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The form of the differential scattering cross sections (elastic and inelastic) for high-energy atoms in 
the presence of an inelastic process involving quasi-intersection of terms is investigated. It is shown 
the oscillations in the inelastic cross section at angles greater than the threshold value Tth are there­
sult of interference of contributions from two trajectories. From the experimental phase of the oscil­
lations, [1• 2 J one can find the parameters of the scattering functions contributing to the process, and 
some of the potential parameters. It is shown that in a certain range of angles ( Tfu < T < T 0 ) close to 
the angle THt at which the anomalies set in in the elastic cross section, the latter is the result of in­
terference of contributions from three trajectories (or three branches of the scattering function); at 
larger values ( T > T 0 ), two scattering trajectories contribute. Quasi-classical expressions are ob­
tained which are replaced by quantum expressions in the vicinity of the threshold angles Tth, Tfh and 
of the angle T 0 corresponding to the term intersection radius R 0 • The calculated form of the elastic 
cross section, in which a certain approximation is used for the scattering functions, agrees quali­
tatively with experiment and enables us to formulate a prescription for determining the term intersec­
tion radius R0 from experimental curves for the elastic cross section. 

THE intensive measurements of differential scattering 
cross sections recently carried out have made it possi­
ble to reveal a number of fine details that were previ­
ously inaccessible. Thus, differential cross sections 
are presented in [ 1 • 2 l for elastic and inelastic scatter­
ing of He+ by Ne (Ar) and these indicate unambiguously 
that the inelastic process (excitation of Ne into a 2p5 3s 
state) is due to intersection of the ground and excited 
terms. The cross sections for these processes (as for 
many others not mentioned here) display characteristic 
"Stueckelberg" oscillations, associated with the fact 
that different trajectories can make a contribution to 
the scattering (elastic and inelastic) at a given angle 
(since a transition is possible for both forward and 
backward radial motion in the term-intersection re­
gion). 

To extract the potential parameters from the details 
of these oscillations, we need a theory of such oscilla­
tions near the threshold of the inelastic channel. In 
[ 3 -sl, different variants are given of a quasi-classical 
description of the phenomenon, in which the amplitudes 
and phases of two interfering contributions to the 
cross section are described by classical actions along 
the corresponding trajectories. Close to the threshold, 
however, such a simple description is inapplicable, and 
a more detailed quasi-classical analysis (and at certain 
angles a quantum analysis) is necessary. For an inelas­
tic process close to the threshold, such an analysis was 
performed in [7 l. 

In the present work a theory is developed of the 
anomalies in the elastic scattering near the threshold 
of an inelastic process due to quasi-intersection of 
terms. We consider the case of high energies, when the 
analysis of the cross sections becomes comparatively 

simple. For the sake of generality, in addition to deriv­
ing new results for the elastic scattering we also repeat 
the derivation of the expression for the inelastic cross 
section, in a form which is different from [7 J and more 
general and intuitive. We apply the theory to discuss the 
experimental data of [ 1 • 2 J for the system He+-Ne. 

As always, at high energies we shall use reduced 
variables for the angles and cross sections 

-r:=EB, p,1(-r:, E)= 8sin8·a,1(B, E), (1) 

where E is the energy of relative motion of the collid­
ing pair, and () and 01j ((),E) are the scattering angle 
and differential cross section for scattering with a 
transition from state i to state j. 

We consider the simplest, but often encountered (cf., 
e.g., [s l) situation, when the inelastic process can be 
described with a basis set of only two adiabatic electron 
states, the terms (potential functions) of which have a 
quasi-intersection in the vicinity of the point R0 • In such 
a case, from this adiabatic basis set it is easy to con­
struct a "diabatic" basis set[9 l { cp1(R, q) cp2(R, q)}, in 
which the Schrodinger equation for the wavefunction 

'¢(R, r,) = x,(R)rp,(R, r,) + x,(R)rp,(R, r,) (2) 

is described only by a potential matrix, without a dif­
ferential non-adiabatic coupling: 

1 ( X• (R)) ( V, (R) V.,(R)) ( X• (R) ) 
2m ~a x,(R) = V,.(R) V,(R) X,(R) . (3) 

Here and below, li = 1, and m is the reduced mass of 
the pair of atoms. The terms V1(R) and V2 (R) of the 
"zeroth" (not including v12) approximation intersect at 
the point R0 and at large distances correspond to the 
excitation energy AE = V2(oo)- V1(oo). 
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In the well-known high-energy approximation (or the 
impact-parameter approximation, [ 10• 11• 18 l the nuclear 
wavefunctions Xj(R) have the form of modulated plane 
waves 

X;(R) = e"'c;(b,z)exp {- i : _IV;(R')dz'} , 

R' =..Jb2 + z' 2 , with amplitudes Cj satisfying the first­
order equations: 

i dc;=~V;~<exp{-..!..J' (V1 -V,)dz'}c•; j=l=k, j,k=1.2 (4) 
dz u u -~ 

and the appropriate boundary conditions: Cj (z =- oo) 
= tljj . Here, b is the impact parameter, k = ..J 2mE is 
the ~omentum and u = ..J 2m/E is the relative velocity .11 

The differential scattering amplitudes fjk( 9) are ex­
pressed in terms of the transition amplitudes 
Cj(b, z = +oo) in the usual way/ 8 • 12 l replacing the sum 
over the angular momenta l by an integral over the im­
pact parameter b = '11 (1 + lfa)/mu. 

For elastic scattering with each of the unperturbed 
potentials V1(R) and V 2(R), the high-energy approxima­
tion leads to the following equations for the correspond­
ing scattering functions b~( T) and b~( T) connecting the 
scattering angle with the impact parameter: 

-b[f _!_dV;(R) dz]l =-r· R'=b'+z'. (5) 
-~ R dR •=•~<'> ' 

Equation (5) is the well-known[ 13 l formula for clas­
sical scattering through small angles and reflects the 
well-known correspondence principle (cf., e.g., [lJ) 
which states that at high energies the reduced cross 
section pj( T) =% dbj( T)/d ln T depends only on one 
combinatiOn T = E 9 of the two variables E and 9. 

Figure 1 shows the form of b~< 21 ( T) (more, correct­
ly, the inverse functions T~t21 (b)) for the case when 
V1(R) is a purely repulsive potential and V2(R) is 
weakly attractive at large distances. The function b~(T) 
for unperturbed elastic scattering is monotonic, so that 
small angles T correspond to large b. On the basis of 
this, it was assumed[l• 2 l that the angle T characteriz­
ing the beginning (from the side of small T) of the os­
cillations in the elastic channel corresponds to the 
maximum impact parameter for which the trajectory 

a 

FIG. I. Form of the scattering 
function. The functions T~(b), 
T~(b) and r(b) correspond to 
scattering in the potentials V 1 (R), 
V2 (R) and V = Yz(V1 + V2 ). (a) 
The scattering functions T 1 (b) and 
T2 (b) for the inelastic process; (b) 
the scattering functions TT(b ), 
T~(b) and T~(b) for the elastic pro­
cess. The marked parts of the 
T-axis indicate the regions of vio­
lation of the quasi-classical de­
scription. 

l) At high energies E ~ L'l.E, the difference between the velocities for 
each term can be neglected. 

touches the region of intersection; this value of the im­
pact parameter consequently coincides with the radius 
R0 of the intersection of the terms. However, as we 
shall see below, this assumption is not correct, since 
the scattering functions for atoms under the influence of 
a combination of two potentials V 1 (R) and V 2(R) do not 
possess the monotonic character that b~( T) has. 

At energies E greater than .the value Emax at which 
the inelastic scattering reaches its maximum, the mo­
tion of the system derives mainly[a,gJ from the diabatic 
terms V 1 and V2 , so that we can use perturbation theory 
in the interaction V 12 between the states cp 1 and cp2 to 
calculate the transition amplitudes from (4). Then the 
reduced cross sections p 11( T) and p12( T) for elastic and 
inelastic scattering, correct to terms of second order 
in V 12, are written in the form 

't I J~ ,1 2b { . s~ dz s· dz . e _ } I. 
Pu = 21t f -;;:db e'"•'<'·'>- -;;: V.,(R) -;- V,. (.R)e'8 <'·'·'·'> , 

0 (6) 

p .. = 2: I j -v 2: db j d: v,,(R)e'"<'·'·'> r; 
0 (7) 

R = (b' + z') 'n, .R = (b' + z')"'. 

Here the action2 > 

1 ~ 

S,0 (b,-r)=-;;{- J V,(R)dz-2b-r} (8) 

corresponds to the unperturbed motion through the 
term V 1(R). The action Se(b, z, z, T) corresponds to 
elastic scattering with transitions at the points z and 
z: 

~ .. 
S0(b,z,z,-r)=: {- JV,(R')dz'+ 1 ~V(R')dz'-2b-r}, 

' 
(9) 

~V= V,- V,, R'= (b'.+iz")'k. 

Finally, the action S(b, z, T) corresponding to the in-
elastic process is equal to · 

S(b,z,-r)= ! {2 j ~' d'ii'd~:) (z')'dz'- j AV(R')dz'-2bt}, (10) 
0 0 

where V = 1/ 2(V 1 + V 2) is the average potential. 
In view of the quasi-classical nature of the atomic 

motion (the exponentials eiS oscillate rapidly), the in­
tegrals in (6) and (7) can be investigated by the sta­
tionary phase (s.p.) method. 

1. We begin with the simpler inelastic scattering. 
The stationary phase (s.p.) conditions in each of the in­
tegration variables b and z in (7) uniquely determine 
the scattering-function branches b11 ( T) and z11 ( T) con­
tributing to the inelastic process. In fact, the first of 
these conditions has the form 

aS(b, z, t) I az = ~V(b, z) = 0, 

which means that the (s.p.) point (z11 , b11 ) lies on the 
radius of intersection of the terms: 

(11) 

z.(-r) = ±'{R0'- b.'(t). (12) 

When (12) is taken into account, the s.p. condition in b 
leads to an equation for the branches b11 ( T): 

2>The sign of the term± 2bT/u =±(I + Y2)0 chosen in (8)-(10) cor­
responds to repulsion [ 8 • 12]. 
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±fR02-b2 

[J~ 1 dV(R) d J 1 d(&V) d 11· _ 2 b --- z+ --- z - t. 
0 R dR 0 R dR •=• .<•l 

(13) 

The characteristic form, resulting from (13), of the 
two branches (11 = 1, 2) of the scattering function T(b) 
that contribute to the inelastic process is depicted in 
Fig. 1a. We shall clarify it. A comparison of (13) and 
(5) shows that for large T, when the scattering is deter­
mined mainly by the behavior of the potentials at small 
distances R < R0 , the branches T1(b) and T2(b) merge 
respectively into the functions T~(b) and Tg(b) for un­
perturbed scattering in the potentials V1(R) and V2(R) 
(see Fig. 1a). Further, on decrease of T, the function 
T 1 (b) touches the straight line b = R0 at the point b = R0 , 

T = 'T0 = 'T(R0), where 'T(b), w~ch is the scattering func­
tion in the average potential V(R), is depicted in Fig. 1a 
by a dashed line; z1(T) changes sign at the point T =To. 
In fact, differentiating Eq. (13), in which we can regard 
bas the independent variable with T = T1(b), with res­
pect to b, we obtain the following expansion of T1(b) in 
the vicinity of the point (To, Ro): 

Ro-b,(t)= Ro(!F)'(t-i'o)'+·'·• (14) 

where ~F = F 1 - F 2 is the difference in the slopes Fj 
= dVj(R)/dR IRo of the terms at the point of intersection. 

Finally, at a certain threshold value of the angle 
Tth determined from the equation dr 11 (b)/dblbth = O, the 
branches b1( T) and b2 ( T) run together, being inverse 
functions of a single function T(b), and in the vicinity of 
the point ( Tth1 bth = b1( Tth) = b2 ( Tth)) have the form 

,, 2(t-tth) (15) 
b,(t)= ± v K +••• 

Here, K = d2T11(b)/db2 jbth" 
From the described form of the functions T 11 (b) 

( 11 = 1, 2) (Fig. 1a), it is clear that for angles less than 
the threshold angle T < Tth inelastic scattering is ab­
sent, while for T > Tth the inelastic scattering is the 
result of the interference of the two contributions from 
the two branches b1( T) and b2( T) of the scattering func­
tion. A calculation of these contributions by the s.p. 
method gives the following expression for the inelastic 
cross section: 

p.,(t) = l"fp.(t)p,e'"•(•) -l'p,(t)p,e'"i'l-'"1' I'. (16) 

Here, 
p.(t) =,tb.(t)db./ dt 

are the reduced cross sections corresponding to the 
functions b11( T); p11 = p(b11(T)) is the Landau-Zener 
transition probability between the terms (in lowest or­
der in V12), which depends on the radial velocity uR at 
the point of intersection: 

(17) 

The phases S 11 ( T) ( 11 = 1, 2) in (16) are the values of the 
action (10) at the s.p. points: S11 = S(b11 ( T), z11(T), T). 
The small phases 0 and 7T/2 for each contribution in 
(16) are determined by the signs of the eigenvalues of 
the matrix of the second derivatives of the action; this 
matrix is 

The difference in the actions ~S = S1( T)- S2( T), which, 
according to (16), controls the interference structure of 
the inelastic cross section, can easily be expressed in 
terms of the characteristics of the scattering functions 
b 11( T): 

2 • 
&S{t) =-u-S M(t)dt, M(t) = b,(t)- b,(t). (18) 

'th 

Thus, the phase of the oscillations in the inelastic 
cross section is uniquely determined by the area of the 
shaded portion in Fig. 1a. 

Quasi-classical expressions of the type (16) for the 
cross section Pij were adduced in r3- 6 l. However, at 
angles close to the threshold angle, the expression (16) 
diverges and becomes inapplicable. The reason for this 
is that the s.p. method is inapplicable in the vicinity of 
the point Tth· The s.p. method assumes a quadratic 
form for the action in the exponential in (7) in the vicin­
ity of the s.p. point. This requires, at least, that the 
determinant of this quadratic form, defined by the ex­
pression: 

~ 1=1!:!_!:!__(~)'1 =-z.t;;.F dt,(b) I .(19) 
!DetD,, {)b' {)z' {)b{)z '•'• uR, db '• 

be non-zero. But, by virtue of the definition of the 
threshold point (dTv /db ITth = 0), we have Det Dtz I Tth 

= 0. This means that to calculate the integral in (7) in 
the vicinity of the point Tth, the quadratic expansion of 
the action S(b, z, T) must be supplemented by the neces­
sary terms of third order in ~b = b- bth and ~z 
= z - Zth (zth = v'R~ - bfh ); this leads to the following 
form for the action in the vicinity of the point zth• bth• 
Tth: 

S = _ 2bth/!;.t + (- 2/!;.t bths _ R,t;;.F s') 
u u Ro UZth 

+ [2.. /!;.t ZthTJ _ ~( zthTJ)'] , 
u R, 3u R, 

Zth bth bth Zth 
6=-/!;.z+-M 1J=-/!;.z---/!;.b. 

Ro Ro ' Ro · R, 

The calculation of (7) with the above action gives for 
the inelastic cross section close to the threshold an ex­
pression analogous to that encountered in the descrip­
tion of the rainbow phenomenon in potential scatter­
ing:£13J 

tbth ( K) -'/• ( 2/!;.t ( K ) -'/•) d't I 
Ptz(t) ~ 4P(bi.,)~ -u <ll' -~ "";; ; K =db' ,~ (20) 

Here, 4/(x) is the Airy function (cf. £7 l) and p(b) is the 
probability defined by formula (17). The expression (20) 
gives e21.ponential attenuation of the cross section for 
T < Tth and goes over to the quasi-classical oscilla­
tions (16), (18) for T > Tth· 

The formula (20) for the inelastic cross section was 
obtained in slightly different variables in £7 l, in which it 
was shown on the basis of experimental data for the sys­
tem He+-Ne from £2l that the periods in T of the first 
(above the threshold) oscillations of p12( TE) are, as also 
follows from (20), linear functions of E1/ 3 (in contrast 
to the dependence E112 which follows from the quasi-
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classical formula (16)). On the basis of these depend­
ences, and also of the energy dependence of the ampli­
tude of the first peak in the cross section, the parame­
ters characterizing the system of the intersecting terms 
responsible for the excitation of Ne have been deter­
mined.[7l Written in the notation of the present paper, 
these parameters are equal to 

V.,'bth , (21 ) 
Tth~930eV-deg; x=14.0at.un.; ~ 'F ~(1.5-1.8)10- at. un. 

"th" 

These parameters were obtained from the character is­
tics of the cross section p 12 within the first oscillation 
period from the threshold. But it follows from (16) and 
(18) that the experimental phase of the oscillations for 
larger T can be used to extract information about the 
dependence ~b( T) not only close to the threshold. In 
fact, at large T (starting from the second period of 
p 12(T)), the experimental phase 2JTN(T,E) of the cross­
section oscillations, where N = 1, 2, ... at the peaks in 
the cross section and N = %, %, . . . at the minima, de­
termines the energy-independent integral: 

1 • 3 
l(t)=-ft.b('r)dT=E'i•[N(tE)--], N;;.2, (22) 

JtUo 4 
- 'th 

where llo is the velocity corresponding to an energy of 
1 eV, so that u(E) = t~ov'E. where E is in eV. At the 
points T 1> T 3 ; 2, T 2 characterizing the position of the 
first peak in the cross section P12> it follows from the 
quantum formulas that the function I( T) has the form 

(23) 

where XN is the value of the argument of the Airy func­
tion .P(x) corresponding to the extrema (N = 1, 2, ... ) 

], evlh 

100 0~ 

FIG. 2. The function I(r), which characterizes the phase of the 
oscillations in the inelastic cross section, constructed from the defini­
tions (25) and (26) on the basis of experimental data from [2) for TN 
in the system He+ -Ne. The points on the lower curve correspond to 
the following energies in eV: 0-500, A-417, 0-376, l:.-333; on the 
upper curve (which is displaced along the vertical by 30 eVY2): A-292, 
0-250, ll-167, 0-125. The solid curve is the theoretical dependence 
of I(r) near the threshold. 

lib, rei. un. 

,J ~kl L --r-r-

tooo zooo /ooo 

FIG_ 3_ The experimentally es­
tablished relative position llb(r) = 
b 1 (r)-b2 (r) of the two scattering­
function branches contributing to 
the inelastic process. 

or the zeros (N = %, %, ... ) of .P(x). For values of N 
starting from N = 2, we have xN = [(3JT/2)(N- %)]213 , 

so that the definitions (22) and (23) of the function I( T) 
coincide. In Fig. 2, the points show the dependence 
I( T) constructed on the basis of formulas (22) and (23) 
and the experimental data for TN at different energies 
from [2J. The solid curve depicts the theoretical be­
havior of I( T) near the threshold 

8 1 v 2 )'' l('t)=-- -('t-t' '• 
3 U 0 X tli 

(24) 

with the parameters T th and K predicted previously [7 l 
(cf. (21)). 

Differentiation with respect to T of the average ex­
perimental curve makes it possible to obtain the depend­
ence ~b( T) depicted in Fig. 3. However, it is not possi­
ble to make a more accurate estimate of ~F than that 
given in [7 J ~F = 20- 60 eV /a.u., since we know only 
the relative ~b, and not the absolute positions of the 
two branches b1(T) and b2(T). 

2. We turn to the more complicated analysis of the 
elastic scattering, the cross section (6) of which can be 
conveniently rewritten in the form (also exact to terms 
"' v~2) 

Pu(t) =p,'(t) +t.p(tE); 

L\p = -2 V'tP•'~~ Re { exp [-iS,' ( b,'(T), 't) + i: ]j db l''bf d: J ~z 
0 -00 -= 

X V12 (R)V"(R)exp[iS 0 (b, z,z, t)] }. (25) 

where p~( T) = Tb~( T)db~/dT is the cross section for un­
perturbed scattering by the first term and s~ and se 
are defined by the formulas (8)-(9). The phase 7T /4 in 
(25) has appeared as a result of calculating the unper­
turbed scattering amplitude by the s.p. method and al­
lowing for the fact that 

a'S,' I ob' = d-r,' I db< 0. 

We shall calculate the integrals in (25) by the s.p. 
method (where this is applicable). The s.p. conditions 
in the variables z and z for the exponential in the inte­
grand in (25): ase;az = ase;az = 0, where se is de­
fined by (9), can be written in the form ~V(R) = ~V(R) 
= 0, which means that the points (b, z) and (b, z) lie on 
the intersection radius. With allowance for the fact that 
z 2': z, this leads to three possible for the s.p. points in 
z and z: 

a) z=z=+1Ro'-b', 
b) z= z= -J!R,'- b', 
c) z=-z= +jR,'- b', 

(26) 

the realization of which will depend on the angle T. Im­
posing then an additional s.p. condition in the variable b 
(ase /ob = 0), we obtain, in conjunction with (26), equa­
tions for the branches T~(b) of the scattering function 
that contribute to ~p, for each of the possibilities a), 
b) and c) in (26): 

a), b) (27) 
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According to (5), the first Eq. (27) determines the 
function T~(b) for unperturbed scattering by the first 
term. I:1 conjunction with conditions (26a, b), this means 
that there will be a contribution to Ap from this branch 
only when T > T 0 = T~(R0). In fact, for smaller T(T < T0 ), 

we have (cf. Fig. 2a): b~( T) > R0 , so that the correspond­
ing z and !l in (26a, b) turn out to be imaginary. The 
combined contribution (from (a) and (b)) to Ap from the 
branch T~(b) when T > T 0 can be easily calculated and is 
equal to the second term in the final formula (30). 

We shall now investigate the scattering-function 
branches T~(b) satisfying Eq. (27), which also contri­
bute to the elastic scattering. The investigation of (27c) 
is completely analogous to that of Eq. (13) and gives the 
following characteristic form of the two branches b~(T), 
v = 1, 2 (which differ from the bv(T) for the inelastic 
process) (Fig. 1b ). At large T, we have only one branch 
b~(T), which merges with bg(T), the function for unper­
turbed scattering by the term V2(R). In fact, scattering 
through large angles is due mainly to the influence of 
strong repulsion at distances R < R0 , at which the ef­
fective potential in Eq. (27c) is the potential of the sec­
ond term: V1 - AV = V2(R). On decrease of the angle 
from T = T 0 = T~(R), in addition to the branch b~(T) 
there appears another branch bf(T), which also satis­
fies (27c). Its form in the vicinity of T 0 is completely 
determined by the difference between the slopes of the 
terms at the intersection point (compare with (14)): 

b,e(T) 1,~,, = Ro- ZRo(~F)' (T- To)'+.... (28) 

Finally, at a certain threshold point T~ (differing 
from Tth, the threshold in the inelastic channel) the 
two branches br(T) and b~(T) merge, being two branches 
of a single inverse function Te(b) satisfying Eq. (27c) 
(in Fig. 1b, the different parts of the function Te(b) are 
denoted by the subscripts 1 and 2); the threshold Tfu and 
the fo.rm of b~(T) close to Tfh are determined from the 
equatwns: 

' 
dT•(b) I I v 2 -db e=O; b,e(T) e=bth0 ± --(T-TY), 

bth "--eth xe th (29) 

Here, Ke = d2 Te/db2 jT~. The calculation of the contri­

butions to Ap corresponding to the branches b~(T) and 
b;(T) is performed by the usual s.p. method. As regards 
the contributions from the two regions b ~ b~( T), z ~ !l 
~ ::1:../R~- (b~)2 , their sum reduces to a Gaussian integral 
when the symmetry of the potential (Vi(b, z) = Vi(b, -z)) 
is taken into account. 

The final expressions for Ap(T) in the different re­
gions of variation of T have the form: 

~p (T) = 2l' P•0 (T) p,0 ('t')p(b,0 ('t) )cos[S,e- S,0 + :rt/2]- 2p,0 ('t) · 

X p(b, 0 (T) ), T >iTo; (30) 
~~-

~p(T) =2fp, 0 (T)p,•(T)p(b,0 (T)) cos [S,O(T) -S,'(T) + :rt /2] 

-2fp,'(T)p,0(T)p(b.e) COS [S,0 (T) -S1°(T)], Tfu< T <To (31) 

Here, p~(T) = Tb~(T)db~/dT; the probability p(b) is de­
fined by formula (17), and S~(T) =Se(bv(r), zv, Zv, T) 

and zv = -!l11 = v'R~- b~. The relative values of the 
actions in (30) and (31) can be expressed, similarly to 
(18), as follows in terms of the characteristics of the 
scattering functions: 

S 1°(T)-S 1°('r)= ~'f[b,0 (T')- b, 0 (T')jdT' T <To; 
'o 

2 <o 2 • s: (T)- s, 0 (T) = --;;: s [ b,0 (T')- b,0 (T') 1 d-r' +-u-s [b,o (T') 
rth 1 0 

- b,O(T')]dT','t > \~· 

which follow from the relations dS~/dT = - 2b~(T)/u 
and the conditions: 

S,'(-co) =S,0 (To), S,O(Tth) =S,1 (Ttt)· 

(32) 

(33) 

It is obvious that the conditions for the applicability 
of the s.p. method are violated in the neighborhoods of 
the points T~ and T 0 , at which the different branches 
of the scattering function merge and the quasi-classical 
formulas (30) and (31) give expressions which diverge 
(like (T- T0 )-1 / 2 as T- T0 and like (T- Tfh)- 1 / 4 as 
T - T~). Therefore, in each of these regions (regions 
I and II in Fig. 1b), it is necessary to obtain quantum 
expressions. 

First we shall consider the vicinity of the point T~ 
(region I), in which the derivation of Ap(r) is completely 
analogous to that of formula (20) for the inelastic cross 
section. When T - Tfh• the quadratic expansion in (25) 
of the action Se(b, z, Z, T) about the s.p. points, per­
formed in calculating Ap by the s.p. method, is no 
longer sufficient, since for T = T~ the determinant of 
this quadratic form, equal to 

vanishes. Expanding the action Se(b, z, z, r) up to the 
necessary third-order terms and performing the calcu­
lation, analogous to that of p12(r), of the corresponding 
integrals gives in the quantum region of angles (region I) 
the following expression for the cross section Ap(r) in 
terms of the Airy function: 

(34) 

where AT = T - Tfh• bfu = b~(Tth) = b~(Tth ), Ke is de­
fined after (29) and the meaning of the actions is the 
same as in (30) and (31). Using the asymptotic behavior 
of the function <P(x) when I xI > 1, it can be shown that 
on decrease of the angles from the threshold value T~ 
the increment Ap to the elastic cross section, while 
continuing to oscillate, is damped exponentially in am­
plitude. On increase ofT from T~, the asymptotic 
form of <P(x) and the relation 

bring (34) to the form 

;] 
s,o-~] 

4 ' 

which coincides with (31) as T- T~, when 

() () e e d (l/2(T--c'fh)) p,T=p,-c=bthTthd,; x•. 
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Thus, the quantum expression {34) correctly matches 
with the quasi-classical expression (31). 

We shall now examine the quantum region II, the vi­
cinity of the point T 0 • Adding the third-order terms, 
necessary in this region, to the quadratic expansion of 
the action in ~b = b- R0 , z, z and ~T = T- T0 , we ob­
tain for the action the expression 

2R, 2 !'J.F 1 !'J.F 
S 0 =S1°(T0)--!'J.T--!'J.MT+-yl'!b+-(M)'+--x'y; 

u u u i>u 4R, 
x= (z+ z) /2; y=z- z; ~=db,0 (dTI,,. 

Calculation of the integral in (25) with the action indi­
cated above in the region b ...... R0 , T ...... T 0 leads to an ex­
pression for the cross section in terms of the parabolic 
cylinder function D_112{x) (cf. the integral representa­
tion of this function in [l4 l): 

!'J.p(T) = 2y'p,0 (T)p,'('t) 
X p( b,V(T) )cos [ S,V- S,' 

+n/2]-2p1°(T)p(b =0) 

Xy'R,I2~ui-''•F(!'J.TV 2 1:1), 
i'J.T='t"-To. 

Here f3 = db~/dT IT =To and the function F{A) 
is equal to 

F(A) = Re {exp[- i;-
iA' -4] D .. f,(e-'"I'A) }• 

{35) 

{36) 

and is depicted in Fig. 4. The function F{A) oscillates 
for A< 0 and falls away monotonically for A> 0, with, 
for lA I> 1.5, the corresponding asymptotic forms: 

I A> 1.5, 

F(A) = l {37) 
A' 

(2/A)''•cos 2-, IAI>1.5, A<O. 

Using {37), one can show that the quantum expression 
(35) goes over to the quasi-classical expressions (30) 
or {31) as T deviates from To in the direction of larger 
or smaller angles. In fact, the quantity A2/2, which 
determines the phase of the slow oscillations in {35) 
upon which the rapid oscillations from the branch 
b;{T) are imposed, can be represented in the form 

A'( ) . 2 ' 
_T_, =-f[b,0 (T)-b,'(T)jd; for;<To. 

2 't'"'To U •Tu 

In a similar way, using (37) and the explicit form of 
bf{T) as T -- T 0 , it is easy to verify the correct match-

. -~ 2 3 II 

-0.51 
-I~ 

FIG. 4. The function F(A) (formula (40)) describing the elastic 
scattering in the quantum region II ( cf. Fig. I). 
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FIG. 5. The relative change Cl::.pfp~ in the elastic cross-section 
p 11 (r) under the influence of transitions to an excited term. C = 
2RoPo/a, Po = p(b = 0). 

ing of the expressions (35) and {31) in the amplitude of 
the slow oscillations for T < T0 , and that of the expres­
sions (35) and {30) in the magnitude of the non-oscillat­
ing term for T > T0 • 

Figure 5 shows the relative change ~p/p~(T), calcu­
lated from the formulas {30), {31), {34), and (35), 
( ~p/p~ ""ln p 11(T)- ln p~ for ~p/p~ << 1), in the elastic 
cross section under the influence of an inelastic proc­
ess, with the following parameters, which are close to 
the real situation in the He+-Ne system: 

TJ, = 1600 eV -deg, To= 3200eV -deg,Ro = b,'(To) = 1.61 at. un. 
{38) 

For the function b~(T) we have used the theoretical de­
pendence {from amongst those obtained in [ll by treat­
ment of the elastic scattering data) that takes account 
of the polarization attraction. For the functions bf(T) 
and b~(T) we have used the approximation 

d -
b,0 (T) = R,- d + zy't(3- t); 

e · 3d,/ 'I"- TJ, d 0 3 t b, (T)=R0 -d+-,t; t=---.; = . a. un. 
2 To- Tth 

(39) 

The formula {39) ensures the correct behavior of (29) 
at the threshold ( T = Tfu, t = O) with the parameter Ke 
= %(T0 - Tili)/d2, and the contact with the vertical at the 
point T = T0 (t = 1) with curvature 

d'b,• 3 d 
d;' I ,, = - 4 (To- '~"u':)' . {40) 

From a comparison of {40) with {28), we find the 
value ~F = 44 eV /a.u. corresponding to the parameters 
chosen in (38) and {39). The dashed curve in Fig. 5 cor­
responds to a calculation from the quantum formulas 
(34) and (35) in the respective regions I and II; the solid 
curve is calculated from the quasi-classical formulas 
{30) and (31). Allowing for the approximate character of 
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the formulas, the matching of these curves must be re­
garded as good.3> Moreover, the picture presented in 
the figt,re agrees qualitatively with the elastic scattering 
curves observed in [2 J in the systems He+-Ne and 
He+-Ar. 

From the above analysis and numerical calculations, 
we can draw the following conclusions, which are im­
portant for the interpretation of experimental anomalies 
in elastic scattering: 

1) The oscillations in the elastic cross-section are 
already beginning at angles less than the threshold value 
Tlli_; on the unperturbed elastic scattering curve b~(T), 
this value corresponds to the impact parameter value 
be "' b~(Tth), which does not coincide with the radius of 
intersection of the terms: be> R0 (cf. Fig. 1b). 

2) The angle T 01 which corresponds to the intersec­
tion radius R0 = b~(T 0 ), can be determined approximately 
from the dip in the curve for the elastic cross section. 

3) The oscillations in the intermediate region of an­
gles cannot be described by only one harmonic; for elas­
tic scattering, this does not permit us to use a deriva­
tion of the same experimental function N( TE) as in the 
inelastic scattering. 

As we have since found out, results [ 16• 17 l concerning 
differential cross-section features have been obtained 
which are analogous to ours in many respects and more 
general in the sense that they are not confined to high 
energies and small transition probabilities; the import­
ant point is that the non-monotonic character, described 
above, of the scattering functions determining the elas­
tic and inelastic processes is conserved. 

The authors express their sincere thanks to E. E. 
Nikitin, N.D. Sokolov, V. V. Afrosimov, Yu. S. Gor­
deev, and V. K. Nikulin for useful discussions and for 
their interest in the work. 

3lThe matching of the quantum and quasi-classical calculations at 
T = rih can be improved by using, in place of the approximation (34), 
the improved Airy approximation proposed in [ 15 ] for the description 
of rainbow scattering. 
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