
SOVIET PHYSICS JETP VOLUME 33, NUMBER 6 DECEMBER 1971 

THE EFFECT OF INITIAL CONDITIONS ON THE BEHAVIOR OF ELECTRON 

DENSITY INHOMOGENEITY IN A PLASMA 

A. A. SUCHKOV 

Institute of Astronomy, Tadzhik Academy of Sciences 

Submitted December 7, 1970 

Zh. Eksp. Teor. Fiz. 60, 212 8-2133 (June, 1971) 

The effect of the thermal motion of the electrons of an inhomogeneity and of the motion of the inhomo­
geneity as a whole on the behavior of the latter in a collisionless plasma is considered. It is shown 
that in a cold plasma the thermal motion of the electrons of an inhomogeneity leads to pulsations that 
are superimposed on the ordinary plasma oscillations. In a hot plasma the inhomogeneity partially 
spreads out and a stationary distribution of its density is asymptotically established. Correspondingly, 
a stationary macroscopic electric field arises, whose magnitude is proportional to the initial tempera­
ture of the inhomogeneity electrons. It is found that an inhomogeneity may move in the plasma as a 
whole only when a definite relation exists between its dimensions and the parameters of the plasma. At 
a sufficiently high initial velocity an inhomogeneity moves as a whole without exciting in the first ap­
proximation plasma oscillations and without spreading out. A small initial velocity leads only to oscil­
latory shifts of the density along the direction of the initial velocity. It is shown that an uncompensated 
electron (or ion) beam of low density cannot excite a beam instability. 

1. INTRODUCTION 

THE need to know the behavior of inhomogeneities in a 
plasma arises in many problems. Inhomogeneities play 
the principal role in a number of physical processes 
occurring in a cosmic plasma: in the ionosphere, in the 
interplanetary medium, in clouds of ionized interstellar 
gas, etc. They determine, for example, the process of 
scattering of radio waves and streams of charged parti­
cles, the evolution of meteor trails, the structure of 
ionospheric inhomogeneities, etc. (see, in particular, 
£ 1 l). The character of the behavior of an inhomogeneity 
is important for investigations into the properties of 
laboratory and natural plasmas, for example, for the 
analysis of the possibility of an instability in the pres­
ence of a charged beam. 

We discuss below the behavior of mild inhomogenei­
ties, i.e., inhomogeneities whose densities are consid­
erably less than the density of the plasma (the back­
ground). 

An inhomogeneity will behave in different ways, de­
pending on whether it was initially charged or whether 
it was quasineutral. The behavior of a charged inhomo­
geneity in the case when the electron collision frequency 
lie is much higher than the plasma frequency we (lie 
>>we), was considered, in particular, by A. V. Gure­
vich. £2 l Here a rapid resorption of the uncompensated 
charge takes place and a quasineutral state is estab­
lished which is an initial condition for ambipolar diffu­
sion. The later process proceeds at a considerably 
slower rate and leads to a complete spreading of the 
inhomogeneity. On the whole the rate of the two proc­
esses is determined by the collision frequency. 

The picture is totally different when we>> lie· The 
problem of the behavior of an electron inhomogeneity of 
dimensions Xo greater than the Debye radius rd (~ 
>> ra) was first considered for this case by Vlasov. [3 l 

He deduced on the basis of the dispersion properties of 
the medium alone that an inhomogeneity oscillating with 

frequency we completely diffuses out in space with a 
characteristic time Tv = we1(JCo/rd)2 (the time for dou­
bling the size of an inhomogeneity). The spreading 
takes place owing to the emission of plasma waves which 
carry away energy of the electric field of the initial 
charge. 

We show in the present paper that important features 
of the behavior of an inhomogeneity in the collisionless 
mode are determined not only by the dispersion proper­
ties of the medium, but by the initial conditions charac­
terizing the inhomogeneity itself: its temperature, di­
mensions, and velocity of motion. Thus, the thermal 
motion of the electrons of the inhomogeneity leads, in 
addition to the oscillations, to pulsations of the density 
of the inhomogeneity according to the law sin2 (wet/2). 
A hot inhomogeneity does not diffuse out completely: a 
stationary distribution of the charge, whose magnitude 
is proportional to the initial temperature of the inhomo­
geneity, is established asymptotically in time. The mo­
tion of the inhomogeneity as a whole is then impossible 
at velocities considerably less than WeX0• If, however, 
the initial velocity is appreciably larger than WeXo then 
the inhomogeneity continues to move with this velocity. 
In this case the inhomogeneity does not, in the first ap­
proximation, diffuse out and no oscillations in its den­
sity occur. Analysis of this situation shows the impos­
sibility of a beam instability in a plasma with charged 
beams. 

2. THE GENERAL SOLUTION OF THE PROBLEM 
WITH INITIAL CONDITIONS 

The behavior of a mild inhomogeneity in the colli­
sionless mode may be described by a collisionless ki­
netic equation with a self-consistent field. Let us con­
sider the one-dimensional problem whose solution cor­
responds to the situation along the magnetic field. We 
have in this case 

!!. + v !..!. - _!_ .!.:£.!.!!. = 0 ( 1) 
iJt iJx m iJx iJv ' 
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where 

a'cp 
-, = -411:eJtav, 
ax 

J f,(v)dv = n0 , J f(v, x, t)dv = n(x, t), 

(2) 

cp is the potential of the electric field of the inhomo­
geneity, f(x, v, t) the distribution function of the elec­
trons of the inhomogeneity, and fo(v) the equilibrium 
distribution function. 

It is convenient to seek the solution of Eqs. (1) and 
(2) with the given initial conditions by the method of the 
L-transformation (the Laplace transformation with re­
spect to time). Applying again an F-transformation 
(Fo1rier transformation) with respect to the coordinate 
x, we find for the LF-transform of the density of an in­
homogeneity (see [ 4 l) 

n, = n, [ 1 - 4ne'n,i ...,J.!f!~]-' J g(v)dv (3) 
P km -oo dv p + ikv p + ikv' 

where nk is the F -transform of the initial density of 
the inhomogeneity, g(v) the initial velocity distribution 
of the electrons of the inhomogeneity normalized to 
unity, and fa is also here normalized to unity. 

We shall, for simplicity, assume that the initial dis­
tribution n(x, 0) is symmetric about x = 0 and de­
creases sufficiently slowly from this point. Let x0 be 
then a characteristic dimension of the inhomogeneity. 
Accordingly, nk is a sufficiently rapidly decreasing 
function of k, so that on performing the F- 1-transfor­
mation of the expression (3) we have the main contribu­
tion to the Fourier integral being made by the small 
values of k in the region k < ko, where ko ~ x; 1• 

The assumed restrictions on the form of the initial 
r!istribution are not very stringent. They allow the con­
sideration of a broad class of initial conditions which 
are of physical interest. At the same time, under the 
assumptions made with respeet to n(x, 0), the analysis 
gets simplified considerably s:ince it is then sufficient 
to consider in formula ( 4) (see below) only the region 
of small k. 

3. ESTABLISHMENT OF A STATIONARY 
DISTRIBUTION OF CHARGE 

In what follows we shall, for definiteness, understand 
by f0 a Maxwellian distribution function with dispersion 
VT. Let g(v) also be a Maxwellian distribution function 
with dispersion VT. 

Let us expand the integrand in (3) in a series in pow­
ers of kv /p and let us limit ourselves to the first two 
nonvanishing terms. Carrying: out the integration with 
respect to v, we obtain 

n, ( k'v/) [ ro.' ( k'vT') ]-' n,p==- 1--- 1+-- 1--3--
p p' p' p' 

( 4) 

Where w~ = 41Te2no/m. The solution (4) is clearly valid 
for II« (we/vT), (we/vT)2 • 1:' By taking into account 
what we said at the end of the last section, we can write 
these conditions in the form E = (rd/Xo)2 « 1, 
t = (rd/Xo)2 « 1 where rd = V;T/W . Notice that exactly 

'>we should bear in mind that (4) has practically only two poles 
P1,2 "'±(w. + 'hkvT) (see (3•4]). 

the same limitations on the shape of the inhomogeneity 
were used in [3 l, 

In a cold plasma, i.e., for VT = 0, we have from (4) 

( t' ) d'n(x' 0) 
n(x',t')=n(x',O)cost'+2esin'- ' , 

2 dx'' (5) 

where x* = x/Xo, t* =wet. 
We see from this that the thermal motion of the 

electrons of an inhomogeneity leads only to additional 
pulsations, but not to the escape of these electrons from 
the initial volume. 

Let us now determine the asymptotic behavior of 
n(x*, t*) for VT * 0. After the L - 1-transformation of the 
formula (4), in the F- 1-transformation appears an inte­
gral of the type 

00 . 3 _I e-•••x·n,• cos [ ( 1 + Z ek•') t' ] dk', 

where k* = kXo· At large t* (t* >>E) the behavior of 
this integral is determined, in the main, by the rapidly 
oscillating function cos [ (1 + %Ek* 2)t*]. The function 
nk*, on the other hand, can, in the first approximation, 
be assumed to be constant, setting, say, nk* = %n°x0 , 

where n° = n(O, 0), and can be taken outside the integra­
tion sign. 

Bearing this in mind, we obtain from formula (4) for 
vT = 0 . v-;-{ ( x"e x''e ) n(x•, t') = n' -- cost' cos--+ sin-

12et' 4t' 4t' 

( x''e x"e ) } -sint' cos---sin-- . 
4t' 4t' (6) 

This result attests to the fact that asymptotically a 
cold inhomogeneity completely diffuses out in a hot 
plasma with a characteristic time t * ~ E. This agrees 
with Vlasov's result[ 3 J cited above. The density of the 
inhomogeneity decreases as ..ff*. 

Allowance for the thermal motion of the inhomogene­
ity electrons leads in the F- 1-transformation of (4) to an 
additional term of the form 

00 3 t' L e_;,,.• k•'n,• sin' [ ( 1 + 2 k"e) Z] dk'. 

Let us apply the preceding arguments to this integral, 
using the formula 2 sin2 (a/2)- cos Ct'. As a result, we 
obtain an expression for n(x*, t*) consisting of two 
parts: one part asymptotically decays like (6), while the 
second is not dependent upon t*. And the density after 
the time determined by the condition ..ff*>> (Ef312 will 
be given by the time independent expression 

e d'n(x', 0) 
n(x',t'-+oo)=-

2 dx'' 
(7) 

Corresponding to this 

<p(x', t'-+ oo) = -2ner.'n(x', 0). (8) 

Thus, a hot inhomogeneity does not spread completely. 
The density and the electric field in the stationary state 
being established are proportional to the initial temper­
ature of the inhomogeneity. 

Obviously, the distribution (7) will subsequently 
spread under the action of collisions and, in this sense, 
it is quasistationary. 
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4. A MOVING INHOMOGENEITY 

Let an inhomogeneity with a Maxwellian velocity dis­
tribution have along the x-axis an initial velocity v0 : 

g(v)=-=exp ----0 - • 
1 { (v-v)'} 

v;f2n 2vT' 

Expanding again the integrand in (3) in powers of kv /p 
and restricting ourselves to the first two terms, we ob­
tain after integrating with respect to v 

n," = n,p'[ (p + ikv,) (p' + w.')]-•. (9) 

The L - 1 -transform of formula (9) yields 

n,(t') = ~(x'e'•'' + ix sin t•- cost') (10) 
X -1 ' 

where K = kv0/we. 
If 17 = v0 /XoWe << 1, then we should expand (10) in a 

series in powers of K. Limiting ourselves to the first 
two terms of the series and carrying out the F- 1-trans­
formation, we obtain 

( dn(x' 0) 
n x',t')= n(x',O)cost' +rJ ' sint'. 

dx• 
(11) 

We see from this that the inhomogeneity does not move: 
the existence of an initial velocity leads only to oscilla­
tory density shifts about the point x = 0. 

In the opposite case when 17 >> 1, we have by neg­
lecting in (10) terms of the order of unity in comparison 
with K, and after performing the F- 1-transformation, .. 

n(x',t')=n(x'-rJt')-rJ-'sint' J n(x',O)dx'. (12) 
0 

Thus an inhomogeneity may move in a plasma only with 
a sufficiently high velocity which depends on the dimen­
sions of the inhomogeneity. In contrast to a stationary 
inhomogeneity, a moving inhomogeneity does not excite 
plasma oscillations and its density in the system of co­
ordinates attached to it does not, in the first approxi­
mation, vary in time. 

The expressions (11) and (12) have been obtained with 
no allowance for the thermal motion of the electrons of 
the inhomogeneity and the background. It can be shown, 
in complete analogy to the preceding section, that the 
thermal motion of the particles of the background leads, 
for 17 << 1, asymptotically to a stationary state similar 
to the expressions (7) and (8). For 17 >> 1 the tempera­
ture of the background does not, in the first approxima­
tion in K, influence the motion of the inhomogeneity, i.e., 
the first term in (12) does not change while the second 
term decays asymptotically. Thus, the motion of anini­
tial distribution of charge with an initial velocity is 
asymptotically stationary. 

5. THE QUESTION OF THE STABILITY OF A 
PLASMA WITH CHARGED BEAMS 

Conditions often arise when an uncompensated beam 
of charged particles appears in a plasma. The beam 
may be introduced into the plasma artificially (electron 
beams in electron-beam amplifiers, ion beams in traps), 
may appear under the action of external fields ("run­
away" electrons); the beams develop in certain proc­
esses in cosmic plasmas, etc. 

At present beam instability due to quasineutral 
beams have been well investigated (see, for example 
[5-7 J ' ). Can charged beams be called an instability of the 
same type? 

The system plasma plus charged beam is not in the 
general case stationary to the same degree as the sys­
tem plasma plus quasineutral beam. Therefore, the 
generally employed scheme of the theory of small per­
turbations is not, generally speaking, applicable to it. 
However, if it turns out that the characteristic times of 
the nonstationary processes are much larger than the 
time necessary for the development of an instability of 
the initial states, then this scheme may be applied, as­
suming that the initial state is, in the first approxima­
tion, stationary. 

It was shown above that the motion of a charged 
beam is possible only if the dimensions in the direction 
of motion are bounded. Let us assume that the time 
taken by the beam to cross the volume it occupies is 
much larger than the time of development of an insta­
bility, i.e., t = x0/v0 >> y- 1 where y is the negative 
damping of the instability. This, in our case, is the re­
quired condition for stationarity. On the other hand, a 
moving beam exists only at a velocity v0 >> XoWe. So, 
in order that a charged beam may give rise to an insta­
bility, it is necessary that the two conditions 

Vo ~ XoY and Vo ~ x,w,. (13) 

be simultaneously satisfied. Assuming that the first of 
the conditions of (13) is fulfilled, we obtain for y the 
well-known expressions (see ( 5 - 7 J) from which follows 
the inequality y <<we. As a result, we see that the con­
ditions (13) are incompatible. Physically, this means 
that a charged beam can move in a plasma only so rap­
idly that it does not have time to excite an instability. 

This is valid not only for electron beams, but also for 
ion beams. Thus, weak charged beams in a plasma do 
not lead to an instability. 
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