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An approximate analytic solution is obtained for the problem of the interaction between a modulated 
electron beam and a plasma in the nonlinear stage up to the wave state close to the "breaking" of the 
wave. It is shown that along with the growth of amplitude the profile of the traveling wave is strongly 
distorted; the character of this distortion is determined by the dispersion of the beam-plasma sys
tem. It is shown, in particular, that under certain conditions the amplitude of the second harmonic can 
exceed that of the fundamental wave. The results are consistent with experiments on the anomalous 
scattering of a modulated electron beam in a plasma. 

ONE of the strongest nonline·ar effects arising during 
the propagation of longitudinal waves in a plasma is the 
distortion of the wave profile. c 1 l This process has 
heretofore been studied theoretically only for stable 
systems. There has been practically no analysis of the 
nonlinear development of waves in unstable plasma sys
terns, particularly in beam-plasma systems. However, 
numerical studies c2 - 5 l and laboratory experiments cs, 7 l 

indicate that the nonlinear distortion of wave profiles 
plays a decisive role in the dynamics of beam-plasma 
intex·actions. It has become necessary to analyze ana
lytically the characteristics of nonlinear wave forma
ti.on in these interactions. The present work obtains an 
approximate solution describing the behavior of a beam
plasma system in the nonlinear stage and shows the 
role played by the dispersion of this system in the non
linear distortion of the wave profile. 

We shall limit our analysis to the spatial evolution 
of a wave in a collisionless plasma consisting of elec
trons and a fixed ionic background. The electron beam 
passing through the plasma will be considered as veloc
ity modulated at its entrance into the system: 

vJ,=o = v, sin(J)t, j,J,=o = 0, (1) 

where v is the variable component of the beam veloc
ity and jb is the variable component of the beam cur
rent density. A unique description of the system can be 
obtained only if definite boundary conditions are im
posed. The conditions (1) are not basic requirements of 
the nonlinearity here considered and were chosen only 
because they can be fulfilled easily in experiments. The 
electrons in both the plasma and the beam are assumed 
to be cold (Te = 0). 

From Maxwell's equation for an irrotational field of 
longitudinal oscillations 

. +· + 1 oE 
]p ,. -4 -=0, 

n at 

the expression for the plasma current density 

and the equation of motion of the plasma electrons 

dv. =!_E 
dt m 

in the approximation where the plasma oscillations (but 
not the beam oscillations) are linear we obtain an equa
tion for the electric field E: 

a'E a· 
-+Q.'E=-4n2 

at' at ' 
(2) 

where U is the plasma frequency. We note that the in
dicated approximation is justified by the facts that the 
waves have a greater velocity than the plasma electrons 
and that the beam electron concentration can be chosen 
as much smaller than the plasma concentration. 

We shall assume that the variable component of the 
beam current density can be expanded in a Fourier se
ries of traveling waves: 

i• = t. A.(z)sinnw ( t- :, ) + t. B.(z)cos nw (t- :, ), (3) 

where v0 is the constant component of the beam veloc
ity. From (2) we then obtain 

E = 4n L, Q.' .:_wn'w' [ B.(z)sinnw( t- :, ) - A.(z)cos nw ( t- :. ) ] . 
n=l ( 4) 

The coefficients 
23/(1) 

A.=~ J j, sinnw (t- _!___) dt, 
1l v, (5) 

0 

Zn/m 

B.=~ J j,cosnw(t- _!_)at 
1l v, 

0 

are obtained by using the continuity equation of the beam 
current density in the Lagrangian form 

j,dt, = jdt, (6) 

where jo is the current density of the beam at its en
trance into the system, j is the beam current density at 
a point z, to is the time when an electron enters the 
system, and t is the time of its arrival at the point z. 
The variables to and t are related by 

' dz 
t = t, + 'I' = t, + J---:--:-----:-:--.,-----

0 L'o + v(z, to)+ v, sinwt0 

where T is the time of electron flight from the point 
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z = 0 to a given point z; v(z, t0 ) is the variable compo
nent of the velocity resulting from the action of the 
plasma's electric field. We determine v(z, to) from the 
expression for the increment of the electron's kinetic 
energy W when it proceeds from 0 to z: 

~W = mlv,+v,sinwl,+v(z,to)]'/2- m(v0 - v,sinwt,)'/2=~] E(z,t 0 )dz, 

Assuming v(z, to) + v 1 << v0 , we obtain approximately 

v(z, t,) = _e_s' E(z, t,)dz, 
mvo u 

z e s' s' vz t = t, +----, dz E (z, t,) dz- -'-. sin wt,. 
~ m~ o o ~ 

(7) 

Using the notation 

ew s' s' v,zw g(z,l,)=--, dz E(z,t,)dz+--sinwt, 
mvo I} 0 Voz ' 

(8) 

from (5)-(7) we obtain 
• 211/(ll 

W}o s An =-;- sin n [ wt, -g (z, t,) J dt,, (9) 

, 2n/w 

W}o s Bn =--;- cosn[wt, -g (z, t,)]dt,. 

• 
By twice integrating both parts of (4) from 0 to z and 
using (7)-(9), we obtain the following equation for 
g(z, to): 

2 3 00 :1: z 21'1/(1) 

g=w,w ~ n ·fdzf·[sinn(wt,-g)fcosn(wt,-g)dt, 
1Wo2 ~ QZ- n 2(t) 2 

n=t o o o 

S2n/w' ] V,ZW 
-cos n(wt,- g) sin n(wt,- g)dto dz +--sin wt,, v 2 

0 0 

(10) 

where wb =,; 4ne2nb/m is the natural frequency of the 
beam. Knowledge of g(z, to) enables us to determine 
the profiles and harmonics of the beam current den
sity, the electric field, and the beam velocity, and also 
to determine the coordinate at which the "breaking" of 
the wave occurs. By using (7) and (8) to calculate the 
wave slope we obtain 

av av at, fJv/fJt, 
Tt = Tt; "'t = 1- w-' fJg/ato · (11) 

If at some distance the oscillatory amplitude of 
w - 1 og/i:lt0 equals unity the beam velocity becomes dis
continuous . 

It is easily seen that the solution g(z, to) of ( 10) is 
an odd function of t0 , so that the solution may be sought 
in the form of the Fourier series 

g(z,to)= ~ Xn(z)sinnwt,. 
n=i 

However, our subsequent analysis will show thai certain 
limitations will leave only the first term of this expan
sion in the desired solution. When we assume Xi0 >(z) 
<< 1, the solution of (10) in first approximation becomes 

g(0l(z, to)= x,<-> (z)sin wt,. (12) 

Inserting ( 12) into ( 10) and expanding sin n( wt0 - g) and 
cos n( wto - g) in series of Bessel functions, to the first 
order in Xi0 > and far from higher harmonics 

n = nw (n#o 1) we obtain 
' ' 

X(o)- 2 sd sx(o)d + v,zw 
1 -Yt z 1 z _-, 

v 2 
0 0 0 

Wo 

y, = -v-:ot'~(::;:Q;:;:/ w=)c:;:,=_==;-1 ( 13) 

The solution of ( 13) is 

(14) 

where sk = vg/vlw. For w < n' x~O) increases expo
nentially w:..u Jistance. We shall henceforth consider 
only this case of growing oscillations. 

After inserting (12) and (14) into (10) we can evaluate 
the error incurred when this solution is used at dis
tances where Xi0 > is not very small. When the modula
tion frequency lies within narrow limits near the plas
ma frequency such that la~/ail << 1, where a~ 
= [ (n/nw)2 - 1] -\the error is small even for X~0 > = 1. 
In the case the error is about ]'8 • 

When the modulation frequency differs considerably 
from the plasma frequency, (12) and (14) become un
satisfactory, primarily because the second harmonic 
appears in g(z, to). We therefore seek a more exact so
lution of (10) in the form 

g<'l(z, to)= x,<•J (z)sin wto + x;t) (z)sin 2wt,, ( 15) 

assuming Xi1> << 1, X~1 > << 1. We consider the region 
of modulation frequencies far from the resonances n 
= nw (n ~ 3). Inserting ~15) into (10) and neglecting 
terms of the orders xi> X~1 > and [X2<1>] as compared 
with xi 1> and X~1> + Xi1>, we obtain 

X(1)- v,zw + ,s' d s' x<t) d 
I - -,- 'Yt Z l Z, 

Vo o o 

where Y2 = wba2/vo. The solution of (16) is 

x:') = shy,z 
y,S. ' 

x<•>- y,'-y,' [ ch2y,z . 4y,2 chy,z 
2 

- 4yt 2SA2 4yt2 - V22 _, Vz2 (4y/- Vz2) 
+.!_] y,2 

(16) 

(17) 

At sufficiently large values of z the expression for X~1 > 
retains only the most rapidly growing terms. We thus 
obtain 

2 2 

Xi'!~ a, -a, [x;'>J' for a,'<O, (18) 
2(4a,'- a,') 

2 2 4 2 ] x<•>~ a, -a, [x<•>J'[~(2 sx<'l)''''·-'-1 f a,'>O. 
z _, 2(azz- 4a/) t azz Yt k t or 

(19) 

We have seen that (12) and (14), which were obtained 
for small I gl, comprise a satisfactory solution when 
I gl ~ 1 only within a narrow range of modulation fre
quencies, since this solution neglects the second har
monic in g(z, to). The solution represented by (15) and 
( 17) is shown to be sufficiently accurate for I g I ~ 1 in a 
considerably broader range that includes frequencies 
near w = n/2. The entire analysis does not pertain, of 
course, to the cases of the resonances when w = n and 
n/2. 

When (15) and (17) as a solution for g(z, t0 ) are sub
stituted into (9), the harmonics of beam current density 
and, correspondingly, of the electric field are expressed 
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FIG. 1 FIG. 2 

FIG. t. Wave profJles of beam current density for X1 = 1: a-w = 
0.91 n; b-w = 0.6n. 

FIG. 2. Dependences of the first (1) and second (2) harmonics of 
beam current density on the coordinate L = -y1 z/arc sh -y1 Sk for w = 
0.4SU, 'Y1 Sk = 100. 

through combinations of Bessel functions of the first 
kind having the arguments nXi1> and nX~1>. By analyzing 
the spatial dependences of the amplitudes of these har
monies it is shown that when w lies near the plasma 
frequency the growth of the wave of beam current den
sity is accompanied by a strong distortion of its shape, 
but the electric field practically retains its sinusoidal 
time dependence. When the modulation frequency dif
fers considerably from the plasma frequency the non
linear distortion of the wave profile of beam current 
density is accompanied by distortion of the electric 
field wave profile. Figure 1 shows time-dependent 
wave profiles calculated on the basis of (6)-(8). 

The character of the nonlinear distortion of the wave 
profiles has thus been shown to depend strongly on the 
modulation frequency. Nevertheless, dense electron 
bunches are always formed, with a variation of only 
their "fine" structure. 

A new effect appears when the modulation frequency 
w is somewhat smaller than 0/2 and therefore y~ 
>> y~ > 0. Equation (19) then shows that, beginning at a 
certain distance, X~1> exceeds Xi1> and therefore the 
amplitude of the second harmonic exceeds that of the 
first harmonic (Fig. 2). "Breaking" of the wave can 

therefore occur twice within a modulation period. 
Equations (15) and (17) comprise a satisfactory ap

proximation that describes the beam-plasma interaction 
up to a state which is close to the "breaking" of the 
wave. This is confirmed by a comparison of our re
sults with experimental work£ 6 ' 7 l where it was shown 
that "breaking" of the wave occurs in the "meniscus;" 
a distinct scattering zone whose coordinate is deter
mined by the condition X1 Rl 1. Here occurs the maxi
mum of the probe-detected oscillations, which are 
strongly nonsinusoidal with a large harmonic compo
nent. As the modulation frequency is varied both the 
location of the "meniscus" and the external appearance 
of the scattering zone are changed. This effect may pos
sibly be associated with the frequency dependence of the 
nonlinear wave profiles that has been observed in the 
present work. It should also be noted that the "break
ing" of the wave which occurs twice during a modula
tion period-an effect that follows from our solution
has also been observed experimentally. 

The author wishes to thank M. D. Gabovich and E. A. 
Pashitskii for discussions of the results. 
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