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Solutions are obtained for the internal and external electrodynamics problems that arise in the analysis 
of the reflection of incident p-polarized waves (i.e., waves with the electric vector in the plane of inci­
dence) from a medium with a nonlinear dielectric permittivity. It is shown that, in the absence of an en­
ergy flux into a nondissipative medium, the reflection of p-polarized waves may occur not only under 
conditions of the existence of electromagnetic fields that vanish within the medium, but also under con­
ditions of the existence of periodic fluxless field distributions. For almost normal wave incidence, the 
medium becomes stratified into regions in which the electromagnetic field is transverse and regions in 
which there is also a longitudinal field. The condition of nonlinear transparency with respect to longi­
tudinal waves is satisfied in the latter regions, and spatial transformation of transverse and longitudi­
nal electromagnetic waves occurs in them. 

1. THE nonlinear theory of the penetration of a high­
frequency field into a conductor was developed by one 
of the authors (V.P.S.) in [ 1 l and the characteristic 
features of the distribution of transverse electromag­
netic field in the medium were elucidated. The investi­
gation was restricted to the case of normal incidence. 

In the present work, we have investigated the case 
of oblique incidence of electromagnetic waves, whose 
electric vector lines in the plane of incidence (the case 
of p-polarized waves). The analysis given below showed 
that in oblique incidence of p-polarized waves and in the 
absence of energy flux within the medium, the reflection 
of waves from a half-space filled with a medium of non­
linear dielectric permittivity can correspond not only 
to the presence of electromagnetic fields that vanish far 
from the boundary, but also to the presence of spatially 
periodic distributions of the electromagnetic field. The 
latter are connected with the appearance of a spatially 
periodic transformation of the longitudinal and trans­
verse degrees of freedom of the electromagnetic field 
in the nonlinear medium. The given phenomenon is most 
simply realized for almost normal incidence of p­
polarized waves. 

Following [1l, we write the electric field in the form 

E (r, t) = E+ (r) cos rot+ E- (r) sin rot. (1.1) 

Assuming the dielectric permittivity to be real and to 
depend on the energy density of the electric field aver­
aged over the period of the high-frequency oscillations, 
we arrive at the following system of equations of elec­
trodynamics: 

-f!E± +grad divE±= k'eE±, div eE± = 0. {1.2) 

Here 

e = e[ro, (E+)'+ (E-)'], k' == (ro/c)'. 

We assume that the medium fills the half-space x 2: 0, 
and that the z axis is directed along the boundary of 
separation. Let the (x, z) plane be the plane of incidence 
of the p wave with frequency w and wave vector 

k{kx, 0, kz)· We turn our attention to the internal prob­
lem, namely, we shall ascertain what types of p waves 
can exist in a medium with a nonlinear dielectric per­
mittivity. 

Assuming that all the quantities depend on the two 
spatial variables and that E; = 0, we rewrite the system 
(1.2) in the form 

_ MS, +_a_ ( fJlS, + f)(S,) = k'~ •• 
Dx {)x {)z 

- M', + ~ (oil,+ oil,} = k'ell,, 
d~ fJx dz 

(j f) 
a;-(~.)+ a;-( ell,)= 0. (1.3) 

Here 

/!!, = E,+ + iE,-, /!!, = E,+ -1- iE,-. 

The system {1.3) allows a simple type of two-dimen­
sional solution: 

/!!,(x, z) = E.(x)e"<', /!!,(x, z) = E,(x)e"<', 

which degenerates here into a system of ordinary differ­
ential equations with the parameter kz: 

-E," + ik,E.' = k'eE, ik,E,' + k.'E., = k'eE, 

(eE,)' + ik,eE, = 0. (1.4) 

2. Since the nonlinear medium is nondissipative 
(Im lO = 0), the system (1.4) should possess a set of first 
integrals (conservation laws), and the more general sys­
tem {1.3) should have a set of divergent forms similar 
to those considered in [2 l. The three first integrals of 
the system (1.4) have the form 

h 

IEz'l'-k,'IEx\ 2 +k'~ dqe(ro, q) =const, 

E,'E; + (E,•)'E, = 0, 

E,(E:)' -E:E.' + ik,(E:E. + E,E:) =M, {2.1) 

- 2 where h = IExl + 1Ezl 2 • In the case in which the ener-
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gy flux is absent, M = 0. Then the system (1.4) has so­
lutions of the form 

E,(x) -+E,(z)e'••, E;(z) -+E,(x)e•• •. 

Here the phases liz and lix are constant, and their dif­
ference is liz -lix = rr/2. For real functions Ex and 
Ez, the system (1.4) takes the form 

-E,'' + k,E.' =·k'eE., -k,E/ + k,'E. = k'eE., 

(eE,)'- k,eE, =0. 
(2.2) 

The last equation of the set (2.2) is the consequence of 
the first two and can be omitted in the subsequent 
analysis. 

The properties of the distribution of the p waves in 
the medium are entirely determined by the integral 
curve in the phase space (Ez, Ez, Ex). The latter repre­
sents the intersection of the surface corresponding to 
the first of the integrals (2.1): 

• 
(E,')' = k,'E.'- k' J dq e(ro, q) + Cm, 

• (2.3) 

h = E.'+E.', 

and the surface which represents the second of Eqs. 
(2.2): 

-k,E,' = {k',e- k,')E.. (2.4) 

Here the constants of integration hm and cm are ex­
pressed at the point Xm in the following way: 

hm = (E.')m + (E.'}m, Cm = (E,')~- k,'(E.')m• 

A single condition, which is a consequence of Eq. (2.4), 
is imposed on the three quantities (Ez )m, (Ez)m and 
(Ex)m· In particular, if (Ez)m = (Ex)m = O, then cm = 0. 
If (E~)m satisfies here the relation 

J dq s(ro, q) = 0, hm = (E.')m, 
0 

then the first integral (2. 7) takes the form 

• 
(E,')' = k,'E.'- k' J dq s(ro, q). (2.5) 

0 

This means that among the solutions of the system (2.4) 
and (2.5) periodic, fluxless distributions can also exist 
in addition to the distributions of electromagnetic fields, 
which vanish at infinity (localized field distributions). 
The conditions for the existence and creation of these 
distributions will be made clear below. 

For the elucidation of the topological features of the 
integral curve, we consider its projection on the phase 
plane (E~, Ez), (Ex, Ez) and (&t, Ez ). We make use of 
the following parametric representation of the integral 
curve namely, we take the quantity h = Ei + E~ as a 
parameter. For example, excluding the normal compo­
nent of the electric vector Ex from the system (2.4) 
and (2.5), and solving the resultant equations relative to 
the quantities Ez and Ez, we arrive at the following 
parametric representation of the projection of the inte­
gral curve on the phase plane (Ex, Ez): 

(E,')'= 
{k'e- k,')' k' • 

(k' - k ')'- k .,.J dq s(w q). 
8 & z 0 

(2.6) 

k.'k' • ' . 
E.'=h+ (k's-k.')'-k.' J dqe(ro,q). (2.7) 

The resultant relations, together with h = Ei + E~, 
evidently also determine the projection of the integral 
curve on the planes (Ez, Ex) and (Ex, Ez). Taking this 
or some other model of the nonlinear medium, i.e., 
specifying an explicit form of the dielectric permittivity 
E(w, h), there is no difficulty in calculating the projec­
tion of the integral curve on the phase plane by means 
of a high speed computer, of establishing the topology 
of the integral curve in the phase space (Ez, Ez, Ex), 
and of determining the dependence of the basic charac­
teristics of the integral curve on the parameter k. The 
latter is connected with the angle of incidence " of the 
wave by the simple relation ~ = k2 sin2 "· 

3. We consider the external problem of the reflection 
of transverse p-polarized waves from a nonlinear me­
dium. First, we shall show that the electric and mag­
netic fields inside the medium are connected with the 
real amplitude functions Ez(x) and Ex(x) by the rela­
tions (1.1) and 

H(r, t) = H+(r) cos rot+ H-(r) sin rot. (3.1) 

Here, and also in (1.1), 

E,+ =E,cos (k,z + ll,), E,-=E,sin (k,::+ ll,), 
E,+=E.sin(k,z+ll,), E.-=-E,cos (k,z+ll,), 

kH.+ = (k,E,- E.') sin (k,z + ll,), (3.2) 
kH,-F (-k,E,+E.') cos (k,z + ll,). 

For x < 0, we have incident Ei and reflected Er waves 
of the electromagnetic field. Setting 

E' = E; cos (k.x + k,z- rot), 

E' =RE; cos ( -k.x + k,z- rot) 
(3.3) 

and taking into account the continuity of the tangential 
component of the electric field on the boundary, we get 
the following relations: 

E;cosi}(l:+Rcos'¥) =E,(O) cosll,, 
RE;cosi}sin 'l"=E,(O) sinll,. (3.4) 

Here Ei is the amplitude of the incident wave, R the 
coefficient of reflection, >It the phase shift upon reflec­
tion. As a consequence of (3.4), we get the relations 

E,'(O) = E;'cos'tt(1 +R' + 2Rcos '¥), 

tg ll, = R sin'¥ I (1 + R cos.'¥). 
(3.5) 

The conditions of continuity of the tangential compo­
nents of the magnetic field on the boundary lead to the 
relations 

kE d1 - R cos'¥) = [ .:_k,E,(O) +E.' (0}] sin ll., 
(3.6) 

kE;R sin'¥= [ -k.E,(O) +E.' (0)] cos ll,. 

The relations (3.4) and (3.6) show that the reflection co­
efficient R = 1; here we have for the phase shift upon 
reflection 

sin'¥= [E.' (0)~ k,E,(O) ]E,(O) . 
2E;'k cos tt 

Further, we find that 
E,(O) =2E;cosi}cos ('¥/2), 

k sin ttE,(O) - E/(0) = 2kE; sin{'¥ /2). 

(3.7) 

(3.8) 

Eliminating the phase shift of the reflected wave from 
(3.8), we get 

·E,'(O) + [k,E,(O)~E,'(O)]' = 1. ( 3•9 ) 
4E;'cos'tt 4k'E;' 
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For given values of the amplitude of the incident wave 
Ei and angle of incidence (}, the latter determines the 
surface of boundary conditions in the three-dimensional 
phase space (E~, Ez, Ex)· The intersections of the sur­
face of boundary conditions with the integral curve de­
termine those values Ez(O), Ez(O), Ex(O) which are re­
alized on the boundary of separation for the given values 
of Ei> J, and the relation (3. 7)-the phase shift of the 
reflected wave. 

4. To make clear the features of the internal prob­
lem and the type of integral curve, we use the following 
explicit form of the dielectric permittivity: 

e = e,(w) + L'i(w)h. (4.1) 

In the case of a plasma medium, located in a strong 
high-frequency field, (4.1) corresponds to the weakly 
nonlinear approximation, c 1 J and 

Eo=1- (w,/w)', L'i=1-e,. (4.2) 

Let E0 < 0. Then the relations (2.10), (2.11) take the 
form 

e,'= (l+a-s)'(2-s)s' e.'= (1-s)'+a(1-'f,s) s, (4.3) 
(1- s) (1 + 2a -s) (1-s)(1 + 2a -s) 

Here we use the following notation: 

h=-~s e'=-~E' 
~ ' z €o z, 

. , 2L'i(E.')' sin' t7 
e, = (ke,)' ' a=--e,-. 

(4.4) 

A. Let us consider the case of small angles of inci­
dence: 

a< 1, sin' t7 < -e,. (4.5) 

The projection of the integral curve on the phase plane 
(ez, ez) which is shown in Fig. 1a, represents the set 
of two that form a curve of the "figure eight" type, and 
a closed curve of the "oval" type. The curves intersect 
the ez axis at the points 

2€=' = 1 +'/,a+ '/,a'± [ (1 + 'f,a +'/,a')'- (1 + a)']l'•. (4.6) 

We note that for loops which form curves of the "figure 
eight" type, the parameter s, which corresponds to the 
energy density of the electric field, changes within the 
range 

(4.7) 

while for the curve of the "oval" type, 

1 +'/,a+ ~'!toa' +'/,a.;:;; s.;:;; 2. (4.8) 

The projection of the integral curve on the phase 
plane (ez, ex), shown in Fig. 1b), represents a curve of 
the "figure eight" type and a curve of the "oval" type 
with protruberances along the ez axis. 

Finally, the integral curve is projected on the phase 
plane (ez, ex) in the form of a pair of curvilinear seg­
ments which intersect at tae solitary point ez = ex = 0 
and are symmetric relative to the transformation 
ez-- ez, ex- -ex (Fig. 1b). Evidently, the integral 
curve in the space (ez, ez, ex) is represented by a pair 
of non-connecting curves, one of which-the "figure 
eight" type-corresponds to a localized distribution of 
the electromagnetic field in the medium (lim ez 
=lim ez =lim ex = 0 as X-± 00), and the other-the 
"oval" type (more precisely, the type similar to a pair 

FIG. I 

of silhouettes of tropical helmets) -to the excitation in 
the medium of a fluxless periodic field distribution. 

The simplest and physically clearest picture is ob­
tained in the analysis of the degenerate case-the "al­
most" normal incidence of p-polarized waves. For the 
dielectric permittivity (4.1) and e = 0, the set of equa­
tions (2.4) and (2.5) takes the form 

e.'= (ex'+ e.') (2- ex'- e.')' 

(1- e.'- e,')ex= 0. 

(4.9) 

(4.10) 

Let ex = 0; then, on the basis of (4.9), we find that the 
projection of the integral curve on the phase plane 
(ez, ez) is a curve of the "figure eight" type, located 
along the ez axis. However, if ex * 0, then ( 4.10) leads 
to the conclusion that 

ex'+ e,' = 1, (4.11) 

since, as a consequence of (4.9), it is established that 

e, = ±1, -1 .;:;; e,.;:;; 1. (4.12) 

Comparison of the projection of the integral curve for 
the degenerate case (normal incidence) with the projec­
tions of the integral curve on the planes (ez, ez), 
(ex, ez) and ez, ex), shown in Fig. 1 for the case sin2 J 
< -E 0 , allows us to establish the fact that for "almost" 
normal incidence (sin2 J << -E 0 ) two types of fluxfree 
distributions of the electromagnetic field can be excited 
in the medium with integral curves close to those shown 
in Fig. 2. 

The first type of integral curve corresponds to a lo­
calized field distribution in the medium and is a contin­
uous curve 

e,=fe/(2- e,'), 1.;:;; e,.;:;; +1. 

located in the (ez, ez) plane, and has a break in the tan-
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FIG. 2 

gents and is closed by the arc of the semicircle 
ex'+ e.'= 1, -1 ,;;; e,,;;; +1, 

located in the plane ez = +1. A similar curve is located 
in the lower half -space ez < o. 

A second type of integral curve corresponds to ape­
riodic fluxless field distribution and is the set of two 
arcs of semicircles ei + e~ = 1, located in the planes 
ez = ± 1 and joined to arcs of the curve 

e.'~e.'(2- e.'), 

located in the plane ex = 0. 
For a localized field distribution, the dependence of 

the tangential and normal components of the electric 
field on the spatial variable has the form 

e,=§, e,=l'1-6', lsi.;;; 1; 

l'Zsign g e: = ---.--="".......:...-~::_, __ 
ch[y2(1- s) -ln(1 + l'2)] 

e,=O, 161;:;;.1 (4.13) 

and is shown in Fig. 3. Here ~ = -/-€0 kx/..f2. Thus, for 
I~ I ~ 1, a layer develops in which the condition for non­
linearity of transmission relative to longitudinal excita­
tion (€ = 0), while the electric field vector, keeping its 
value, ex cutes a rotation by an angle equal to 1r in the 
limits of the range of transmission. For I~ I :==: 1, the 
electric field is strictly transverse and tends to zero as 
~-±oo. 

For periodic fluxless distribution of the field, the de­
pendence of the tangential and normal components on 
the spatial variable is shown in Fig. 4 and corresponds 

-I 

FIG. 3 

FIG. 4 

to stratification of the medium with a period 

l = 4[}'2 +In (l'Z + 1)] I Y-e,k (4.14) 

into alternate layers, in one of which € = 0 and the 
electric field vector, preserving its value, undergoes 
rotation through the angle 1r, while in the other, the 
electric field is transverse and changes within the lim­
its -1 ~ ez ~ 1. In other words, a spatially periodic 
transformation of the transverse and longitudinal de­
grees of freedom of the electromagnetic field takes 
place in the nonlinear medium. 

B. We proceed to the case of large angles of inci­
dence, when 

a> 1, sin'~> -e0• 

The projection of the integral curve on the (ez, ez) 
plane, shown in Fig. 5a, represents a curve of the "fig­
ure eight" type, located inside a large "oval." More­
over, there are two small "ovals," located symmetri­
cally with reference to the ez and touching the large 
"oval" at the points 

e,=O, e,=±(a+1) d2a. 

The projection of the integral curve on the (ex, ez) 
plane is shown in Fig. 5b. Finally, the integral curve is 
projected on the (ez, ex) plane in the form of a pair of 
curvilinear segments which intersect at the origin and 
are symmetric relative to the transformation ez - e 
- -ez, ex- -ex. Consequently, the integral curve for 
a> 1 represents a set of two unconnected curves, one 
of which, namely the· curve of the type of a deformed 
"figure eight," is connected with the localized distribu­
tions of the field in the medium, and the other-a type of 
"oval" with leaves-corresponds to periodic fluxless 
field distributions. 

5. Comparing the given analyses of the internal and 
external problems, one can make clear under what con­
ditions (more precisely, what values of the amplitude of 
the incident wave and the angle of incidence) the reflec­
tion of p-polarized waves from the boundary of separa­
tion is connected with excitation in the medium of lo­
calized or periodic distributions of the electromagnetic 
field. As a first example, we consider the case in which 
the electric field on the boundary of the medium has only 
a longitudinal component ez(O) = 0. Evidently, s(O) 
= ei(O). The given situation is realized for 

S±(O) 1= 1 +'/,a =t= l''/16a2 +'/,a. 
Using the equation of the surface of boundary conditions 
(3.9) and the relation (4.3), we arrive at the following ex­
pressions: 

(5.1) 

FIG. 5 
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If the amplitude of the incident wave Ei and the angle of 
incidence J satisfy the first of the condition (5.1), then 
reflection leads to the excitation in the medium of a lo­
calized field distribution which vanishes at large dis­
tance from the boundary of separation. However, for 
Ei and J satisfying the second of the conditions (5.1), 
periodic field distributions are excited in the medium. 
In both cases, the phase shift of the reflected wave is 
>¥ =1T. 

We turn our attention to the fact that in the first case 
the energy density of the electric field on the boundary 
of separation reaches the maximum value for which 
fluxless localized field distributions can be excited in 
the medium. In the second case there is realized on 
the separation boundary that minimum value of the en­
ergy density of the electric field, for which fluxless pe­
riodic distributions of field can be excited in the me­
dium. 

For -~0 << 1 and ~ ~ 1, the Eqs. (5.1) lead to the 
following asymptotic expressions in the range of small 
and large angles of incidence: 

(4Ei'L= ~ '/zeo2 +' (-'/zeo)'l'sinti, sin'ti~-eo; 

(4Ei ')+ ~ -2s,'/27 sin2 1'i} 
sin'1'i~-e0 • 

(4Ei')- ~ "/,sin'ti ' 

The behavior of the corresponding curves on the 
plane (rE£, sin J) is shown in Fig. 6. 

(5.2) 

As a second example, we consider the case in which 
the energy density of the electric field on the separation 
boundary reaches its maximum value compatible with 
excitation of fluxless periodic field distributions in the 
medium. In particular, s(O) = 2, ex(O) = ez(O) = 0. Us­
ing the equation for the surface of boundary conditions, 
we find that 

4E i' = -2e, I tl cos'ti. (5.3) 

The corresponding curve for the case -E0 << 1 and 
~ ~ 1 is also shown in Fig. 6. 

We now turn to the degenerate case of normal inci­
dence. The surface of boundary conditions (3.9) for 
kz - 0 degenerates into an elliptical cylinder located 
along the ex a "~Cis: 

(5.4) 

Considering the intersection of the integral curves 

oc/ 
I 

I 1 ze 
/ 7J7 

1 I I 
I I 

I I 
IJI=O I I 

I I 
/ I 

/./ I 
-2e0 ,--- I 

1 1[1=!1/ 

I /.// 
I z I _..,.,.. 
zeo 1- /jf=11 -----I ! 

FIG. 6 

(Fig. 2) with the surface of boundary conditions (5.4), 
we find that, for the amplitude of the incident wave sat­
isfying the inequalities 

(5.5) 

there is a unique solution connected with the excitation 
of a localized field distribution in the medium. The lat­
ter field falls monotonically to zero on going to infinity. 
The longitudinal field in the medium is not excited in 
the given case (ex= 0). If the amplitude of the incident 
wave satisfies the inequalities 

(5.6) 

then there are three solutions. The first corresponds 
to a monotonically decreasing localized distribution of 
the transverse field, the second to localized distribu­
tion of the field associated with the formation of a layer 
near the separation boundary in which a longitudinal 
electric field is excited. In passage through a layer with 
no linear longitudinal transmission, the vector of the 
electric field, without changing its magnitude, undergoes 
rotation through the angle necessary to restore the lon­
gitudinal field to zero. A phase of monotonic decrease 
in the transverse field should follow. Finally, the third 
solution corresponds to excitation in the medium of a 
periodic fluxless field distribution, i.e., excitation in 
space of a periodic transformation of the longitudinal 
and transverse degrees of freedom of the electromag­
netic field. Thus the solution of the boundary problem 
of reflection of p-polarized waves for almost normal 
incidence for amplitudes of the incident wave satisfying 
the inequalities (5.6) is not unique. 

In conclusion, we note that for the case of a real non­
linear dielectric permittivity, both the internal problem 
of electrodynamics connected with the finding of the 
proper distributions of the electromagnetic field in the 
medium, and the external problem associated with the 
penetration of the p-polarized waves into the nondissi­
pative medium allow a complete study in three dimen­
sional phase space (Ez, Ez, Ex)· Here, both the trans­
verse and longitudinal degrees of freedom of the elec­
tromagnetic field are taken into account. The analysis 
carried out above showed that account of the excitation 
of longitudinal components of the electromagnetic field 
leads to qualitatively new phenomena (for example, the 
spatial transformation of transverse and longitudinal 
degrees of freedom of the field in a nonlinear medium). 
We emphasize that the problem of reflection of s­
polarized waves (the electric vector is normal to the 
plane of incidence) is essentially a very simple prob­
lem, since it turns out not to be connected with the ex­
citation of longitudinal degrees of freedom of the elec­
tromagnetic field. 

In spite of the fact that the case which was consid­
ered in detail above was the one for which the medium 
is opaque in the linear approximation (E 0 < 0), the rela­
tions obtained also make it possible to study the case of 
a transparent medium in the linear approximation (E0 
> 0). In particular, for the dielectric permittivity (4.1) 
with E0 > 0 and ~ > O, Eq. (2.5) and the second of Eqs. 
(2.2) lead only to localized fluxless distributions of the 
electromagnetic field in the medium. 

Finally, we show that uncomplicated numerical cal­
culations of the integral curves allow us to investigate 
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the distribution of the electromagnetic field in the me­
dium even for an arbitrary dependence of the nonlinear 
dielectric permittivity on the energy density of the elec­
tric field. The latter circumstance is associated with 
the fact that the relations (2.6) and (2.7) determine the 
integral equation in parametric form for the case of an 
arbitrary dependence of the dielectric permittivity on 
the energy density of the electric field. 
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