec­
tric. The shear moduli occur in (29) because the 
direction of the lattice vibrations is parallel to the 
plane of the junction and on the boundary between two 
media the displacement is a pure shear. 

Equations (28) together with the boundary conditions 
are solved in the usual way. For regions 1 we get 

I:{ [JlzkELne'•'sin'l,g,dcosg,(L+dl2+z)]} nn 
p = lm COS-X 

.• g, A l ' 

A = J.t,g, sin 'I, g,d cos g,L + J.t,g, cos 'I, g,d sin g,L, (30) 

for the transition region 2 

p = ~ { Im [ kE~:e'•' ( 1 _ J.t,g, ~n g,L cos g,z ) ] } cos n~ :x, (31 ) 

where 
l 

2 (' nn 
L,. = T Jeikxcos .1 :xd:x; n = 1. 2, 3, ... ; 

0 

g,., = [ ~· - (~)'- i w;•·• ]''• 
s1,2 l su 

From the solutions we have found for the lattice 
displacement vector P we can find that the w-depend­
ence of the intensity of the n-th harmonic of the sound 
wave consists of a number of resonance maxima. The 
values of w for which these maxima occur correspond 
to the following voltages at the transition: 

V ~ ...!._ [~ ( ~ + 2Jl•d,) -+2Ls, (nzn )'], m = 1,2,3, ... (32) 
2e s, s, J.t,s, nm 

According to (30) and (31) the amplitude of the in­
duced vibrations of each harmonic of the standing wave 
depends then on the magnitude of the applied external 
magnetic field H reaching maximum values in the 
field H = 1rcn/ eAl. 

Physically the result can be understood as follows : 
for a finite potential V at the transition there will be 
a force, oscillating in time with the Josephson fre-
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quency, acting upon the dielectric layer which separates 
the two superconductors in the whole volume of the 
layer, owing to the interaction of the variable com­
ponent of the electron current with the lattice vibra­
tions in the dielectric. If the magnetic field H is ap­
plied along the y-axis the force vector will be parallel 
to the plane of the transition and be in the same direc­
tion as the x-axis. Moreover, along that direction the 
magnitude of the volume density of the induced force 
will be periodically changing. In the superconductors 
which can be considered to be resonators sound vibra­
tions are then induced. There will be resonance in 
such a system if the Josephson frequency is the same 
as one of the eigenfrequencies of the system while the 
magnitude of the field H is a multiple of the wave­
length of the induced sound. 

The additional resonance occurring in the oxide 
layer corresponds to a very low voltage at the layer 
V = 1Tnsd2el (l ~ 10·2 em, s ~ 105 cm-s-1 ). The reso­
nance in the superconducting metals is also determined 
by the sound velocity s. However, if we compare Eq. 
(32) with Kulik's results[ 3 l for the resonance 
(V = 1Tnc/2el), obtained by considering the interaction 
of the variable component of the Josephson current 
with the field of the electromagnetic vibrations gener­
ated by it, we can check that by changing the geometry 
of the sample we can easily arrange the ratio L/ l to 
be of the order of s/c. The resonance value of V is 
thereby lifted to a region accessible to experiment. 

Near the m-th resonance the n-th harmonic of the 
standing wave in the superconductors has the form 

p = ( _ 1) n ~ kEds, Im[ e'"'Ln (~ro + iy,/2)] 
2f.L• nm (~ro)'+y,'/4 

nn nm(d } XcosTxcosL 2 +z , 

and its intensity 

I= (2::. kEds,) ' [ (~oo)' + y,'], 
4f.L1 nm · 4 

k =:!!!. l . 

(33) 

(34) 

Josephson frequencies are of order of magnitude 
~109 to 1010 s-1 and the relaxation times for electron 
excitations T ~ 10-9 to,10-10 s. The interaction of a 
sound wave with electrons can then be considered to be 
the emission and absorption of sound quanta. In the 
framework of the isotropic BCS model the ratio of the 
electron sound absorption coefficients in the supercon­
ducting and normal states is equal to ( w < 2 A )I19l 

y,/yn = 2(1 + e61r]-•. (35) 

When wr » svF ( VF is the electron velocity at the 
Fermi surface) the absorption coefficient for sound 
vibrations in the normal metal is proportional to the 
first power of the frequency and independent of the 
temperature and the purity of the sample.£2°1 As to 
order of magnitude Yn ~ 106 to 107 s-1 • 

The scattering of the energy of a sound wave by 
thermal phonons is not changed in the superconducting 
transition as the phonon spectrum of a superconductor 
has no peculiar features whatever as compared to the 
normal state. Simons' calculations[211 show that for 
T < On/15 the damping caused by the interaction be­
tween the high-frequency sound and the lattice vibra­
tions is about an order of magnitude below what can be 

detected experimentally. Under reasonable assumptions 
we can thus take it that in a superconductor the damp­
ing is mainly determined by the interaction between the 
sound wave quanta and the conduction electrons. 

We obtained Eqs. (33) and (34) assuming that 
y 1 /2s 1 « 1T/l. If we had not made this assumption but 
had assumed that the sound wave in the metal is 
damped over distances less than l we must, when 
solving the set of Eqs. (28), look for the wave in the 
x-direction in the form of a traveling wave. In that case 
we get 

I [ fL 2kE sin'/2g,dcosg1 (L+d/2+z) '( l] 
P = m -- expt oot+kx , 

g, . A 

P -I [kE( 1 f.L 1g1 sing,Lcosg,z} '( +k l) - m - - exp t rot x , 
g,' A 

g,,, = -,--k -t-,-[ ro• 2 • roy,,, ]'" 
s1,2 S1,2 

For the sake of simplicity we assume that the elastic 
constants and damping coefficients of the materials 
making up the Josephson transition are the same. The 
intensity of the sound wave in the points of the maxi­
mum 

ro=nms(L+~)-' + k's (L+_:l_} 
2 2nm 2 

will be given by the formula ( w2 » k 2 s 2 ) 

1=( ~~n (~ro)'+ v~'l (36) 

The change in the current-voltage characteristic aris­
ing due to the resonance excitation of sound in a 
Josephson junction can be obtained by writing down the 
equation for the constant component of the Josephson 
current: 

J = + J j(x, t) dx = f[ J cos(kx + wt)!jJ1 (x, t) dx 

- \; J sin(kx + rot)divPdx]. (37) 

Here qJ 1 is a correction to the phase qJ in the first 
order of perturbation theory and the bar indicates 
time-aver.aging. The first' term in (37) leads to the 
usual structure on tlie current-voltage characteristic, 
which is connected with the excitation of electromag­
netic waves in the tunneling layer. [3• 4 1 

Evaluation of the second term in Eq. (37) leads to 
the following correction for the current ( y 1 / 2s 1 

« 1r/l) in the m-th maximum: 

where Qm = Wm /y 1( m) is the quality factor of the 
m-th resonance, <I> the magnetic field flux passing 
through the transition, and <1> 0 a magnetic flux quantum. 
The functions Fn(x) in (36) are defined as usually:[2J 

Fn(x)= 2 x {lcosnxl, 
n lx'-(n/2)'1 lsinnxl, 

n = 1,3,5, .. . 
n = 2.,4,6, .. . 

The parameters in the theory, ~ and E depend in 
an essential way on the energy characteristics of the 
oxide layer. This dependence enters into them as 
(v(O)- E:FtJ./ 2• To estimate ~and E it is thus neces­
sary to assign some height to the barrier at the point 
z = 0. The dependence on the height of the barrier for 
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a given transparency for electrons occurs because in 
the matrix element (8) we have the product of the func­
tions l and not their derivatives as in the matrix 
elemenf Tpg· Because of this, the smaller the gradient 
in the z-direction of the functions x~ the larger the 
relative contribution from inelastic processes. In 
practice the quantity v(O)- E:F can be made rather 
small compared to the Fermi energy. It seems that in 
this respect S-N-S junctions are very successful. 
However, for such transitions the relative wei~ht of 
the Josephson component of the current drops 221 so 
that the most suitable layer from the point of view of 
a maximum generation of sound for a given transpar­
ency of the junction will be conductors or oxides with 
a small magnitude of the forbidden band. 

We now estimate the experimental possibilities to 
observe the generation of sound in Josephson junctions. 
For typical experiments (see the reviewr 21 ) the dimen­
sions of the transitions are the following: d ~ 10-7 em, 
L ~ 10-5 em, l ~ 10-2 em. If we take v(O)- E:F ~ 10-2 

E:F, and Aj ~ l, we get for I; and E the values ~10-2 

and 10-9 • The power of the sound vibrations generated 
by the junction will then for y 1 ~ 104 s-1 and 
w ~ s-1 be ~ 10-10 W. We note that experimentally 
electromagnetic radiation with a power ~10-14 w has 
been registered. It is clear from Eq. (35) that the 
damping coefficient y 1 can be appreciably lowered by 
decreasing the temperature. This is important for an 
indirect observation of the sound resonances on the 
current-voltage characteristic. One sees easily that 
for T ~ 1 °K, Y1 ~ 1. Then ~je/~js ~ 10, where ~je 
is the increase in the constant component of the cur­
rent due to the resonance excitation of electro­
magnetic waves and ~js the corresponding increase 
due to sound. This estimate is made for a magnetic 
field in which the maximum sound intensity is reached 
with n = 10. It can be seen from Eqs. (34), (36), and 
(38) that the whole effect increases with increasing 
field ~ H2 • However, in strong fields when 
sin 1Ix/x ~ 2e®effhs thermal fluctuations will appear 
which arise in the junction and are produced by the 
external field ( ®eff is the effective temperature of the 
fluctuations). In the fluctuation region the effect will be 
appreciably reduced. 

1 B. D. Josephson, Phys. Lett. 1, 251 (1962); Rev. 
Mod. Phys. 36, 221 (1964). 

2 I. 0. Kulik and I. K. Yanson, Effekt Dzhosefsona v 
sverkhprovodyashchikh tunnel'nykh strukturakh (The 
Josephson Effect in Superconducting Tunneling Struc­
tures), Nauka, 1970. 

3 1. 0. Kulik, ZhETF Pis. Red. 2, 124 (1965) [JETP 
Lett. 2, 84 (1965)]. 

4 Yu. M. Ivanchenko, A. v. Svidsinski'l, and V. A. 
Slyusarev, Zh. Eksp. Teor. Fiz. 51, 194 (1966) LSov. 
Phys.-JETP 24, 131 (1967)]. 

5 M. H. Cohen, L. M. Falicov, and J. C. Phillips, 
Phys. Rev. Lett. 8, 316 (1962). 

6 R. E. Prange, Phys. Rev. 131, 1083 (1963). 
7 Yu. M. Ivanchenko, K teorii mnogochastichnogo 

tunnelirovaniya (On the Theory of Many-body Tunneling) 
Preprint Donets Phys.-Tech. Inst., Acad. Sc., 
Ukr.S.S.R., No. 76, 1965. 

8 1. K. Yanson, V. M. Svistunov, and I. M. Dmitrenko, 
Zh. Eksp. Teor. Fiz. 48, 976 (1965) (Sov. Phys.-JETP 
21, 650 (1965)]. 

9 D. D. Coon and M.D. Fiske, Phys. Rev. 138, A744 
(1965). 

10 A. A. Galkin and V. M. Svistunov, ZhETF Pis. Red. 
5, 396 (1967) [JETP Lett. 5, 323 (1967)]. 

11 A. A. Abrikosov, L. P. Gor'kov, and I. E. 
Dzyaloshinski'l, Metody kvantovo'l teorii polya v 
statistichesko'l fizike (Quantum Theory Field Methods 
in Statistical Physics) Fizmatgiz, 1962 lPergamon 
Press, Oxford, 1965]. 

12 Yu. M. Ivanchenko, Zh. Eksp. Teor. Fiz. 52, 1320 
(1967) (Sov. Phys.-JETP 25, 878 (1967)]. 

13 M. J. Stephen, Phys. Rev. 182, 531 (1969). 
14 D. N. Zubarev, Dokl. Akad. Nauk SSSR 132, 1055 

(1960) (Sov. Phys.-Doklady 5, 570 (1960). 
15 G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 

(1960) [Sov. Phys.-JETP 11, 696 (1960)]. 
16 T. Fulton and D. McCumber, Phys. Rev. 175, 585 

(1968 ). 
17 L. D. Landau and E. M. Lifshitz, Teoriya 

uprugosti (Theory of Elasticity), Nauka, 1965 
(Pergamon Press, Oxford, 1970]. 

18 A. I. Ansel'm, Vvedenie v teoriyu polyprovodnikov 
(Introduction to the Theory of Semiconductors), 
Gostekhizdat, 1962. 

19 J. Bardeen, L. Cooper, and J. Schrieffer, Phys. 
Rev. 108, 1175 (1957). 

20 A. I. Akhiezer, M. N. Kaganov, and G. Ya. 
Lyubarski'l, Zh. Eksp. Teor. Fiz. 32, 837 (1957) (Sov. 
Phys.-JETP 5, 685 (1957)]. 

21 S. Simons, Proc. Camb. Phil. Soc. 53, 702 (1957). 
22 L. G. Aslamazov, A. I. Larkin, and Yu. N. 

Ovchinnikov, Zh. Eksp. Teor. Fiz. 55, 323 (1968) (Sov. 
Phys.-JETP 28, 171 (1969)]. 

Translated by D. ter Haar 
246 


