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The ground-state energy of a two-electron atom with an arbitrary nuclear charge Z is calculated on 
the basis of quantum-electrodynamics perturbation theory. The zeroth approximation is envisaged as 
two noninteracting Dirac electrons in the Coulomb field of the nucleus. Corrections of the first and 
second order with respect to Coulomb interaction between the electrons are calculated. A variational 
principle is proposed for the second-order corrections. All corrections are calculated as functions 
of Z in the interval 1 :s Z :s 137. 

1. The problem of refining the calculations of the 
energy levels of all the electrons in a multi-electron 
atom reduces mainly to allowance for corrections of 
two types: correlation and relativistic. Calculations 
of correlation and relativistic corrections in the lowest 
order in a 2 (a is the fine-structure constant) have 
been the subject of many works. However, as a rule, 
these calculations were made under the assumption 
that Zeff a « 1, where Zeff is the effective charge of 
the nucleus. For electrons of the K layer, these cal­
culations thus become meaningless already at Z > 10. 
The main scheme of the calculation of the correlation 
and relativistic corrections to the energy levels of an 
electron in an atom with an arbitrary charge Z was 
described earlier[ 11• Following this scheme, we pre­
sent here a calculation of different corrections to the 
energy of the ground state of a two-electron atom. The 
corrections will be calculated as functions of Z, mak­
ing it possible to determine the relative importance of 
different corrections for different values of the nuclear 
charge. Our results will be valid not only for multiply 
charged two-electron ions, but also for electrons of the 
K layer of multi-electron atoms, in view of the insig­
nificant screening of the K electrons by the electrons 
of the outer shells of the atom. 

2. We first attempt to visualize, from general con­
siderations, the role of different corrections as the 
nuclear charge Z changes from 1 to 137. To this end, 
it is most convenient to use the diagram shown in Fig. 
1. We start from the approximation of non-interacting 
electrons. The abscissas of Fig. 1 represent the 
charge Z, and the ordinates the quantity log I aEifaE 0 j, 
where aE0 is the summary binding energy of the two 
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FIG. 1 

non-interacting electrons in the atom, and aEi repre­
sents different corrections to the energy. We use units 
h = c = 1, and also ln = 1, where m is the electron 
mass. All the curves of Fig. 1 are drawn to arbitrary 
scale. Curve 1 pertains to the correction of first order 
in the Coulomb interaction of the electrons aE~. At 
small Z we have aE 0 ~ a 2 Z2. The ratio aE~/ aE 0 at 
small z proportional to z-1[21 , i.e., is of the order of 
unity. At Z ~ 137 we obtain aE0 ~ 1, and aE~ is of 
the order of a. Curve 2 pertains to the correction of 
second order in the Coulomb interaction aE~. The 
ratio aE~/ aE 0 at small Z is proportional to z-2, and 
at Z ~ 137 we have aE~ ~ u 2, which explains the form 
of the curve 2. Curve 3 shows the relativistic Pauli 
corrections aEp-the dependence of the mass on the 
velocity and the spin-orbit interaction. The ratio 
aEp/ a Eo at small Z is of the order of u 2 Z2 [21, and 
at large Z it is of the order of unity. Curve 4 repre­
sents the relativistic Breit corrections aEB to the 
electron interaction. At small Z we obtain aEB/ aE0 

~ a 2 Z; at Z ~ 137 the value of aEB is of the same 
order as aE~, i.e., ~a. Curve 5 represents the radia­
tive corrections of lowest order aER, due to the self­
energy of the electron, the polarization at vacuum, and 
the anomalous magnetic moment. For Z ~ 1 we have 
aER/aE0 ~ a 3 Z2 (Lamb shift[ 21 ) and for z ~ 137 we 
obtain aER ~ a. Finally, curve 6 represents the rela­
tivistic corrections to the interaction aEa of the next 
order beyond the Breit corrections[ 31. The remaining 
corrections are not indicated in Fig. 1. 

In the sections that follow we calculate the correc­
tions aE~, aEli\ aEp, and plot the curves 1-3. 

3. We consider the ground state of an atom with 
configuration (1s)2, or, in relativistic notation[4 l 
(ls112)2. In this case[ 21 

~E,=2(l'1- (aZ)' -1). 

For aE~ we have, in accordance with the formulas 
given in [Il, 

( 1) ~E1'=a - , 
ru AB;AB 

where 
(F) A'B'; AB ""' (F) A,B,AB - (F) A,B,BA, 

(F) A's' As ""'J IJJA'' (r,)1Jls,' (r,)F(r,r,) ¢.<(r1)\jls(r,)dr, dr, 

(1) 

(2) 

(3) 

(4) 
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and r12 = I r1- r2l. Each of the symbols A and B is 
decoded in accordance with[4 l as the aggregate of four 
symbols nljm, where n is the principal quantum num­
ber, l the orbital angular momentum of the upper com­
ponent of the Dirac bispinor, j is the total angular 
momentum of the electron, and m its projection. In 
our case A= 10 Y2 Y2 and B = 10}'2-}'2. The wave func­
tions are given by[21 

( 

g(r)Y0o (Q) ) ( 0 ) . 0 g(r) Y00 (Q) 

IPA= - i ;3 J(r) Y,o(Q) ;IPB = - i V ~. f(r) Y,,_,(Q) ; 

i : 3 /(r)Y11 (Q) i : 3 _J(r)Y10 (Q), . 

(5) 

g(r) = (2Z)'1• l/-1.±_y_ e-•" (2Zar)>-' 
2f(2y + 1) • (6) 

V1.:...y 
f(r) =- --g(r), 

1+y 

where y = -./1 - (aZ)2 and I'(x) is the gamma func­
tion. Substituting expressions (5)-(7) in (2) and inte­
grating, we get 

(7) 

( 1 ) Zaf(4y + 1) F (14 + 12 + 2· 1 ) 
-;:;-;ABAB=2'>'(2y+1)[f(2y+1)] 2 o'\' ,y '2•(8) 

( 1)- Za(1-y)'f(4y+1) F(14+12+4·1) 
7tz ABAB-75·2'''(2y+3)[f(2y+1)] 2 ,'\' ,y '2' 

(9) 

where F is the hypergeometric function. In the non­
relativistic lim it when u Z « 1, the exchange integral 
(9) vanishes, and the integral (8) goes over into the 
well known expression (}"8 )a 2Z [21, 

4. We proceed to calculate the correction AE~. 
According to[ 11 

!':!E,'=_!__a' ~. 1, {I(A,<+lA~+l) I' 
2 ~ EA +EB-En,- En2 ru AB;ntn2 .,.., 

(n 1n2::FAB) 

A,<-lA,<-l , 
- I (-r-., ) AB;n,n, I } ' (10) 

where A <±l are the projectors on states with positive 
(negative) energies. Expression (10) differs somewhat 
from formula (32) in[ 1l, although the method of deriva­
tion is exactly the same. The differences lie, first, in 
the fact that the region of summation over n1n2 in (10) 
is somewhat different. This is connected with the use 
of the approximation of non-interacting electrons as 
the initial approximation, whereas in[ 1 l we used the 
Hartree- Fock approximation. Further, formula (32) 
in[11 takes into account the contribution of two dia­
grams shown in Fig. 2 (for a system of two electrons), 
and in (10) account is taken of only the contribution of 
diagram a. The point is that the contribution of the 
diagram b at small Z is of the order of a 3 [ 31, and 
according to our classification it pertains to the cor­
rection AEB. Generally speaking, the second term of 
formula (10), which contains summation over states 
with negative energy, is of the same order. It is more 
convenient, however, to include this term in AEi, so 
as to extend the summation over the entire spectrum 

~~~~~ ~><~ 
(a) (b) 

FIG. 2 

of the Dirac equation for the electron in the field of the 
nucleus. 

We shall attempt to construct a variational principle 
for the calculation of the correction AE~. Expression 
(10) is not convenient for this purpose, owing to the 
presence of the projectors. This expression is ob­
tained from the Gell-Mann and Low formula for the 
energy level shift after going over to the limit in ac­
cord with the adiabatic parameter £ [ 11 (in [Il this 
parameter is denoted by a). Let us retrace our steps 
somewhat in the derivation of (10) and consider the 
intermediate expression, which still contains the limit 
with respect to £ [ 11: 

32ia' J J . t;,E,' = --)2 lims' dill, dro,[(ro, + ro2 +EA +E.)' +(2s)']-• 
(2n ·-• -~ -~ 
{/( ) I (1/r.,)An:A•I' } 

X OltCiJ2 - ' ( 1) [EA(1- iO)+ ro,][E.(i-· iO)+ ro,] 1 

1 2 

/(ro,ro,) = L I LJ n,n,;AB I [E.,(1- iO)+ ro,J-'[E.,(1- iO)+ ro,)- 1, 

.,., (12) 

The second term in the curly brackets in (11) compen­
sates for the divergence with respect to £ at n1n2 = AB. 
In spite of its apparent complexity, expression (11) is 
more convenient than the final formula (10), in that the 
summation over n1n2 in (12) does not contain any pro­
jectors. We now write out the variational principle for 
the quantity J( w 1w2). Using the rules of matrix multi­
plication, it is easy to verify that this quantity contracts 
into the matrix element 

I ( ro1ro 2) = ( 1 . 1 1 1 ) , (13) 
r, H,(1- iO)+ ro, H,(1- iO)+ ro, r., AB;AB 

where H is the Dirac Hamiltonian for the electron in 
the field of the nucleus. Let us consider the functional 

1[1jl11jl2] = ( ljJ1+(12ro,ro,) / r~, 11jl,.(1)1jJ.(2) ) 

0 1 0 

- ( ljJ1+(12ro1ro,) I r., l'~'•(1)1jJA(2)) 

+ ( 1j),. +(1)1jl. +(2) I r~,l'i'•(12ro,ro,)) -('1'1+(12ro,ro,) I [H,( 1- iO) + ro,] 

X [H,(1- iO)+ ro,] l'i'z(12ro,ro,)). 
(14) 

By varying this functional with respect to 1/J 1 and 1/J 2, 
we verify that its stationary value coincides with 
J( w 1w2). The equations for the extremals are 

[H,(1 + iO)+ ro,] [H,(1 + iO)+roz]1t,(12ro,ro,) = _!_'1',.(1)1jl.(2), (15) 
r, 

[H, (1- iO) + ro 1] [H,(1- iO) + ro,)tjl,(l2ro,ro,) 

1 = -[tjJA( f)tjJ.(2)- tjJ.(f)1jl_.(2) ]. 
ru. 

(16) 

In choosing the trial functions 1/1 1 and I/J 2, it is neces­
sary to see to it that the divergence in £, which ap­
pears when the approximate expression for J( w 1w2) is 
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substituted in (11), is the same as for the exact expres­
sion. We take the trial functions in the form 

til• = c,t!JA(1)t!J.(2) + c2 ~t!JA(1)t!J.(2), (17) 
r" 

\jlz = C, [ tiJA ( i)t!JB (2) - t!Jn( f)t!JA (2) 1 + C,, [ t!Jn( f)ljlm (2) - lJlm ( f)t!Jn(2) 1, 
(18) 

where IJ!n and i/im are arbitrary eigenfunctions of the 
operator H and Ci are the varied parameters. Such 
functions satisfy the condition imposed above. In addi­
tion, the function ¢2 is antisymmetrical with respect to 
permutation of the arguments, as follows from (16). 
Variation leads to a system of equations for the 
parameters q, which can be easily solved. Leaving 
out the rather cumbersome manipulations, we present 
immediately the final expression for Ll.E~: 

a' 1 1 ' 1 
t1£,' =-z [ (--;:;-;_:) AB;H- CJ AB;AJ EA +En-En-Em • (19 ) 

Calculation of the integrals with the functions (5) 
yields 

( 1 ) (2Zu)'I'(4y) 
-;::;: lABAB = 2'" 1 [ r ( 2y + 1) j f 

X .E (2k---: 1)(;y+2k-1) F( 1.4y,2y+2k;+ ), (20) 
k=t 

( 1 ) (2Za)'(1-y)' { I'(4y) ~ 1 
--;::;; ABBA= 15[J'(2y+ 1)1' 2'Hi "'-" 2k-1 

k=i 

X [-2y ~ 2kF ( 1,4y, 2y + 2k + 1; 4-) 
- 2y + ~k - 1 F ( 1.4y, 2y + 2k; 4-) (21) 

+ ~ _ F(1.4y,2y+2k-1;:___!:_)] -~1'(2y+1)1'(2y-1)}. 
2y + 2k- 2 2 2 

We choose for the states n and m the two 2SJ/2 states, 
i.e., we put n = 20 Y2 Y2 and m = 207'2- Y2. Then we 
obtain in the nonrelativistic limit Ll.E~ = -0.1720a 2, 
which is close to the exact nonrelativistic value calcu­
lated with a large number of parameters[2l: Ll.E~ 
= -0.1577a 2. This confirms the correctness of our 
choice of the trial function. 

5. We consider now the relativistic corrections. 
To calculate the correction Ll.Ep, it obviously suffices 
to expand the Sommerfeld formula (1) for the energy 
Ll.Eo: 

Mp = M,- M,•P = 2 [V 1-(uZ)'-1+~(uZ)' ]. (22) 

where Ll.E~r is the total nonrelativistic binding energy 
of the two electrons in the atom. For our configuration 
there is no spin-orbit interaction and the entire cor­
rection reduces to a dependence of the mass on the 
velocity. At small Z we obtain from (22) Ll.Ep 
= -(aZ)Y4, and at Z = 137 we have Ll.Ep = -1. 

Let us consider the correction Ll.EB. We borrow the 
expression for Ll.EB from[ 5 l: 

M. =-a [ ( AB I~.:· ++(V,a,) (V 2u,)r121 AB) 
- <BA ,_a,a_, cos [ (EA -E.) r,1 

r" 

_ ( V, a,) ( V ,a,)-1- _c_os_[_:__( E;-;:A,-----_E_.oO-)-:--er,::=--'1_-_1_,, AB)] , 
r, (EA- E.) 2 

(23) 

where a are Dirac matrices. 
In our case EA = EB and (23) goes over into 

( a, a, _ 1 ) 
1'1E.=-a --+-2 (V,u,)(V,a2)r12 • 

rtz An;AB 

(24) 

Further, using the relation 

(( V ,a,) ( V ,a,) f(r.,)) AB; AB =-( [ H, [H,f(r") 11) AB; AB (25) 
= (EA- E.)'(f(r,))AB;AB, 

we verify that the contribution of the second term in 
the direct and exchange matrix element (24) is equal 
to zero, i.e., 

1'1E. = - a ( a,a, ) 
r12 AB;AB 

(26) 

A direct calculation of (26) with the functions (5) for a 
configuration of the type (nsi/2)2 results in Ll.EB = 0. 

The calculation of the correction Ll.ER as a function 
of Z is much more complicated. So far, only the 
values of Ll.ER for small Z have been calculated[a-aJ, 
and also for Z = 80[91 . There is also a calculation for 
Z = 137 [wl. The corrections Ll.EB were likewise cal­
culated only for small z [a,sJ. 

6. Figure 3 shows curves 1-3 (corresponding to the 
notation of Fig. 1), plotted from formulas (2), (19), 
and (22). As seen from the figure, the contributions of 
the corrections Ll.E~ and Ll.Ep become comparable al­
ready at Z = 10 in accordance with the previous esti­
mates[111. At Z > 35, the value of Ll.Ep exceeds also 
Ll.E~ in order of magnitude. Curves 1 and 2 reveal a 
tendency towards a sharp increase as Z - 137, with 
Ll.E~ - oo, This is due to the singularity of the Coulomb 
Dirac functions in the region near the nucleus. As 
Z - 137, this singularity becomes appreciable (of the 
type r-1 ), so that the matrix elements in (2) increase 
sharply, and in (19) they diverge. In the region of such 
large Z it is already necessary to take into account the 
finite dimensions of the nucleus[ 12l. 

Finally, Fig. 4 shows the corrections Ll.E~/Za 2 and 
Ll. E~/ a 2 as functions of Z. It is seen from the figure 
that the deviations from the corresponding nonrelativ-

l)MI.[ 'I ~r, 
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istic expressions (represented in the figure by straight 
lines) become noticeable at Z = 20 - 30. At Z = 40, 
the relative error for ~E~ reaches 20%. 
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