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We consider a homogeneous cosmological model of the Bianchi IX type which is more general than that 
previously consideredr 1 J and in which the matrix of the coefficients "Yab(t) in the space metric (1.1) 
contains off-diagonal elements. The presence of these elements does not alter the general oscillatory 
character of evolution of the model on approach to a singularity but leads to a rotation of the axes of 
the alternating Kasner epochs. In homogeneous models, this phenomenon can exist only when matter 
is present; some observations are made regarding a possible connection with the properties of the 
general inhomogeneous solution of the Einstein equations for empty space as well as for space filled 
with matter. 

1. INTRODUCTION 

THE oscillatory mode of approach to a singularity in 
cosmological models (with Bianchi type-IX or type-vm 
spaces) has been investigated by us in previous pa
pers .11 These models are made especially important by 
the fact that they yield a prototype by which the most 
general cosmological solution of Einstein's equations 
near a temporal singularity should be constructed. 

The earlier analysis we made was, however, incom
plete in the following respect. 

We recall that the metric of a homogeneous space 
may be represented in the form 

(1.1) 

where e1 = 1, e?. = m, e3 = n are three basis vectors 
which are definite (for each of the Bianchi types) func
tions of the spatial coordinates while the coefficients 
"Yab are functions of time (the Greek indices a, {3 num
ber the spatial coordinates x\ x?., x3 while the Latin 
indices a, b number the basis vectors e\ e?., e3). In a 
synchronous system of coordinates the four-dimen
sional interval ds?. = de- dl?. and hence only the six 
functions "Yab(t) which should be determined by the Ein
stein equations remain unknown in such a system. 

1lThe results of these investigations are given in [ 1] (which js re
ferred to below as I). In this paper we follow,.as far as possible, the 
notation and terminology used in I. 

In the previously considered models the matrix of 
the coefficients "Yab was assumed to be diagonal; the 
spatial metric was assumed to have the form: 

dl' = (a'lml~ + b'mmm~ + c'nmn~)tkmtk~, (1.2) 

which contains only three unknown functions of the 
time "Y11 =a'\ Y2?. = b?., "Yss = c2. Such an artificial re
duction of the number of unknown functions did not lead 
to inconsistencies, owing to the fact that as a result of 
the specific symmetry of the types of spaces under con
sideration, the off-diagonal components of the Ricci ten
sor vanished identically while the rest of the Einstein 
equations (for a field in empty space) constituted a con
sistent system. Nevertheless, the limitation imposed 
on the metric by the requirement that the matrix l'ab 
be diagonal could lead to the disappearance of some · 
properties which are characteristic of the more gen
eral case. The present paper is devoted to the elimina
tion of just this deficiency, and to the elucidation of the 
effect of nondiagonality of the matrix "Yab on the behav
ior of the model near a singularity. We restrict our
selves here to the case of the morE!' symmetric model 
of the IX type (although the extension of similar calcu
lations to the case of the type-vm model does not pre
sent any fundamental difficulties). 

2, THE KASNER AXES 

As always when operating with homogeneous spaces, 
all the three-dimensional vectors and tensors will sep-
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arate into sets of three basis vectors; the components 
of such decompositions are functions only of time (see 
1, Appendix C). We shall denote these components by the 
Latin indices a, b, c, ... , which take on the values 
1, 2, 3.2 l The raising and lowering of these indices are 
done with the aid of the matrices Yab and yab. 

The model being considered, understood as the exact 
solution of the Einstein equations, can exist only for a 
space filled with matter; otherwise the equations R~ = 0 
would automatically lead to the disappearance of the 
off-diagonal components of Yab· But from the more 
general point of view, if we consider the model only as 
the main terms of the limiting form of the metric near 
a singularity, then the presence of matter is not of de
cisive importance. Deferring the discussion of this 
question to Sec. 6, we shall consider first only the ab
and DO-components of the Einstein equations for a field 
in empty space, abstracting ourselves from the Oa
components; we recall that the last components, gener
ally speaking, only play the role of conditions imposed 
on the initial values of the unknown functions. 

The Einstein equations for the field in empty space 
in a synchronous reference frame have the form 

0 1 . a f b a (2 1) R, = --x.--x,x, = 0 . 
2 4 

b 1 -- b • b 
R, = - ---=(l'r x,) - P, = 0, 

2l'r 
(2.2) 

where the dot denotes differentiation with respect to t; 
P~ are the components -resolved in terms of the basis 
vectors -of the three-dimensional Ricci tensor; the 
quantities Kab = Yab• K~ = YacYcb; r is the determinant 
cf the matrix Yab· 

The components P~ can be calculated (expressed in 
terms of the components of the matrix Yab) with the aid 
of the formulas of I (C .17) in terms of the given struc
tural constants of the motion group of the space; a con
crete application of these formulas to spaces of the 
types VIIT and IX is made in the Appendix. 

The values of the structural constants depend on the 
method by which the three basis vectors are chosen and 
are, in this sense, not unique. For the type-IX space of 
interest to us, the basis vectors may be chosen in such 
a way that the only nonvanishing structural constants 
are 

c,', = c,~ = c,: = 1 (2.3) 

(and the constants which are obtained by interchanging 
the lower indices of these constants and differ from 
them by sign). Precisely such a choice will be implied 
everywhere below. We emphasize, however, that these 
conditions still do not determine the basis vectors 
uniquely: for a space of the type IX the structural con
stants preserve their values (2.3) in any orthogonal 
transformation of the vectors 1, m, n which leaves the 
sum of the squares 12 + m2 + n2 unchanged. 

With the structural constants (2.3) the Bianchi iden
tity for the three -dimensional Ricci tensor is reduced 
to the form 

2lEverywhere below the numerical indices I, 2, 3, will have just 
this meaning (and not the meaning of the numbers of the coordinates 
xa). 

(2.4) 

By constructing similar combinations from the compo
nents Rb, we can write the Einstein equations as R~C~b 
= O; by ~irtue of (2.2) and (2 .4) their first integrals 
yield 

where Cc are arbitrary constants. In explicit form 

yf(x:-x,')=2C,, yrcx:-x:)=2C,, yrcx:-x,')=2C,. (2.5) 

A characteristic feature of the evolution of the mod
els under consideration on approach to a singularity is 
the alternation of the "Kasner epochs" with a definite 
law of variation of the exponents p1, P2, P3 which deter
mine the variation of the distance scales in the three in
dependent directions in space; in each transition from 
one epoch to the next a negative exponent is transferred 
from one direction to another. This property, which has 
been investigated by us in the diagonal case, is fully re
tained in the general nondiagonal case. At the same 
time, new features appear in it as well. 

A separate Kasner epoch occurs during the period of 
b . 

time when the terms Pain Eqs. (2.2) are small com-
pared with the derivatives with respect to time and may 
be dropped. After this Eqs. (2.1-2) will, in the general 
case, have solutions of the form 

-y,, = a'LJ.,, + b'M,M, + c'N,N,, (2.6) 

with 

(2.7) 

where pz, Pm, Pn are any of the set of the three Kasner 
exponents p1, P2, p3, while La, Ma, Na are constant 
coefficients. The determinant of the matrix (2 .6) 

r = (abcV)', V = (L[MN]), (2.8)* 

the vector operations being performed as if the quanti
ties La, Ma, and Na formed Cartesian vectors L, M, 
and N· let us normalize these "vectors" in accordance 

' 2 2 2 with the relation L = M = N = 1. During a Kasner 
epoch the determinant r varies with time according to 
the law 

yf=At (2.9) 

where A is a constant. 
The matrix yab, which is the inverse matrix of (2.6), 

is given by 

(2 .10) 

where 

L"= (MN],/V, M·= [NL],/V, N"= [LM],/V. (2.11) 

Setting Kab = Yab and raising the index b with the aid 
of (2.10), we obtain 

X~ = !:._(p,L,L' + Pmilf,M' + PnN,N'} 
t 

Substituting (2.6) in (1.1), we obtain 

*(L[MN]) = L·(M X N). 

(2 .12) 

(2 .13) 
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where 

(2 .14) 

We see from this that the laws (2.7) of temporal varia
tion of the spatial scales pertain to the directions de
fined by the vectors (2.14). We shall call these direc
tions the Kasner axes. 

We emphasize that the transformation (2.14) from 
the vectors 1, m, n, to lK.> mK> nK need by no means be 
orthogonal and therefore the vectors (2.14) cannot be 
chosen as basis vectors (under the condition of conser
vation of the values of the structural constants (2.3).3> 

The vectors (2.14) are also not the principal axes of 
the symmetric matrix Yab. and the quantities a2 , b2, 
and c2 are not its principal values. The latter are, 
generally speaking, ex~ressible in terms of all the three 
functions a", b2, and c . During a Kasner epoch the 
principal values vary and pass through a maximum or a 
minimum while the principal axes rotate with respect 
to the stationary reference frame 1, m, n.4> 

Substituting the expressions (2.12) and (2.9) into 
Eqs. (2.5), we obtain three relations which may be writ
ten together in vector form: 

1 c 
V {p, [L [MN] J+ Pm [M [NL] J+ Pn [N [LM]]} = A (2 ,15} 

or 
1 

V{N(ML) (Pm- p,)+ M(LN) (p,- p.) 
(2 .16) 

c + L(MN) (Pn- Pm)} =A' 

where C = (C1, C2, Cs). Of the six quantities defining 
the directions of the Kasner axes (the six independent 
components of L, M, N), three are chosen arbitrarily 
after which the other three are found from (2.16). 

Using this arbitrariness in the choice of the basis 
vectors, we choose 1 to coincide with lK, and the 
"plane" 1, m to coincide with the plane ~. mK. This 
means that L2 = L3 = 0, M3 = 0; let us designate the re
maining components as 

L = (1, 0, 0), M = (cos am, sin am, 0), 
N = (cos a., sin a. cos cp., sin a. sin q;.). 

(2 .17) 

We then find from the three components of Eq. (2.16) 

tg am= A(pm- p,) I C,, tg cp. = A(p.- Pm) I C, 
(p, - p.) ctg a.= ( C, sin cp.- C, cos cp.) I A. 

3. ROTATIONS OF THE KASNER AXES 

(2 .18) 

In the diagonal case the Kasner axes are rigidly fixed 
to the reference vectors and do not change when the 
Kasner epochs are changed. In the nondiagonal case, 

3lWith the vectors (2.14) as reference vectors the matrix 'Yab would 
be diagonal but the structural constants would be equal to c:2 = (N • L)IV, c:3 = (M·L)/V, C~2 = UIV, etc. 

4lit is precisely this variation of the principal values and rotation of 
the principal axes that were observed by M. Rayan [2 ] and described 
by him as a reflection on a "centrifugal barrier" (introduced by Rayan 
in the spirit of the Hamiltonian method developed by Misner). It is 
clear from the foregoing that these phenomena are the algebraic con
sequence (the properties of the roots of the secular equation of a quad
ratic form) of an inadequate choice of the axes-rotating principal 
axes instead of stationary Kasner ones. 

however, the Kasner axes are not fixed beforehand and 
their directions change when one epoch is replaced by 
another. This change may be found with the aid of 
Eq. (2.16), bearing in mind that the constant C is an ex
act solution of the Einstein equations and remains the 
same (at a fixed reference frame) for alternating 
epochs. 

Let us show first that the variation law for the Kas
ner exponents during the alternation of the epochs re
mains the same as in the diagonal case. This is easily 
verified by choosing the reference frame in the initial 
Kasner epoch by the method mentioned at the end of 
Sec. 2-in accordance with (2.17). 

Let us consider an alternation of the epochs, in 
which y 11 goes through a maximum. This means that 
close to the transition a2 is large compared with b2 
and c2; we shall assume that b2 >> c2 at the same 
time, i.e., 

(3.1) 

Then 

(3.2) 

while all the off-diagonal components are small in the 
sense that 

(3.3) 

These inequalities follow from (3.2) provided the ratios 
MdM2, NdNs, N2/Ns are not too large. Thus, y 12 

~ y22MdM2 = Y22/tan 9m and for (3.3) to be fulfilled we 
should have y uiY 22 >> (Ml/M2)2 • On account of (2.8) 
this requirement imposes on the constant Cs the condi
tion: 

C,jA<:;g,a/b, (3.4) 

where the right-hand side is the ratio of the values of 
a and b near the transition point. Analogous condi
tions are imposed on C 1 and C2 • 

It is evident from continuity considerations in match
ing the solutions on both sides of the transition that the 
direction lK, which is connected with the largest (at the 
moment of replacement of one epoch by another) value 
of a 2, does not change: in the new Kasner epoch we 
have lk = lK. For the same reason the direction mk 
in the new epoch, connected with the quantity b2 >> c2 , 

remains in the same plane (lK, mK)- In other words, 
the chosen reference frame retains its properties in the 
new epoch, and with them are conserved the forms of 
(3.2) and the principal terms in Yab· Under the condi
tions (3.3) the off-diagonal components of Yab drop out 
completely from the Einstein equations and we return 
to the same situation (for the functions a, M 2b, N3c), as 
obtained in the diagonal case for the functions a, b, c. 
The determinant is r ~ y11 y22 y33 R~ (abcM~ 3)2 , in the 
same way as in the diagonal case r = (abc )2 • It is clear 
therefore that the substitution rule for the exponents I 
(3.14), as well as the variation rule I (3.15) for the con
stant A, remains as before. 

For two consecutive Kasner epochs pertaining to the 
same era (a succession of epochs with flipping of the 
negative exponent between a given pair of functions-in 
this case a and b), we thus have 

p,=p,(u), Pm=p,(u), p.=p,(u), p,'=p,(u-1), 
Pm'=p,(u-1), p.'=p,(u-1), A'/A=1+2p,(u), (3.5) 
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where the prime indicates quantities pertaining to the 
new epoch. Applying to these two epochs the equality 
(2.18), we obtain as a result the following relations for 
the changes in the relative orientation of the Kasner 
axes during the change of epochs: 

tg9,.' 2u-1 
tg 6m = - 2u + 1 ' 

tg6.' u-2 
tge. = u+2 · 

(3.6) 

We see that IBffi/Bml < 1 and IBD./Bnl < 1. This 
means that with each change of epochs the Kasner axes 
approach each other. It is easy to obtain similar for
mulas for a change of epochs in passing to the next era, 
i.e., to a series of oscillations of another pair of func
tic.ns; these formulas reveal the same effect of ap
proach to each other of the axes .51 

In the asymptotic limit of any arbitrary proximity to 
a singularity, the amplitude of the oscillations grows 
extremely rapidly;C 3• 4 l consequently the conditions (3.4) 
clearly can be fulfilled (although, according to the rules 
(3.5), the quantity A decreases somewhat from epoch to 
epoch). Also, the difference between the oscillating and 
the monotonically decreasing functions increases very 
rapidly during each era; hence the condition (3.1) will 
likewise be met. This condition could be violated on go
ing from one era to the next if the change in the func
tions a, b, c, resulted in an accidental proximity of a 
and b at that moment; the probability of appearance of 
such "dangerous" cases tends, however, to zero asymp
totically-by the same reasons as were expounded on a 
similar occasion in csJ, Sec. 4. Thus, the asymptotic 
behavior of the general homogeneous model being consid
ered will have the same properties as in the diagonal 
case, but to these properties is added now a new feature
a gradual approach of the Kasner axes to each other. 

By themselves the formulas (3.5) do not still answer 
the question as to whether the common direction of the 
axes that are approaching each other tends to a definite 
limit. Such a limit, apparently, is the direction C, al
though the approach to it is not of a regular character. 
An indication to this may be discerned in the growth of 
the right hand side of Eq. (2.15) as a result of the sys
tematic decrease of the quantity A; the same behavior, 
on the average, will be displayed by the left hand side of 
the equation in an irregular approach of L, M, N to the 
common direction C. 

INTRODUCTION OF MATTER 

It has already been shown in c5 l that in the most gen
eral case of a generalized (inhomogeneous) Kasner 
metric, we may, near a singularity, neglect in the ab
and DO-components of the Einstein equations the terms 
that depend on matter. Then the laws of variation of the 
density of matter E and its 4-velocity (Uo, ua) with time 
are given (for the ultrarelativistic equation of state) by 
the formulas 

5lTo do that it is necessary to consider two cases: it may turn out 
that when the functions a, b and c change during the transition from 
the last epoch of one era to the first epoch of the next, a2 :ll> b2 :ll> c2 

or a2 :ll> c2 :ll> b2 ; in the first case the axis mk should be connected with 
b, while in the second-with c. 

where e<o> and u~ are constants, while c is the least 
of the functions a, b, and c (cf. I, Sec. 2). As to the 
equations 

R:=X:, (4.2) 

the presence of matter led only to a change in the rela
tions imposed on the functions of the coordinates enter
ing into the solution. A similar role is played by Eqs. 
(4.2) for the homogeneous model being considered here. 

For a homogeneous space of the type IX the compo
nents of the four-dimensional Ricci tensor R~ are 
given by the formula 

(4.3) 

(cf. I (C.18)). Comparing this expression with (2.5), we 
reduce Eqs. (4.2) to the form 

C. I 1.1' = -4eu.u' I 3 

and after substituting in this (2.8) and (4.1); 

C.=- 'f, Ve<'>u~'1 (u!'1 N'). (4.4) 

We again see that Eqs. (4.2) establish only a relation 
between the constants in functions, whose form, how
ever, is found without their aid. 

In contrast to the diagonal case, a preferred direc
tion exists in the general homogeneous model. This di
rection is expressed by the "vector" constant C, and 
from (4.4) it can be seen that it is connected with the 
motion of the matter. 

5. THE CASE OF SMALL OSCILLATIONS 

This section is devoted to the generalization to the 
nondiagonal case of the solution described in I, Sec. 4, 
and corresponding to a long era with small oscillations 
of the spatial scales in two directions as the scale in 
the third direction monotonically decreases. 

In its turn the solution discussed below is a particu
lar case of the general inhomogeneous solution previ
ously found in c6 l, and the entire course of calculations 
follows closely the calculations in ( 6 l. 

Let the monotonical decrease of the spatial scales 
take place in the direction e3 • Then y 33 is small com
pared with Y 11, y 22, and y 12, and y 11 and y 22 are close 
to each other. As is confirmed by the result, the non
diagonal components y 13, y 23 "" y 33, so that besides the 
inequalities 

(5.1) 

we have also the inequalities 

(5.2) 

(in this section the indices a, b assume only two val
ues: 1, 2). 

The inequalities (5.2) permit us in the first approxi
mation to set Yas = 0 everywhere. Then the determi
nant is 

(5.3) 

and the components of the inverse matrix are 

y" = y,.ll';., Y22 = Yu I A, Y12 = -y.,l A. (5.4) 

Discarding in the expressions (A. 7) for P~ also y 33 

in comparison with Yab• we obtain the Einstein equations 
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R~ +R~ = 0 in the form 

[ (x,' + x,'rvfi. = [Ll yy,/~]· = 0. 

If we introduce in place of t the variable ~ in accord
ance with 

dt = 1/2 yY,,d£, 

then this equation simply yields 

~ = !'£' 

where f is a constant. 

(5.5) 

(5.6) 

It is convenient to write the totality of the compo
nents y ab in the form of a matrix y , which we repre
sent (with allowance for (5.6)) in the form 

Y = f£e~, (5.7) 

where X is a symmetric matrix of zero trace. To the 
smallness of the oscillations corresponds the small
ness of x for large values of ~.so that 

v""'tw+x-:-'hx'J. (5.8) 

Substitution of (5.7) into the equations R~ = 0 yields 

-x"+-x' l£+x=o (5.9) 

(the prime denotes differentiation with respect to o. 
Here we have neglected only terms of the third or higher 
orders in x. It follows from this that 

- 2 (A sin(£- so) 

x=l/~ Bcos(£-£,) 
Bcos(£-so) ) +O(£-'I'), 
-Asin(£-so) (5.10) 

where A, B, and ~0 are arbitrary constants. The 
phases of the sine and cosine functions in (5.10) are as
sumed to be the same. This can always be achieved, 
owing to the arbitrariness which still remains in the 
choice of the basis vectors e1 and e2 : these vectors 
may be subjected to an orthogonal transformation with
out violating the conditions (5.1-2) and without changing 
the selected values of the structural constants (2.3). 
The smallness of x is guaranteed by the factor ~-1 1 2 , 
in which ~ is assumed large. 

Thus, in the first approximation, we have for the 
matrix Yab: 

Yu} . [ 2A ] _ =rs 1±-,-;;-sin(£-£,) , y,=2/Bl'£cos(£-£,). (5.11) 
Yn ls 

When B = 0 we return to the previous result I (4.9) 
(with the constant f =a~/ ~0 ). 

For the calculation of the function y33(t) we use the 
equation 

(5.12) 

The case of small oscillations corresponds to the case 
when the Kasner exponents (p10 p2 , p3 ) are close to 
(0, 0, 1); under these conditions the components T0 T 3 o• 3 

of the energy-momentum tensor of the matter turn out 
to be of the same order in 1/t as the left hand side of 
Eq. (5.12), as can in fact be seen from (4.1) (whereas 
the components T~ are, as before, small and may be 
discarded in the Einstein equations). 

From the identity UaU0 - ua ua - u3u3 = 1, we have in 
the first approximation 

The equation R~ - T~, on the other hand, yields 

I euou, yy;,£ I = I6AB I 

(the quadratic terms in (5.8) should be taken into ac
count in the calculations here). Determining from this 
E~, we find 

A simple calculation now reduces Eq. (5.12) to the form 

(lny,)'=2(IAI + IBI)', 

from which 

y, = const·exp[ -2( lA I+ IBI )'(£o- £) ]. (5.13) 

Finally, using the definition (5.5) we find for the con
nection between ~ and the time t: 

t = c~nst·exp [- ( lA I + IBI )'(so- s) ]. (5.14) 

The verification of the assumption (5.2) about the 
smallness of Ya3 may now be carried out by consider
ing the equations R~ = T~. These equations are them
selves solved under the assumption (5.2), after which 
we find that the result confirms the assumption (cf. a 
similar analysis in [s J). 

6. CONCLUDING REMARKS 

Thus, the broadening of the class of homogeneous 
models leads to the appearance of a new characteristic 
phenomenon-the rotation of the Kasner axes in alter
nating epochs. At the same time, the general character 
of the oscillatory mode and the rule for the alternation 
of the Kasner epochs remain unchanged. 

The homogeneous models with rotation of axes re
quire the presence of matter; for empty space only ho
mogeneous models with fixed axes are possible. It 
seems to us, however, that this circumstance is just 
connected with the homogeneity and is not of a funda
mental nature from the point of view of the construction 
of a general inhomogeneous solution to the Einstein 
equations. It may be thought that the features which 
manifest themselves in homogeneous models in the 
presence of matter, are also characteristic of inhomo
geneous models with matter as well as without. The 
role played in the Einstein equations by the terms of 
the energy-momentum tensor for matter, may be imi
tated by terms connected with the inhomogeneity of the 
space metric. The presence of matter is felt only in a 
change in the coupling between the arbitrary functions 
of the spatial coordinates appearing in the solution. We 
recall, in order to avoid any misunderstanding, that in 
speaking here about solutions to the Einstein equations, 
we have in mind their limiting form near a singularity. 

In confirmation of the expressed point of view we 
may recall that such is precisely the state of affairs in 
the generalized (non-oscillatory) Kasner solution. l 5 J 

The same situation obtains for the general solution de
scribing in the oscillatory mode a long era with small 
oscillations and thus generalizing the analogous solution 
for the homogeneous model considered here (Sec. 5). 



1066 BELINSKII, LIFSHITZ, and KHALATNIKOV 

APPENDIX 

COMPUTATION OF THE RICCI TENSOR FOR 
HOMOGENEOUS SPACES OF THE BIANCHI VIII 
AND IX TYPES 

For any homogeneous space the components of the 
three-dimensional Ricci tensor Pab are expressed in 
terms of the structural constants of the motion group 
by the formulas I (C .17). For spaces of the VIII and IX 
types these formulas may, however, be reduced to a 
more convenient form. 

Taking into consideration the antisymmetry of the 
structural constants with respect to their lower indices, 
we introduce the dual quantities cab in accordance with 

(A.1) 

where eabd is the unit antisymmetric symbol; according 
to I (C.15) these quantities are expressible in terms of 
the basis vectors by the formula 

c·•= -(e• rot e•) 1 (e'[e'e'J). (A.2) 

The metrics of type VIII and IX spaces are character is
tic in that the determinant of the matrix cab is differ
ent from zero. The substitution of (A.1) into the Jacobi 
identity then yields 

c·•=c•·. (A.3) 

Substituting now (A.1) into the formula I (C.17), we ob
tain 

• 1 
P. = 2r {2c••c'1(2y•,Vt•- V••Vot) + II![(C'•y,,)'- 2C•1C'"Vt<Y••]}· (A.4) 

We draw attention to the fact that the components of 
only the matrix Yab itself, and not of its inverse yab, 
enter into this expression. 

Assuming that the matrix cab has been brought to 
its diagonal form, we denote 

C"=-/;, C"=-Jl, C"=-v. (A.5) 

The corresponding structural constants are: 

d2=A, da= J.t, C~t =v. (A.6) 

For a type -IX space: .\ = fJ. = v = 1 (in accord with the 
choice (2.3)), while for a space of the vm type:,\= -1, 
fJ. = v = 1. With this choice of constants the final ex
pressions for the components of the Ricci tensor are: 

' P, = ["''vu'- (llV"- vy,)'- 41lvy,']/2r 

P: = ~ p; = [J.tVn(AVu + llV22 + vy,) + 211VVuV,]/r (A. 7) 

the remaining components are obtained from here by a 
cyclic permutation of the indices 1, 2, 3 and the letters 
>.., [J., j), 
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