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We consider the temporal evolution of the distribution functions of charged particles in a uniform plas­
ma in an external electric field E. We show that in the limit as t -- oo the distribution functions change 
in a self-similar way with all velocities increasing linearly with time. We establish that in the case 
when the current is parallel to an external magnetic field the directed electron velocity v changes es­
sentially in the same way as in the case of free acceleration: v = a(eE/m)t, where a is a numerical 
coefficient which is of the order of, but smaller than, unity. If the current is at right angles to the ex­
ternal magnetic field the "runaway" effect disappears while the ratio of the directed electron velocity 
to their thermal velocity becomes much smaller than unity. 

1. INTRODUCTION 

LET there be in a uniform plasma a uniform constant 
electric field E which is parallel to the magnetic field 
and is sufficiently strong so that we can neglect binary 
collisions. The electrons are then freely accelerated 
until the velocity of their directed motion becomes equal 
to the threshold for the excitation of sound-wave-like 
oscillations after which an instability occurs in ~~e 
plasma which leads to a damping of the electrons and 
the occurrence of the so-called "anomalous resist­
ance."11 After a period of the order of a few inverse 
increments the system turns into the threshold state and 
ever afterwards it remains in that state. 

The basic problem which must be answered by a the­
ory of the anomalous resistance is the following one: 
what is the stationary value of the conduction electron 
velocity and how does it change in time due to the heat­
ing of the plasma. 

Important results in the theory of the anomalous re­
sistance were obtained in [ 41, where the anomalous re­
sistance was studied at not too long times starting from 
the moment that the external electric field is switched 
on. In that paper it was shown that in the initial stage of 
the heating the conduction electron velocity is of the 
same order of magnitude as the ion sound velocity and 
this prediction of the theory was verified in a number of 
experiments. [4 - 7 1 At the same time it was established 
in [ 41 that with time by far the majority of the elec­
trons goes over into a regime of continuous accelera­
tion and until the plasma temperature, roughly speak­
ing, is doubled, practically all electrons are "runaway" 
electrons. Beyond that the theory developed in [ 4 l be­
comes inapplicable. 

It is clear that the more the plasma is heated the 
more it "forgets" its initial state and ultimately the 
evolution of the particle distribution functions (and also 
the vibrational spectrum) takes on a universal charac­
ter which is independent of the initial conditions. Fol­
lowing [a 1 , we shall call the corresponding solution an 
asymptotic one. 

11The phenomenon of the anomalous resistance was connected with 
an ion-sound instability in refs. [ 1•3 ]. 

The problem stated here can be solved on the basis 
of quasi-linear equations.21 We write these equations in 
a system of coordinates which is moving with the veloc­
ity of the freely accelerated ions - eEt/M (we assume 
that the electric field is equal to-E, i.e., that the elec­
trons are accelerated in the direction of the vector E): 

!..!:.,+ (~+~) eE!.J!.=!_D~J'!.!.!.._, 
fJt m M fJv fJv~ fJv, 

(1) 

where 
!l_ = .!!!..._.!_De, !.J:.. 
fJt M' av. fJv, ' 

(2) 

D - 8:rt'e' J k~k, W ( k )d'k ~,--- -- ll ro- v 
m' k' 

W = W(k, t) is the spectral density of the electrostatic 
energy of the vibrations, while w = w(k, t) is the vibra­
tional frequency which in the threshold regime is deter­
mined by the equation 

(3) 

We also give here the formula for the instability incre­
ment y(k, t): 

v = [ ::r~~· Jk ~v(t. +: t.) ll(ro-kv)d'v. 

We neglect the influence of the magnetic field (assuming 
that the electron plasma frequency is considerably lar­
ger than the electron cyclotron frequency). 

As we have not taken into account in Eqs. (1) and (2) 
the loss of energy to the plasma particles, the theory 
given in what follows can be applied only to those ex­
periments where the energetic plasma lifetime is large 
compared to the heating time31 but it is just this situa­
tion which must clearly be realized in any apparatus 

2>The role of non-linear processes decreases asymptotically with 
time as the ratio of the vibrational energy to the particle kinetic energy 
is proportional to t-1 , as we shall see in what follows. We note that the 
influence of the non-linear processes on the initial stages of the problem 
so far is far from clear. [9 •10 ] 

3>1n many existing experiments this condition is not satisfied and 
there is therefore no self-similarity in the sense of Sec. 2 of the present 
paper while the analysis of the anomalous resistance itself is made dif­
ficult by the necessity to take heat transfer into account. 
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which is of interest for thermonuclear studies (other­
wise all expenditure of energy goes into "heating" the 
walls). 

2. SELF-SIMILAR VARIABLES 

To find the threshold solution we must find that func­
tion W(k, t) ~ 0 such that the functions fe and fi deter­
mined from Eqs. (1) and (2) will give y = 0 when W > 0 
and y ::::; 0 when W = 0. The presence of an asymptotic 
regime corresponds to the possibility to change in this 
problem to self-similar variables. It then follows from 
simple dimensional considerations that the particle ve­
locities must be measured in units eEt/m and the wave 
vectors of the vibrations in units m Wpe/ eEt. 

Using the normalization conditions for the functions 
fe and fi we can write 

( m )' . _ mv f,,,(v,t)=n. -E g,,,(u), u=-, 
e t eEt 

(4) 

where the functions ge, i are normalized to unity: 

J g,,,d'u = 1. 

The spectral density of the electrostatic energy of the 
vibrations has in the asymptotic regime the form 

mn. ( eE )' keEt W(k,t)=--, - t'Jf'(q), q=--, 
2nw,, m mw,, 

(5) 

where the factor t 4 appears in order that Eqs. (1) and 
(2) when expressed in terms of the self-similar varia­
bles u and q should not contain the time while the coef­
ficient in front of the function JP which contains various 
symbols is chosen on the grounds of convenience (so 
that Jf' would be a dimensionless function while the dif­
fusion tensor written in terms of the self-similar vari­
ables would not contain a factor involving symbols). 

Substituting Eqs. (4) and (5) into (1) and (2) we ob­
tain a set of quasilinear equations in terms of the self­
similar variables: 

- 3g,- ufJg, -,---/~=!!__!!f).~{)!!.:._, 
fJu fJu au. du~ 

(6) 

fJg, m' f) fJg, 
- 3g,-u~ = --!!1).~-

fJu M' au. fJu~ I 
(7) 

where 
!!!).~ = l q·:: Jf'll(w- qu)d'q; 

n is a unit vector in the direction of E. We also write 
out the dispersion relation (3) in terms of the self­
simyar variables: 

e(oo,q)== 1+ ;, J 00 ~0qu q a~ (g.+; g,)=o 

and the condition y = 0: 

J q :u (g.+; g,)ll(w-qu)d'u=O 

(the frequency is measured in units Wpe). In some 
cases it turns out to be convenient to use a spherical 
system of coordinates u, 9, qJ and q, () ', f{J' in velocity 
and in wave-vector space. In spherical coordinates 
Eqs. (6) and (7) become 

1 f) 3 ( ag, sine fJg, ) 
---ug,+ cosO------- =Stg 

u' fJu fJu u ae •• 
(8) 

where 

1 fJ m' 
---u'g,=-Stg, 

u' au M' I 

Stg -=_!_!_u'("" fJg,,, +!!/)"' fJg,_,) 
•.• u' fJu :Uun fJu -u-Oe 

+--~-~sin a (!!/).,a g.,,+!!!)., fJg,,,) 
u sm 8 fJ8 au u a 8 • 

Exact and approximate expressions for the quantities 
!!f)uu• !!f)u(), and !!!)()() are given in the Appendix. 

We can write Eqs. (6) and (7) in a form which en­
ables us to give them a simple physical meaning: 

(9) 

div.[(n-u)g,'+Q.]=O, Q •• =-!!/)•J&g., (10) 
- au~ 

div.[- ug, + Q.] = 0, (11) 

The first of these equations describes a stationary dis­
tribution of a substance with concentration ge in a gas 
with a stationary velocity field n- u when there is a 
diffusion current Qe present. The second one has a 
similar meaning for a substance with concentration gi 
in a gas with a stationary velocity field -u (see Fig.1). 

The convective current (which corresponds to the 
term -ugi in Eq. (11)) tends to concentrate the ions to 
the point u = 0. The diffusion current counteracts this. 
As a result some stationary ion distribution will bees­
tablished near the point u = 0. 

It is well known that vibrations with phase velocities 
less than the ion thermal velocity do not occur in a 
plasma.C 11 l This means that in some region near the 
point u = 0 the quasi-linear diffusion coefficient 0a(3 
will be equal to zero. However, the convection current 
then leads to the result that the ions are concentrated 
in the point u = 0 and their distribution takes the form 
of a delta-function o(u). In reality, however, after part 
of the ions are concentrated in the point u = 0 the dis­
persion changes and vibrations occur with arbitrarily 
small phase velocities so that the diffusion coefficient 
remains different from zero in any, however small, re­
gion around the point u = 0. We are thus led to the con­
clusion that the ion distribution function necessarily has 
a delta-functionlike singularity (core) in the point u = 0 
(which corresponds to freely accelerated ions). 

Similar considerations show that, generally speaking, 
there is also an electron core in the point u = n (which 
corresponds to freely accelerated electrons). Those 
fractions of the particles which are in the electron and 
ion cores we shall denote, respectively, by Xe and Xi. 
The quantities Xe and Xi depend in the asymptotic re­
gime clearly not on the time and on the electric field 
and are determined solely by the ratio of the electron to 
the ion mass. 

[! 

FIG. 1. Velocity field for Eqs. (1 0) and (11 ). The current lines for 
Eq. (II) are shown dashed. 
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To conclude this section we write down the self­
similar equations for the one--dimensional solution 
which c~curs when the ion cyclotron frequency WHi 
is appreciably larger than the ion plasma frequency 
Wpi· In that case the problem is described by one­
dimensional distribution functions fe, i(Vz, t) and a one­
dimensional spectral function W(kz, t) which satisfy the 
following normalization conditions: 

J f,,,(v,t)dv, = n, JW(k,t)dk, = U(t), 

where U(t) is the volume density of the electrostatic 
energy of the vibrations. We have then in the asymptotic 
regime 

and 

where 

mng,,,(u) 
f,,,(v, t) = eEt ' 

mv 
"= eltt' 

eE't' 
W(k,, t) = -8 , :r(q), 

nm 

eEtk, 
q=--, 

mrope 

d d dg, 
- -(u -1- !l)g, == -!t}(u)-d • 

du du u 

d -, d dg, 
--ug, = ll ----!t}(u)-

du du du 

!l)(u)= »P(q) ~-
1 rolq- awldq 1 •(•li•=· 

(12) 

(13) 

(14) 

(15) 

is the quasi-linear diffusion coefficient and J1. = m/M. 

3. STUDY OF THE SELF-SIMILAR EQUATIONS FOR 
THE ONE-DIMENSIONAL MODEL 

In the one-dimensional case the sum of the diffusion 
and the convection currents must in the stationary state 
vanish, i.e., 

Hence it follows that in the regions u < 0 and u > 1 
the condition for the vanishing of the increment of the 
vibrations, which in the one-dimensional case has the 
form 

d 
--a;;<c. + llC·) = o, (17) 

can be satisfied only when ge = gi = 0. As far as the 
region 0 < u < 1 is concerned, in it the set of Eqs. (16), 
(17) enables us to find the functions ge, gi, and !l): 41 

Cu C11(1- u) 
g - g - !l) = ,-'u'(1- u) ·, 
'- u + ll'' • - u + ll' , ... 

here C is an arbitrary positive constant. From what 
was said in the preceding section it follows that we must 
add to the functions ge and gil a number of freely ac­
celerated electrons and ions, while it follows from the 
normalization condition that Xe + C = 1, Xi + 2 CJ1.ln J1. - 1 

=1. 
Knowing the functions ge and gi we can easily write 

down the dispersion relation 

1-C 
e(ro, q) = 1--:---:-::­

(ro- q)' 
ll c c -·+-- =0 ro' roq (ro-q)q · 

The function E(w, q) must satisfy the following two 
requirements: 1) all vibrations must be stable, 2) vi-

4> In the following calculations we shall assume for the sake of sim­
plicity that J1. ~ I although one can also obtain an exact solution which 
is valid for any value of the electron to ion mass ratio. 

f(l7/ 

I 

FIG. 2. The form of the function F(u) for three values of the con­
stant C: dashed curve: C < 2Jl.Yz, full-drawn curve: C = 2Jl~. dash-dot 
curve: C > 2Jl~. 

brations must exist for all phase velocities in the inter­
val (0,1).51 From these conditions we can determine the 
constant C. To do this we must write the dispersion re­
lation in the form 

F(fi)= 1-C +__!:_ _ _£_+ C - ' 
(fi- 1)' fi' fi fi- 1- q, (18) 

where u = w/q. Equation (18) is a fourth-degree equa­
tion in u and for stability it is necessary that it have 
four real roots. In Fig. 2 we give the function F(ii) for 
different values of the constant C. From this figure it 
is clear that when C < 2 J1. 1 / 2 the system is unstable 
for small q while for C > 2 J1. 1 / 2 there is a range of 
phase velocities inside the interval (0, 1) where there 
are no vibrations. We are thus led to the conclusion 
that C = 2 J1. 1/ 2 and the distribution functions are thus 
uniquely determined. 

We can find the spectral function from Eq. (15). As 
usual we divide all vibrations into two types: Langmuir 
waves (with phase velocities ii ~ J1. 1/ 2 ) and sound waves 
(with phase velocities ii ~ J1. 1/ 2 ). For the first w 
"" q - 1, and for the second w"" J1. 1 / 2• We then get from 
(15) the following expressions for the energy densities 
of these vibrations: 

u, = 1 I 311', u, = 1 I 2yf;:. 

We list the main qualitative peculiarities of the solu­
tion obtained: 1) almost all electrons and ions are freely 
accelerated by the electric field; 2) notwithstanding this 
the system is on the threshold of stability which is se­
cured by the presence of small groups of electrons and 
ions which are "smeared out" in velocity; 3) there are 
very "hot" ions with energies J1. - 1 times larger than 
the energy of the freely accelerated electrons (the rela­
tive concentration of such ions is approximately equal 
to J1. 3 / 2); 4) in the asymptotic regime the energy of the 
Langmuir vibrations appreciably exceeds the energy of 
the sound vibrations. 

4. STUDY OF THE SELF-SIMILAR EQUATIONS FOR 
THE THREE- DIMENSIONAL MODEL 

We shall publish the formal study of the self-similar 
equations for the three-dimensional case elsewhere. 

5lif the latter condition were not satisfied there would be sections 
of the interval (0, I) where the diffusion coefficient !l) would vanish. 
The convection current would then remove ions to the left of this in­
terval and electrons to the right and we could not satisfy Eq. (17). 
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Here we restrict ourselves to only a few qualitative 
cons ide rations. 

It follows from what we have said above that an im­
portant peculiarity of the one-dimensional solution is 
the presence of Langmuir vibrations. This is connected 
with the fact that ion-sound vibrations with a small 
phase velocity cannot guarantee a non-vanishing diffu­
sion in the whole range of velocities (0, 1). In the three­
dimensional case, however, where "skew" waves are 
also present even one ion sound wave is sufficient for 
the diffusion of particles in the whole velocity space. It 
is thus reasonable to consider the problem whether the 
anomalous resistance can be guaranteed solely by taking 
the excitation of ion-sound vibrations into account. 

First of all we obtain exact relations which are ana­
logs of the energy and momentum conservation laws. To 
do this we multiply Eqs. (10) and (11) by u2 and n·u and 
integrate them over d3u bearing in mind that the func­
tion 'Yf" is non-vanishing only for those values of q for 
which 

Sq2._(g. + Jlg,)ll(w- qu) d'u = 0. au 
As a result we get 

u/- Ue = -Avph, 

where we have written 

r.i{ = 11Au ph, 

u.-1=-A, 

u, = JlA, 

A = J nQ,d'u, AD ph= J uQ,d'u, 

u,,, = J g,,,(nu)d'u, u:,, = J g,,,u' d'u. 

(19) 
(20) 

(21) 

(22) 

The quantity Vph has the meaning of a characteristic 
phase velocity of the vibrations. Adding (19) and (20) 
as well as (21) and (22) we easily obtain the required 
relations. 

Since the phase velocity of the sound-wave-type vi­
brations is small compared with the electron thermal 
velocity we can use for the calculation of the tensor 
!lla{3 occurring in the kinetic equation for the electrons 
the approximate Eq. (A.2) from which it follows that 

where B is a constant while X1, xz, and X3 are smooth 
functions of the angle (} of order of magnitude unity. For 
the main mass of electrons we have thus !llee >> .®ue, 
!lluu and the main processes of importance for them 
are elastic scattering processes. The scattering fre­
quency v increases with decreasing velocity (v a: u - 3 ). 

There is thus always a region in velocity space (its 
boundaries will be indicated below) where the electron 
distribution is almost isotropic and where we can write 
the function ge in the form ge(u, (}) = ge(u) + oge(u, (}), 
where 

1 " 
1\g, « g.(u) == ""2 J g, (u, S)sin e diJ. 

We then get from Eq. (8) 

(23) 

Using the above given estimates for the diffusion co­
efficients we see that when u :5 u1 = B 1/ 3 v~1; the main 
term on the right-hand side of (23) is the second one and 
the anisotropy of the electrons in that region of veloci­
ties is determined by their interaction with the vibra­
tions. When u > u1 the electrons become anisotropic 
under the action of the electric field (first term on the 
right-hand side of (23)). Equation (23) is valid up to ve­
locities u ~ B 1/ 2 when it is no longer possible to con­
sider the electron distribution to be weakly anisotropic. 
Substituting Eq. (23) into Eq. (8) and integrating over 
the angles we get an equation for the isotropic part ge 
of the distribution function: 

when u < u1 (region 1) 

1 d 3 1 d[ ,dg.S( .®.,') ] --~ug,=-- u- .® •• -- sin6d6 
u' du 2u' du du 0 0., 

and 
g, oo exp ( -u' I Buph '); 

when u1 < u < B1/ 2 (region 2) 

and 

- 1 d 3- - 1 d [ • dg, s" sin' e 1 
Uf----;J;;u g,- 8u' du u a;;: o ~de , 

g, oo exp (B I u). 

(24) 

(25) 

The form of the distribution function and the relative 
number of electrons in the regions 1 and 2 are deter­
mined by the two parameters, B and vph• while in our 
units we have always Vph << 1. 

We first of all consider the case B ~ 1 when clearly 
almost all electrons are in the regions 1 and 2 (from 
energetic considerations it is clear that only a small 
part of the electrons can have a velocity u > 1). One 
verifies easily that the majority of the electrons are 
then concentrated in the region 1. Indeed, as u~ 
~ B5 1 3 v;~3 > Bv~h the solution (24) is for u = u1 al­
ready exponentially small. The electron temperature 
(u~ ~ B2' 5 v~h5 ) and their directed velocity (iie~Vph) 
are determined by their interaction with the vibrations 
and are not at all connected with the electric field, the 
influence of which one can neglect in region 1. This in­
dicates already the physical lack of meaning of the so­
lution obtained. 

For a more rigorous proof we turn to Eqs. (19) to 
(21). As we are trying to construct a solution with iie 
<< 1 it follows at once from (21) that the constant A 
is almost equal to unity. Taking this into account we 
get from Eq. (19) 

U:2= avph, (26) 

where a .S 1. On the other hand, we can determine the 
mean square electron velocity in the case considered 
from Eq. (24). We have 

which when B ~ 1 and Vph << 1 is incompatible with 
(26). We have thus proved the unrealizability of ion­
sound solutions with iie << 1 and B ~ 1. 

Let us now turn to a study of the case B << 1. In or­
der that the electrons are weakly anisotropic they must 
nearly all be inside a sphere of radius B 112 in velocity 
space. If then Vph << B2 , we have u~ >> Bvph and 
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again all electrons turn out to be in the region 1 which 
leads to the above described contradiction. 

The1 c remains thus the consideration of the solution 
when Vph ~ B2 • In that case u~ ~ Bvph and the distribu­
tion function ge(u) does hardly change in the region 1. 
At the same time u1 ~ B and the solution is also con­
stant in the region 2. This constant solution, valid up to 
u ~ B112 must be fitted to the solution in the remaining 
region of velocities where the anisotropy is no longer 
small. And as the size of this region is of order unity 
and much larger than B112 most of the electrons found 
in it and therefore lie ~ 1. We have thus shown that 
when we take only one of the ion-sound vibrations into 
account we have necessarily ;~ ~ 1, 'iie ~ 1 (there is no 
anomalous resistance). Including the Langmuir vibra­
tions in the problem cannot appreciably change this re­
sult as the Langmuir vibrations lead only to a redistri­
bution of the energy and mom•entum inside the electron 
gas. 

5. ANOMALOUS RESISTANC:B: TO A CURRENT AT 
RIGHT ANGLES TO THE MAGNETIC FIELD 

The problem considered in this section is mainly of 
interest for the physics of shock waves propagating at 
right angles to the magnetic field. Trying to explain the 
anomalous resistance of a plasma in shock waves we 
take at once into account thos•e concrete conditions 
which are usually satisfied in those experiments and 
whkh simplify the solution of the problem. Thus, the 
smallness of the electron cyclotron frequency compared 
to the electron plasma frequency enables us to neglect 
the influence of the magnetic field on the dispersion and 
as before we can use the usual dispersion relation (3). 
As ions in collisionless shock waves are non-magnetic 
the main part in the kinetic equation for the ions is 
played by the quasi-linear diffusion: 

at, , a at. 
- = fl -·D .. ,-. 

at av.. av, 
(27) 

On the other hand, the electron scattering frequency is 
much smaller than their cyclotron frequency so that the 
directed motion of the electrons is a drift motion and in 
the system of coordinates fixEld to the drift we can as­
sume their distribution to be axially symmetric around 
the magnetic field. 

We verified in the preceding section that when E 11 H 
the majority of the electrons is nearly freely accele­
rated by the electric field. Now, however, the magnetic 
field prevents the "running away" of the electrons and 
we may expect that in a stationary state their directed 
velocity will be much smaller than their thermal veloc­
ity. To illustrate this last statement we consider an 
idealized model which allows an exact solution. 

Let there be vibrations propagating only along the 
current the direction of which we shall assume to be 
along the z-axis. The component Dxx = D(vx) is the 
only non-vanishing one of the diffusion tensor. The ion 
distribution function is thus, as follows from (27), also 
one-dimensional while the ele~ctrons in the (vx, vy)­
plane which is perpendicular to the direction of the 
magnetic field, are distributed axially symmetrically 

around the point (v, 0} (v is the drift velocity). Intro­
ducing polar coordinates (v, <P) in the (vx, vy) plane with 
the origin in that point we can write down the kinetic 
equation for the function fe(v, t): 

~=_:__'s"arp[...!....v(vx)!l..]= JJ .!._.!__~, (28) 
at 2n 0 avx avx v av v' av 

where 

' 
lJ = ~ J D(vx) (vx- ii)'dvx, 

x, 

while (vxl' Vx2} is an interval of phase velocities where 
the vibrations and thus the diffusion coefficient D(vx) 
are non-vanishing. We took here into account the small­
ness of the phase velocities as compared to the electron 
thermal velocity; this will be confirmed in the solution 
obtained below. 

We write the kinetic equation for the ions simply 

af, a 8f, 
-=~.t'-D(vx)-. 
at avx avx 

(29) 

It is clear that in the asymptotic regime all veloci­
ties must be measured in units of the drift velocity v. 
Corresponding to that we introduce self-similar varia­
bles ~ = v /v and ux = v /v while we write the distribu­
tion function in the form 

n n 
f,(v, t) = -=z g,(£), f,(vx, t) =-=- g,(ux). 

v v 

The self-similar diffusion coefficient !?[) is connected 
with D through the relation $ = D (vdv/dtr1• 

The functions ge and gi satisfy the equations 

- ux2 

_.!__~£'g, = .. !!L~--1-~, ED=.!__ J $(ux) (ux -1)'dux, s d£ s ds S2 ds n 
uxl \30} 

d d dg, 
--uxgi = ~.t'-E'b(ux)-. 

dux du, dux 

The first of these can easily be integrated: 

g, = c, exp ( -6' I 5ED), 

where the connection between the constants C 1 and ED 
can be found from the normalization condition 

~ 

2n Jsg,d£ +X.= 1, 
0 

where Xe is the number of particles in the electron 
core which is now in the point (1, 0}. 

The necessity that it exist in this model is clear from 
the following considerations. Let us suppose that Xe = 0. 
There are then in the system possible only ion-sound vi­
brations with a phase velocity which cannot be larger 
than some value Umax· Since the spectrum is one­
dimensional, when the drift velocity is larger than umax 
part of the electrons (those inside the circle in Fig. 3) 
will not interact with the vibrations. They will thus 
"cool off" and concentrate in the point ~ = 0. This will 
happen until the dispersion changes so much that vibra­
tions occur with all phase velocities in the interval 
(0, 1). We can check that this occurs when Xe << 1. It 
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0 

FIG. 3. Interaction of one-dimensional 
·~ vibrations with electrons in a magnetic 

field. 

then follows at once from the normalization condition 
that 

nf('/,) (5:q))'1•C, = 1. 

The contribution of the electrons to the dispersion 
relation is determined by their longitudinal velocity 
distribution function he(ux): 

h,(u.)=2 j r, g.(mds. ,,=_.-2 j dg,[6'-(u.-1)'J"'ds.(31) 
'"·-" s -(u,-1) l ' '"·-'' ds 

From the condition y = 0 in the phase velocity range 
(0, 1) follows that 

dg, dh, s~ ds dg, - 5f('/) 
-= -1!-·~~ 2~-t-'(1-u.) -~ -1!-'(1-u )(5!l>)-'1•--'­
du, du. .. 6 ds • 2nl'('/,) 

(when evaluating dhe/dux from (31) we took into ac­
count that the electron thermal velocity is much larger 
than their drift velocity which in our units is simply 
equal to unity). Hence we find the ion distribution func­
tion: 

g, = 1!-'(1- u,)'(5i>)-''• Sf('/,) 
4nf('/5) 

and from Eq. (30) the diffusion coefficient i>: 

?l5 = 1 i 40n!!'· 

We can now find the root mean square electron ve­
locity (f") 112 from the relation 

1' = {s'g,ds /J~.ds=<5i:J>''·2~i~·.~ 
It turns out to be equal to 0.38 JJ. - 2 / 5 • The ratio of the 
electron current velocity to their thermal velocity is in 
the model considered equal to 2.65 JJ. 2 15 • 

The number of ions interacting with the vibrations 
is, as before, small: 

S• fOf('/ ) 
1-X, = g,(u.)du. = !!''• ' ~ 0 95 ,.,, 

, 3(8n)'1•f('!.) ' ,.. ' 

and to determine Xe we must use the dispersion rela­
tion 

e(ro,q) = 1-~ f+~du. dh,_ X, 
q' -oou, du, (ro-q)' 

or 
1 +8.2!!''•_ x. I! 2.86!!''• -- +-+-q' (w-q)' w' wq · 

From the requirement of stability and that there are 
vibrations with phase velocities covering the whole in­
terval (0, 1) we find, exactly as in Sec. 3, the number of 
particles in the electron core: Xe R:l 8.2 J1. 4 / 5 • 

It is interesting to note that the ratio of the electron 
current velocity v to their thermal velocity VTe and 
the number of resonant ions 1 -Xi can be estimated 
using simple considerations based on conservation laws. 

Due to the scattering of electrons by vibrations there 
appears an electron-ion friction force Ffr which trans­
fers momentum from the electrons to the ions. If we 
denote the momentum of the latter by Pi we have 
dPi/dt = Ffr· This equation is equivalent to the calcu­
lation of the first moment of the ion kinetic equation. 
Since Pi""(1-Xi)Mv, we have Ffr""(1-Xi)Mdv/dt. 
The work done by the friction force goes into heating 
the electrons: dT /dt ""vFfr· Hence it follows that 
v~e ""(1- Xi)Mv2/m. Equating the electron increment 
and the ion damping gives yet one more equation: 

mi-X, v 
M~-VTe3 • 

From this we get at once that 1- Xi "" JJ. 1/ 5 , v /VTe 
"" JJ.2 15 • This result is, of course, confirmed by the ex­
act solution. 

In our considerations we have so far not at all taken 
"skew" waves into account which propagate at an angle 
to the current direction. One verifies easily that the 
presence of a steep maximum in the electron distribu­
tion function in the point ~ = 0 leads to an instability of 
ion-sound waves with a wave vector directed almost at 
right angles to the current. 

The electron core will under their influence be 
"smeared out" until these waves become stable. As a 
result of this the branch of vibrations with large phase 
velocities disappears and there will only be ion sound in 
the system. In the kinetic equations for the electrons 
and ions we can again change to self-similar variables 
but up to now we have not succeeded in solving them ex­
actly. Nevertheless we can estimate the quantities 
which are of interest to us by considering the energy 
and momentum balance.[ 12 l As a result we find that 
1 -Xi "" J1. 114, v /vTe "" J1. lf 4 (in satisfactory agreement 
with measurements of these quantities at the front of 
shock waves). 

APPENDIX 

When we use spherical coordinates u, e, cp and 
q, e ', cp' in the velocity and wave vector spaces the dif­
fusion tensor has the form 

!l> •• = ~JJ «l>~d6' dq, 
u qu' 

fl) _ 2 JJ «1> w (ro/qu)cos 8- cos 6' •• - u u sinS dS' dq, 

!!>,. = u2 JJwq [(m/qu)cos6-cos8']' . 
sin' 8 d8' dq, 

(A.1) 

where 
«1>= Wsin8' 

{sin' 6sin' 8'-[(ro/qu)- cos 8 cos 8']'} 'h • 

The integration is over that region of the variables q 
and e' where the expression under the radical sign is 
positive. 

When w/qu << 1 we have 

!l> •• = u2 Jf Q~d6' dq, 
qu 

2 JJ -rocos8' !l>., = - Q - d8' dq 
u usm 8 ' 

2 JJ cos' B' !l>ee=- Qq-.-d8'dq 
u sm'8 ' 

(A.2) 
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where 
W sin 9' 

Q = -;--:---;;-;:----:-;-;-::-;-----;;-::----:-::";:-;:­
{sin2 8 sin' 8'- cos' 8 cos' 8') '" 

and the integration is over the region where sin (J' 

> Ieos ej. 
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