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An approximate solution is derived for the inverse scattering problem at fixed energy in a central 
field, for the case of strongly oscillating cross sections. The imaginary part of the optical-model po
tential is determined in the quasi-classical approximation from the known real part of the potential 
and the differential cross section. 

THE most direct method for determining an interaction 
law from scattering data-the inverse problem-either 
presents, in its exact solution, considerable mathemati
cal difficulties, or requires information that is difficult 
to obtain. Under certain conditions, one can overcome 
these difficulties and construct fairly simple approxi
mate solutions that are of interest because of the logical 
simplicity of the inverse-problem approach to the exper
imental data. Thus, for potential scattering in a central 
field with E = const, it is possible to solve the inverse 
problem in the quasi-classical approximation. In this 
case, it is necessary to establish only one function 
6(p), the dependence of the scattering angle on the im
pact parameter. Since the modulus and phase of the am
plitude, and also the potential, are expressed in a known 
waylll in terms of 6(p), additional conditions such as 
the unitarity condition are not required to determine the 
potential from the differential cross section. 

Problems of this type arise, e.g., in nuclear physics 
in the case when a nuclear scattering experiment is 
analyzed in the optical model, in optics in light scatter
ing in a refracting (and possibly also absorbing) medium 
with central symmetry, in atomic collisions, etc. Of 
course, in the presence of absorption, we are concerned 
with determining only the refractive or absorptive part 
of the interaction (the latter is determined in the pres
ent paper for nuclear scattering in the optical model). 
The essential point is that in most of these cases the 
cross section will be a strongly oscillating function of 
the angles, and this is used in this paper for an approxi
mate solution of the inverse problem. 

For a monotonic cross section, 6(p) is defined sim
ply as the inverse function to p(8), where . 

p' (6) = J a(6) de, 
• 

. da 
a(6)=2smeag· 

In the presence of interference, when the cross section 
has the form 

a(6)= I~ Y :a p.'exp{ ~ s. }j' =l~ l'a.exp{ ~ Res.Jj', (1) 

the problem of deriving 6(p) becomes more compli
cated since p(8) is here a many-valued function. In 
such cases, the problem has been solved by means of 
parametrization of the potential (or 6(p)) with an as
sumption about the number of interfering waves (cf., 
e.g., £2 l ). 

However, for sufficiently large ka, one can, without 
making similar assumptions, construct all the monotonic 
branches Pn< 8 ), at the cost of some loss of exactness. 
In this case, the cross section will be a strongly oscil
lating function of a known type, whereas Pn(8) is a 
smooth function which is practically unvarying over the 
period t::..8"' (ka)-1 of the oscillations. The validity of 
(1) will be violated only in narrow intervals 6.8 
"' (ka) -2 / 3 close to the caustic rays and in regions of 
order (ka)~1 around 8 = O, JT. Therefore, the average of 
(1) over the region (ka)-1 << t::..8 << 1 is equal to 

For constant I ani, this averaging is clearly exact to 
within "'(ka)-1; if dan/d8"' 1, then averaging over an 
interval t::..8 "' (ka)-1 12 will give an accuracy for the pro
cedure of order (ka)-1 12 • For the case of two interfer
ing waves, when 

a(6) = Jad + Ja,J + 2liJa,a,J sin!i-• Re (S,- S,), 

the averaging can be performed with accuracy of order 
(ka)-1, if it is carried out over the range of angles t::..8 
"' (kaf1 between the extrema of the cross section, which 
coincide, within (ka)-\ with the extrema of sin ti-1 

X Re(S2 - S1 ). __ 

The quantities a k, which are obtained by analogous 
averaging of the corresponding powers of (1), can be 
expressed in terms of lanl equally simply. For exam
ple, 

If now, using ak, we construct elementary symmet
ric polynomials ci from the I an I : 

~ - ~ 1-c,(6)= £....! ja.j=a(6), c,(6)= £....ija.aml=2[a'-(cr)'], 
n n<m 

it is clear that in the range of angles where 6(p) has 
branches, the ci for i > j vanish identically, and the 
remaining (i :5 j) relations (3) enable us to calculate 

(3) 

I an( 8) 1. Obviously, an (n = 1, ... , j) will be the roots 
of the polynomial: 
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In the classically unattainable region, where the cross 
section is small (like exp - kal:l ), j = 0 within the error 
bars o:!' the method. 

The averaging procedure gives, in all, !ani, the num
ber of real branches of p(B), and the boundaries of the 
region for each branch. The points e = 0, 1T and the 
extrema l:l0n of the function E>( p), at which ( p2}' changes 
sign, can serve as these boundaries. Finally, Pn(B) is 
found from (p~)' =±Jan! by simple integration; the un
known signs and constants are determined from the 
conditions that E>(p) (for p 2: 0} be single-valued and 
be continuous at the boundaries, and from the condition 
that E>(O} be equal to zero or ±7T. 

Thus, for example, in the simplest case of scattering 
with interference, when j = 2 in the region 0 < e < eo 
and j = 0 for 1T > B> 80, it is clear that E>(O) = 0 and 
90 is an extremum of E>(p). Then 

1. ---
p,'(8) = 2 J [c, -jc,'- 4c,]d8, 

1 •• 
p,'(8) = p,'(So) + 2 s [c, + "fc,'- 4c,] de. (4) 

• 
Equations (4) give jE>(p)J for potential scattering in 

an attractive or repulsive field. Correspondingly, the 
solution of the inverse problem will be two potentials: 

~ln(1-vu)=± j JB(p)jdp, ~,\=r'[1-v,,2 (r)], 
2 fp'-~' 

1)1,2 1,2 

v(r)= V(r) (5} 
E , 

with v; 1(r) + v;1(r) = 1. In particular, for the depth of 
the potential well we shall have 

1 ., '(9) 
lv(O) I= exp{-J ln~as} -1. (6} 

n , p,'(9) 

Another typical case of scattering with interference 
will be the situation when there exists one branch I a 1 l 
in the region 0 < () < 1T, and two more branches I a 2 l 
and la3 ! for 0 < e< 80 • Then !E>(O)I = 1T and 90 is an 
extremum of E>(p); assuming for definiteness that for 
() = 0 the value of I a1 l is close to I a2 l , we shall have 

(7) 

.. 
p,' = p,'(O)+ J Ja,Jd8. 

Equations (7) define a positive function of p having a 
discontinuity at p = p1(0}. If la1 , 2(0)I-1 are not small 
(quasi-classically), the function we have constructed is 
the modulus of the true function E>( p), which changes 
sign at p = p1(0).1 l This case corresponds to scattering 
in a field consisting of attraction and repulsion. 

To conclude, we shall consider potential scattering 
in the optical model from the point of view of the in
verse problem. The complex potential in this model 
contains a practically arbitrary function, constrained 
only by the integral condition determining the total reac
tion cross section. In the quasi-classical approximation, 

llJf the averaging is insufficiently exact, a further possibility appears: 
El(p) has at this point an extremum equal to zero. 

it is impossible, because of the divergence at small an
gles, to set up this condition, and therefore the inverse 
problem must here include an assumption that removes 
this arbitrariness. It is natural to assign the form of 
1.he real part of the optical potential and solve the in
verse problem for the imaginary part. 

The presence of an imaginary part W in the poten
tial leads to the fact that the cross-section will be an 
exponentially decreasing function with argument of or
der I ka()~ I (for ~ = W /E small}, and the impact param
eters p(O} will be complex, with Imp~ ~. 

For the case under consideration, we shall elucidate 
the condition for which the scattering is potential scat
tering, i.e., the condition for which we can neglect the 
contribution to the amplitude from poles of the scatter
ing matrix (in the complex angular momentum plane[ 31 }. 

We shall consider a situation which is almost critical 
(in the sense of the appearance of resonances). Then 
the conditions for spiral scattering[ 4 J 

p'=r'(1- v), e(r) == 1-v- 1hrv'=0, v= (V(r) + iW(r)) iE (8) 

will be fulfilled for the almost real values, rc and Pc; 
more exactly, for small Im rc and ~. we shall have 

In this case there will exist a scattering-matrix pole 
PS close to the real axis, since the matrix has a pole at 
a distance of order 71: = k-1 from Pc· Then the contri
bution to the amplitude from the pole Ps will be of or
der exp { -(8/.\) Im Pc}. Hence follows the condition 
on the real part of the optical potential (for ~ << 1) for 
which scattering through finite angles can be regarded 
as potential scattering: on the real axis we shall have 

e(r)==(1-v(r)- 1/2rv'(r))>s'\ v=V/E. (9) 

For ~ << 1/ka, in place of (9) we shall have E 
>> (ka)-2/3. 

If condition (9) is fulfilled, then in the neighborhood 
of points on the real axis of the complex plane p ·= x +iy, 
we can write an expansion in ~ for the function 

- s~ pdu d 
B(p)= ln(1-v), 

ju'- p' du 
u' = r'(1- v). (10} 

Using the symbol E> (x) for the scattering angle for scat
tering by the real part of the potential V, we can write 
the expansion in the form: 

Ree(p) =8(x) +O(s'), ImS(p) =ye'(x) -a(x) +O(s'), (11) 

where 

a(x)=I xdt d..!!_, t'=r"[1-v(r)]. 
jt'- x' dt Ee 

c .. 

The system Re S(p) = e, lm e(p) = 0 determines 
p n(B) and, consequently, the amplitude and number of 
the interfering waves. A feature of the interference pat
tern for W * 0 is the absence of caustics: the branches 
Pn(O} for small ~ come together in the neighborhood of 
the points y = 0, x = X 0n, where E>'(x0n) = 0, but do not 
intersect. For ~- 0, the system of lines Im e(p) = 0 
goes over into the real axis x 2: 0 and the group of 
"caustic branches" intersecting the latter at the points 
Xan· 

We shall obtain the desired expression for the imagi-
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nar~ part of the optical potential from the equation 
Im e(p) = 0. Transforming the integral a(x) in (11) by 
a known method,[ll we shall have 

n w J~ ye'Cx>ax (12> 
2 E- V-'f,rV' =-, ix'-t' 

for energies E >max (V + %rV') (cf. CBJ and the con
dition (9)). Hence, to calculate W, in addition to V we 
must know the quantity y = Im p(8). This can be found 
from experiment, if, by the method described previously, 
we determine the I ani, which in the given case have the 
form 

Ja.J= I :e p.'lexp{- ~ Ims.}. ImS.>O. (13) 

Since 

1 d J!mp.J 
~- Im S. = -'--,--'---'-
h d8 ~ 

from (13), by differentiation with respect to the angle, 
we obtain for y << x: 

where xn(IJ) is calculated using V(r), and lan(8)1 is 
found from the experimental cross section. 

(14) 

If V(r) is a monotonic potential well and the number 
of interfering waves is j = 2 in the region 0 < 8 < 80 , 

then, according to (3), we have 

Going over in (12) to integration over the angles, we ob
tain for I W(O) I: 

So . . ~- , 

; JW(O) I=IE- V(O) 1 J~e (I~: I+ I~: I). (15) 
0 

Here, 80 is the limiting classical scattering angle in 
the field V; for E > V(O), we have 80 < rr, i.e., to de
termine W we do not need to know a( 8) in the whole 
range of angles. 

In conclusion, the author is deeply grateful to 0. B. 
Firsov for useful discussion of the work and valuable 
advice. 
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