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A regular method for deriving the macroscopic equations of motion from the exact microscopic equa­
tions, first suggested inc11 , is developed further. The analysis is based on a consideration of three 
model problems in the thermodynamics of irreversible processes, namely the problem of Brownian 
motion of a quantum oscillator, the problem of motion of an N-level system in a random quantum ex­
ternal field, and the problem of motion of a particle in quantized and random external fields. In these 
three problems it is possible to assign a small parameter which is the product of the interaction energy 
and the correlation time of the external field. The method is free of a number of restrictions that must 
be imposed as a rule in solving similar problems. 

1. INTRODUCTION 

I Nell , in connection with the particular problem of 
deriving the macroscopic equations of a transverse 
electromagnetic field, a method of expansion in terms 
of semi-invariants was proposed. 

The present paper is devoted to further development 
of this method using as an example three model prob­
lems of statistical physics: 1) the classical problem of 
Brownian motion of a quantum oscillatorc2 J, 2) the prob­
lem of the motion of an N-level system in a random ex­
ternal field, and 3) the problem of motion of a particle 
in quantizing and random external fields. All three prob­
lems belong to the same class as the problem considered 
inu 1 • Namely, in all cases it is possible to separate a 
light-weight system (transverse electromagnetic field, 
quantum oscillator, N-level system, particle in quan­
tizing field) and a heavy system--the source of the ran­
dom external field. Interest attaches to the characteris­
tics of the light system. 

In problems of statistical physics, the observation 
(measurement) lasts as a rule so long that even a weak 
interaction between the light and heavy systems leads to 
a noticeable change in the state of the light system. 
Formally this leads to the appearance of secular terms 
and thereby excluding the applicability of traditional 
methods of perturbation theory. In the proposed method, 
on the other hand, an infinite number of terms of the 
perturbation-theory series is summed; but since the 
summation of all the terms (i.e., the exact solution of 
the problem) is hardly ever possible, the main difficulty 
lies in the selection of the "principal diagrams." This 
procedure is feasible in practice only in those cases 
when a small parameter exists. 

For the reasons just considered, it is incorrect to 
regard the interaction energy as the small parameter. 
In the problems discussed here the small parameter will 
in essence turn out to be the correlation time of the 
heavy system, i.e., the time during which the correla­
tion functions (semi-invariants) of the heavy system 
differ noticeably from zero, and the idea of the method 
consists in the following. 

An estimate of the terms of the perturbation- theory 
series for the mean value of the physical quantity of 
interest allows us to write down this mean value in the 
form 

where c(t) are bounded functions of t, J.1. is a formal 
small parameter of the interaction energy (its dimen­
sion is sec -1 ), and T c is the correlation time. This 
series can also be rewritten in the form 

If the last series converges in a certain region of varia­
tion of the dimensionless parameter J.1. T C' then the prob­
lem reduces to an approximate calculation of its coeffi­
cients. 

We shall not stop to analyze the convergence of the 
series, and will be satisfied by the fact that the results 
are physically reasonable. 

2. BROWNIAN MOTION OF A QUANTUM OSCILLATOR 

By quantum oscillator, following Schwinger, we shall 
mean a quantum system whose unperturbed Hamiltonian 
can be written in the form 

and the Hamiltonian of the interaction with the heavy 
system in the form 

(1) 

deint= li(Q+(t)y(t)+Q(t)y+(t))""' ~flQ(cr,t)y(cr,t), (2) 
o=t, -t 

where Q and Q+ are the operators of the heavy system, 
y(1, t) = y(t), y(-1, t) = y•(t), Q(1, t) = Q•(t), Q(-1, t) 
= Q(t). 

Following the procedure described incu, we write 
down the equation of motion of the Heisenberg operator 
YH(t): 

YH(O) = y(O)+ G,(O, 1)Q(1) 
00 

+ LGo(O, 1)Q(1, 2, ... , n)y,(n) ... YH (2). 
(3) 
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Here 

G,(O, 1) = -i8(t,- t,)[y(O), y(1)], (4) 
Q(O, 1, ... n) = (-i)"&(t,- t,)S(t,- t,) ... e (t,_,- t,). 

X[ ... [[Q(O), Q(1))Q(2)) ... Q(n)). (5) 

We proceed to write down Eqs. (3) in graphic form, 
letting a solid line with a cross on the end stand for the 
operator y, a solid line not terminating in a cross for 
the function G0 , and points for the operators Q. 

We average the perturbation-theory series obtained 
in this manner and write down a graphic series for the 
mean values, expanding the mean values of the products 
of the operators over the semi-invariance in the manner 
used inl11 • 

However, unlike inl1 J, we shall not assume here that 
the instant t* tends to- oo, we shall not require adiabatic 
turning on of the interaction, and we shall not impose the 
condition that the averaging of the operators of the heavy 
system and of the operators of the light system, taken at 
the instant of time t*, to be independent. Instead, we 
shall impose the condition that the semi-invariants be 
finite and require that the correlation time of the heavy 
system be small. 

We now separate the diagrams in such a way that the 
separation lines cross only the continuous lines of the 
diagram and can be closed outside the diagram, and the 
separation lines crossing the input ends of the section 
do not cross its output ends. After performing this 
procedure, sections of diagrams within the same boun­
daries may turn out to be not interconnected. We shall 
call such sections compact. It is easy to see that a com­
pact section differs from zero only if the temporal argu­
ments of its ends are separated by s; T c· If there are no 

--:>< ----o 
a b 

crosses inside a compact section and this section has n 
ends (both input and output), then the integration genera­
ted by these ends leads to the appearance of a factor 
(IJ. T c)n - 1 iJ. T, and in addition the internal integrations 
can also increase the degree of iJ. T c· On the other hand, 
if the compact section contains crosses and furthermore 
m output ends begin immediately at these crosses, then 
there appears a factor (IJ. T c)n- m, and the degree of iJ. t 
is equal to zero. 

The foregoing estimates enable us to choose the main 
sequence of the diagrams. Let us consider, by way of an 
example, the equation for (y). The term proportional to 
(IJ. T)0 and containing no factor iJ. T c is generated only by 
the diagram a. The term proportional to (iJ. t)(IJ. T c)0 is 
generated by the diagram b. It is easy to see that there 
are no diagrams proportional to (IJ.t)2(1J. Tc)0 • The mini­
mum degree of the factor iJ. T c corresponding to (IJ. t)2 is 
unity. The corresponding term is generated by the dia­
gram c. Diagrams contributing to the term proportional 
to (IJ. t) 3 are shown in Fig. d. Both lead to the appearance 
of the factor (IJ. Td) 2. 

Continuing this reasoning, we can verify that the 
minimal degree of iJ.Tc, corresponding to (IJ.t)n, is n- 1. 

The selection and summation of the corresponding 
diagrams are carried out in elementary fashion and lead 
to Eq. (6) without the first term in the right- hand side. 

-Q = -x + --o + ---<>{)+-{ +··· (6) 

The meaning of this equation is obvious. Since we 
neglect terms of the type of Fig. a, it determines the 
forced motion of the system in the nonlinear approxima­
tion, with allowance for the damping. 

The selection and summation of diagrams propor­
tional to equal powers of iJ. T c and iJ. t lead to Eq. (6) with 
allowance for the first term in the right-hand side of the 
equation. In this approximation, account is taken of the 
initial conditions, i.e., of the free oscillations of the sys­
tem. 

If the coherent component of the external field is 
equal to zero, then after a certain time (the relaxation 
time) the solution of Eq. (6) is damped. In this case in­
terest attaches to the correlation function &(y(2), y(1)). 
Here, too, the selection of the principal diagrams entails 
no difficulty and leads to the expression 

(7) 

where the thick line satisfies the equation 

- = --· + ----<-- (8) 

and the block without the cross is defined by the sum 

]] 
¥ . 4 

= i + : 
I I * -¢ 

(9) 

Far from t* the contribution of the first term of this 
block attenuates, so that we can retain only the second 
term. 

Physical considerations show that if the heavy system 
is in the state of thermodynamic equilibrium, then the 
light system, after relaxing, should reach a state of 
thermodynamic equilibrium. We shall show that this 
indeed follows from the obtained equations. 

We rewrite to this end the equations in analytic form. 
We have 

G(t, -t,)= G,(t, -t,)-\- s dt,dt,G,(t, -t,)A(t,-t,)G(t,-t,), (10) 

where 
G,(t,-t,) = -te(t,-t,)[y(t,), y+(t,)J. 

A(t,- t,) = -te (t,- t,)<[Q(t,), Q+(t,) J>. 

For the Fourier transform of the function R(t1 , t2) 
= S2(yf.(t2), Yr(tl)) we have 

Jl(ro) = (2n)'G(ro)G"(w)/(ro)e-Pw, 

where 

/(w) = 2
1rr J dt(Q(t, + t)Q+(t,))e'w', 

and by virtue of (10) 

a-'(w) =G,-'(w)- (2n)'..I(w). 

(11) 

(12) 
Since certain known spectral relations must be satis­

fied between the Fourier transforms of the correlation 
functions in the state of thermodynamic equilibrium l3J, 

we have 1 /(w') 
A(ro)=--Sdw' , . (1-e-Pw') 

2n w -w-•e 

1 f /(w') t =-- dw'-- (1- e-P•')- -/(w) (1- e-Pw). 
2n w'-w 2 

(13) 
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Expanding (11), we obtain with account taken of (12) and 
(13) 

i 
R(w) = -- (C(w)- C•(w)), 

e~· -1 

i.e., precisely the sought spectral relation, but of course 
under the condition that 

G(t,-t2 ) = -i8(t,-t,)([yH(t,), yH+(t,)]). (14) 

Let us verify that condition (14) is indeed satisfied, 
at least in the assumed approximation. 

Indeed, for the difference 

S,(yH(t,), Yu+(t,))- S,(y+(t,), y(t,)) == iK(t,- t,) 

we have the following expression: 

iK(t,- t,) =1 dt, dt, G(t,- t,) G• (t,- t,) ( [Q(t,), Q+ (t,)]) 

or 

K(t,- t,) = J dt, dt,, G(t,- t,) G• (t,- t,){A (t,- t •• )- A • (t,- t,) }. 

The difference in the curly brackets can be transformed 
by adding to it the difference 

which has zero value. We then obtain 

K(t,- t,) = G (t,- t,)- G• (t,- t,). 

Multiplying the last relation by e (t1 - t2) or e (t2 - t1), 
we finally verify that G(t1- t2) is a retarded Green's 
function and G*(t1- t2) is an advanced Green's function. 

3. N-LEVEL SYSTEM IN A RANDOM EXTERNAL 
FIELD 

Let the only coordinate of a certain quantum- mech­
anical system be capable of assuming only a finite num­
ber (say N) of values. We call this an N-level system. 
It is perfectly obvious that the operator of such a sys.­
tem can be represented in the form of an N x N matnx, 
and there exist ~linearly-independent operators. It is 
quite easy to show (we omit the proof for the sake of 
brevity) that it is always possible to choose the basis in 
such a way that it contains a unit matrix and all the re­
maining matrices are Hermitian and have a zero trace. 

We denote the basis operators by y(a, t) (a= 1, 2, 
... , ~). Obviously, the following relations are satisfied 

y(a,,t)y(o,, t) = 1: b(a,, a,, a,)y(a,, t), 
o, 

[ v (a,, t), y (a,, t)] = i L c( a,, a,, a,)y( a,, t), 
(15) 

with 

ic (a,, OJz, a,) = t (a,, a,, a,) - b( a,, a,, a,). 

In the most general case the interaction Hamiltonian 
can be represented in the form 

Xint= ll L Q(a, t)v(a, t), (16) 

and the unperturbed Hamiltonian can be set equal to 
zero. It will be convenient in what follows, however, to 
separate from (16) the part regular in the external field, 
and include it in the unperturbed Hamiltonian, which 

consequently is written in the form 

X,= li}2 (Q(a,t))y(a,t), 

and we obtain in place of (16) 

Xint= ll L,Q'(a,t)y(a,t), 

where 
Q'(a, t) = Q(a, t)- (Q(a, t)). 

(17) 

The operators y (a, t) in the interaction representation 
satisfy the system of equations 

ay(a,t) L > ( ) --- = c(a, a,, a,)(Q(a,, t) y a,, t , 
at · (18) 

the solution which at t > t1 (where t1 is any instant of 
time) can be written in the form 

y(a,t)= I:.G,(a,t; a,,t,)v(a,,t,). 

The function Go satisfies the equation 

aG,(a, t; a, t,) _ ~ c(a, a,, a,) (Q( a,, t)) G, (a,, t; a,, t,) = .S( a, a,) ll(t- t,). 
at ..:::.... 

o,,o, (19) 

This makes it possible to obtain for YH(a, t) the fol­
lowing system of nonlinear operator equations 

V!i(O) = y(O)+ G, (0, 1) c(1, 2, 3) Q' (2) VH(3) 

+ L,c,(0,1)c(1,2,3)Q(2,4 ... n)yH(n) ... yH(3), 

where 

Q(O, 1, ... , n) = (-i)"B(t,-t,)S(t,-t,) ... 8(t,_,-t.,) 

·[ ... [[Q(O), Q(1)]Q(2)] ... Q(n)]. 

(20) 

An estimate of the compact sections shows that if a 
compact section does not contain the operators y(t*) and 
has 2n output and input ends, then it generates the factor 
{!.L T cln- 1Jl t. On the other hand, the compact section con­
taining the operators y(t*) does not increase the degree 
of Jl t. 

We obtain an equation for ( y (a, t)) in the lowest 
order in J1Tc, i.e., retaining only diagrams containing 
equal powers of Jl Tc and J1 t. We note in this connection 
that separation of the regular part of the interaction 
Hamiltonian in the main Hamiltonian excludes the ap­
pearance of compact section generating the factor 
(Jl T c)n(Jl t)m with n < m. 

The summation of the diagrams of the main sequence 
leads to the equation 

-(J = ---X + "-·--<fl + ~>=-Q (21) 

In this equation the block with two output ends is 
(yH(2)yH(1)). Since this block is directly closed on a 
compact section, it suffices to know its value only at 
t1- t2 ~ T , and this makes it possible to express it 
only in ter~s of ( YH(2)). To this end it suffices, putting 
t* = t2 and expanding (yH(2)yH(1)) in an iteration series, 
to retain only its first term. As a result we obtain 

(VH (0)) = (y (OJ>+ Go (0, i)A (1, 2) (yH(2) ), (22) 

where 



1036 A. A. KORSUNSKII 

A (1, 2) = c(1, 3, 4)G,(4, 6)(Q(3, 5) )b(5, 6, 2) 
+ c(1, 3, 4)G,(4, 6)S,(Q(3), Q(5) )c(6, 5, 2). 

For the unit operator, this system of equations gives 
an obvious solution. As to the remaining operators, it 
is probably meaningful to assume that none of them 
commute with the total Hamiltonian. It is clear from 
physical considerations that the system should forget it 
prior history. For this reason, it may be convenient to 
change over from the system of integral equations (22) 
to a system of integra-differential equations that no 
longer contain ( y (0)). This transition is very easily 
effected if it is recognized that (y) and G! satisfy Eqs. 
(18) and (19), which can be written symbolically as Ly 
= 0 and LG0 = 1. From this we obtain 

(23) 

It is meaningful to consider two particular cases when 
the integro- differential equations reduce simply to dif­
ferential equations. 

1. (Q) can be represented in the form of a sum of a 
large time-constant term Qo and a small time-dependent 
term q. 

2. Tc is much smaller than the characteristic time 
scale of the unperturbed system. 

In both cases we assume that the correlation func­
tions of the external field depend only on the time differ­
ences, and confine ourselves for simplicity to two-level 
systems only. 

As the basis we choose the unit operator yo = 1 and 
three operators y i (i = 1, 2, 3) satisfying the relations 

'\"Yo = Yo'Y< = Y•• 
(24) 

Calculating the kernel of the integral operator in 
(23), or more accurately the function Go contained in it, 
we replace in (19) approximately (Qi) by Oi3Qo. We 
obtain 

Gou.(t) =a (t) { (6u.- 6.,6.,)cos w,t +e.,. ~~:J sin w,t + 6.,6.,} (25) 

where 
Wo=2JQ,J, 

and with this value of Go the following equation for (yH) 
(we omit the symbol for the Heisenberg operator) 

a(y,(t)) =2e,.,(Q.(t))(y,(t))+ J dt,A,.(t-t,)(y.(t,))+B,, (26) 
at 

where 

A,,(t- t,) = -'J,e(t- t,) { (11,.- 6.,1\.,) (1 +cos w,(t- t,)) 

+ 26.,1\., cos w,.(t- t,) + e.,,(Q, / JQ,J) sin w,(t- t,)}. 
X ( {Q.' (t), Q/ (t,)} ), 

B, =-~ ll,, J dt, ([Q.(t), Q.(t,)])6(t- t,)sin(l)o(t- t,). 

The same equation can be written also in a different 
form, by expressing Bj in terms of the equilibrium 
value (y) in the external field Qo. Putting in (26) 
o(y)/at = 0 and (Q) = Qo, we solve the resultant equation 
with respect to ( y). In particular, in the state of thermo­
dynamic equilibrium we obtain for the only non-zero 
component 

(27) 

We now subtract from (26) the equation for the deter­
mination of the stationary ( y). We have 

a(y,(t)) = 2e,.,(Q.(t))(y,(t)) + J dt, A,.(t- t,) ((y.(t,))- v:q ). (28) 
at 

Here r:q denotes the equilibrium value of (yk(t)). 
If the damping is small and the alternating external 

field is weak, then the solutions of the system (28) for 
(y 1 ) and (y2) constitute a signal with low-frequency 
modulation and with a carrier frequency wo, while (ys) 
represents simply a slowly varying quantity. It is there­
fore meaningful to replace the integral kernel by its 
Fourier component. As a result we obtain the following 
equations: 

a(y,(t)) 1 eq (29) at =2e,.,(Q.(t))(y,(t)>-z;;-<<v.{t))-y, ), 

and for i = 1 , 2 

a(y,(t)) = 2e .. ,(Q.(t))(y,(t)) _ _!_(y,(t)) -~ a(y,(t)) 
at T, Wo at 

Q, ( Q, B(y,(t)) ) 
- e"'JQ,J Q,(y,(t))- Wo Bt ' 

where 

1 T; = 2rr.J (0) + 2rr.J (w0)(1 + e-B"'"') + rr.J (2w0)(1 + ,-•pn .. ,), 

g, = f dE I(E)(1 + e-~) + 2f d.i/(E) (1 + e-~8) 
E-21iw, E-liw, ' 

g --fdEI(E)(1+e-P8 ) 

2 ,.- E - 21iw, ' 

Q, = 2rr.l.(O) - rr./(2wo) (1 + e-'~""•), 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

J(E) is the spectral function of the component Qp with 
respect to one of the axes. 

The physical assumptions made in the derivation of 
Eqs. (29) and (30) are such that they are expected to lead 
to the Bloch equations. Indeed, Eq. (29) coincides fully 
with the Bloch equation for the longitudinal component of 
the magnetic moment. On the other hand, Eqs. (30) 
differ from the Bloch equations for the transverse com­
ponent in the presence of additional terms proportional 
to 0 1 , 02, and 03. These terms are small only in the 
case when the product J(E)(1 + e- ,BE) changes little in 
the interval 0 < E < 2 hw0 , The smallness of this varia­
tion signifies, in turn, that T1 = T2, as can be seen from 
a comparison of (31) and (32). But it is precisely in this 
case that it is possible to obtain approximate equations 
in which it is not required that the alternating field be 
small compared with the constant field. 

The slowness of the variation of J(E) denotes small­
ness of T c compared with 1/ w 0 • Therefore, in calculat­
ing the integral kernel of (22), we can put approximately 

G,.,(t,, t,) = 6,.e(t, -t,) + 2e11,(Q,(t,))(t,- t,)e(t,- t,). 

We then obtain the following system of equations 

B(y,(t)) = 2e"'1 (Q,{t))(y,(t))-_i ((y,(t)) -x,(Q,(t))), (36) 
at T 

where 1/ T = 81rJ(O), Xo = - h,B. 
This system of equations coincides, apart from the 

notation, with the system proposed inl4 J. 
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4. PARTICLE IN A QUANTIZING OR IN A RANDOM 
EXTERNAL FIELD 

This problem is similar in many respects to the two 
preceding ones, but differs from the first one in the 
form of the interaction Hamiltonian, which conserves 
the number of particles, and from the second in the in­
finite number of states of the unperturbed system. 

The Hamiltonian of the unperturbed system-particle 
in a quantizing field- is 

de,= L,nw(a)1jl+(a)¢(a), 

and the Hamiltonian of interaction with the random field 
is 

.Uint= 1i L, ¢+(a, t)Q(a, a', t)1jl(a', t). 
a,a' 

The equation of motion of the Heisenberg operator 
lJiH is 

¢H(O) = ¢(0)+ G,(O, 1)Q(1, 2)1jlH(2) 

/(cr1o a,; a,, a./ w) = 2~ J (Q(cr,, a,, t)Q(a,, a,, t')) e'•<'-''Jdt. 

When solving (41) it must be understood that at suffi­
ciently small J.1. T c the turning on of the interaction can 
lead only to a shift of the pole of the function Go by an 
amount on the order of o(JJ. T c) or smaller, and to an in­
crement of the same order. 

On this basis, we take into account only the pole part 
in the vicinity of w = w(a). As a result we obtain 

'G(a,a,iw)= 1 6a,a, 
2n w- w (a,)- 2nll?(cr,, cr.j w(cr,)) 

1 Ba1o2 -

We note that 

y(cr,) = n L, l(a, a'; a', cr,lw(cr,)- w(cr')) > 0 . 
a' 

Proceeding to the solution of Eq. (39), we note that in 
the assumed approximation we have for t1 > t2 

El(cr, t,; a,, t,; 3, 4) = i L, G(a, t,; a,', t,)8(a,', t,; a,, t,; 3, 4) 
a .. 

+ G,(O, 1) L, 1Jlif{3) ... 1Jlif(2n -1) (1, 2; 3, 4; ... ; 2n -1, 2n)1JlH(2n) ... 'i1J(2), (without integration with respect to h), and for t1 < t2 
-~ (37) 

where 
G,(O, 1) = -i8(t,- t,) [1Jl(O), 1Jl+(1Jl±. 

(1, 2; 3, 4; ... , 2n -1, 2n) = (-i)"8(t,- t 3)8(t3 - t,) ... 8(t2._3 - t,._,). 

X[ ... [Q(1, 2), Q(3, 4)] ... Q(2n -1, 2n)]. 

The operator equations (37) make it possible to ob­
tain equations for the mean values at an arbitrary num­
ber of particles and for a relatively arbitrary character 
of the random external field. We shall dwell below only 
on the case of motion of one particle in a field at thermo­
dynamic equilibrium. For simplicity we assume that the 
w(a) with different a are different from one another and 
confine ourselves to the same approximation as in the 
two preceding problems. 

One of the quantities that may be of interest is 
( 1Jifl:(2) iJIH(l)). It is connected with the similar quantity 
specified at t1 = t2 = t* by the relation 

(1jllf(2)1jlH(1)) = 8(1, 2; 3, 4)(¢I{(4)'¢H(3))i,,='•=''· (38) 

The quantity 8, on the other hand, satisfies the equation 

Zrr· ~-ij_ - :rr~ 
- T I 

I 

I J-

(39) 

in which the thick lines with the arrows from left to 
right denote the function G(1, 2) and satisfy the equation 

-=--+ (40) 

and the lines with the arrows in the opposite direction 
denote the complex conjugate equation. 

Equation (40), after changing over to the Fourier 
representation, assumes the analytic form 

G( I ) 1 6a,a, 
a,a, w = 2n w-w(a,)+ie (41) 

+ ~:rt) . ~ ll?(cr,,cr,lw)G(cr,,cr,lw), 
w - w a, + te .i..d a, 

where 
"'( I)- 1 L,Jl(a,a,;a,,a,iw-w')dw' 

lVl O't,0'3 (!) --

2:rt w'-w(a,)+ie ' a, 

8(a,,t,; a,,t,; 3,4)= -i L,c•(a,,t,; a,',t,)EI(a,,t,; a,',t,; 3,4). 
a{ 

In addition, if I t1 - t2l « 1/y , then the functions G can 
be replaced by Go. Similar relations can be written down 
also for the ends 3 and 4 of the function 8 , and for the 
function ®0-the first term of the right-hand side of (39). 

Taking this into consideration, we transform the 
equation for ®(1, 2; 3, 4) into an equation for the quantity 

8(cr,, t,; a,, t,ja,, t,; a,, t,) == 8(cr., a,; a,, a.jt,- t3). 

We obtain 

8(cr, cr,; a,, a, It,- t,) = El,(cr,, a,; a,, a,i t,- t,) 

+ L, J dt' dt"8,(aio a,; a,, a, it,- t')A (a,, a,; a,, a, it.- t"). 

X El(a,, a,; a,, a,jt''- t,), 

where 
A (a,, a,; a,, cral t'- t") 

= G,(a,it' -t")(Q(o'a, a,, t')Q(a,, a,, t"))G,•(a,it' -t") 

+ G,'(a,it'- t") (Q(a,, a,, t")Q(a,, a,, t') )G,(a,it'- t"). 

It is obvious that 

.A( a,, a,; a,,a,iw)=-i-fdw'{ l(a,,a,; cr,,cr,lw-w') 
2n w'-(w(cr,)-w(cr,))+ie 

+ l(a,,a,; a,,a,l-w+w') } 
w' +(w(cr,)- w(a,)) + ie 

(42) 

Re.A(cr,, a,; a,, cralw) = 1/2{/(a,, a,; a,, a,jw- w(cr,) + w(a,)) 

+ l(a,, a,; a,, a, I-w- w(cr,)+ w(cr,) )}. 

We consider the Fourier transform of the function 
Elo(a1, o2; 0'3, o4lt1- t3). It has poles in the vicinity of the 
order of J.1. Tc points w(o 1)- w(o3). Thus, in the vicinity 
of the same point there are poles of the function ®0 with 
different values of 0'1 and o3. Therefore, unlike G, the 
turning on of the interaction with a random field leads 
not only to a weak shift of the poles but also to connec­
tions between those functions ® which have identical 
poles. 

If we are interested only in the pole part of the func-
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tion ®, then after changing over to the Fourier trans­
forms Eq. ( 42) breaks up into a series of independent 
systems of equations, each of which corresponds to a 
definite pole of the function ®0 • 

Thus, the pole lying in the vicinity of zero corre­
sponds to the system 

Ei(cr, cr,Jw> = e,(a, cr,Jw> 

+(2n)' L/'i(cr,, cr,jw)A(cr,, cr,; a,, cr,jw)S(cr,, cr,jro), (43) 
where ••• , 

S(cr, <r,jro) == S(cr,, cr,; cr,, cr,fro), 

0( I) i II., •• oo Os,<Ja 00 = 
2n w + 2iy(cr,) 

The function Re A(as, as; a7, a 7jw) is even, and accord­
ingly the imaginary part is odd. Therefore 

E {(w + 2iy(cr,))ll.,.,- 2nil(cr,, d,; cr, cr2 Jro(cr,)- ro(cr,))} .. 
- i 

·El(cr,, cr,jro)= ?II., ••. 
~n 

(44) 
' 

Summing both parts of (44) with respect to a 1 , we obtain 

L - i 1 
El ( cr,, cr,J w) = -,:-1--. . 

2n w+~e ., 
Thus, as expected, among the poles of the function® 
there is a pole lying at the point w = 0. 

Equation (44) can be transformed into an equation 
for the populations. Taking the inverse Fourier trans­
form of (44) multiplied by (1p+(a3 , t*)IJI(a3 , t*)), we obtain 
fort > t* the equation 

dp~,) =-E w(a,, cr,)p(cr,)+ E w\J,, cr,)p(cr,), (45) 
... .. 

where 

and 
p(a) = ('iJ,+(cr,t)ljJ,(cr, t)). 

We have thus obtained the ordinary kinetic equation. We 
note that 

by virtue of which Eq. (45) has a stationary solution 
e-BP..~(a) 

P (eJ) = "'e ,>n .. (a·) • .... 
a· 

5. DISCUSSION OF RESULTS 

(46) 

The problem of the interaction of anN-level system 
with a thermostat was considered in detail by Wangsness 
and Blochl5J. The technique proposed by them in con­
nection with this problem was further developed by 
Blochl61 , Hubbardl71 , and Fai'nlsJ. The authors of these 
papers tend, first of all, to reduce the initial Neumann 
equation to a simpler form, and go over to observables 
only in the last stage. The method of solving the prob­
lem is such that it leads by virtue of its very idea to 
equations describing a Markov process. This, naturally, 
forces the authors to impose a number of serious limi­
tations both on the character of the interaction and on 
the initial conditions. 

On the other hand, the method proposed inlll and de­
veloped in the present paper leads to equations describ-

ing processes with memory, i.e., non-Markov proces­
ses, and only in some particular cases can they be ap­
proximately represented as Markov processes. Argyres 
and Kelleyl9J likewise arrive at equations describing 
non-Markov processes. Unlike the cited papers, the 
initial equations are transformed into equations for ob­
servables already in the first stage. We regard such an 
approach as more natural. Indeed, it is well known that 
although the density matrix does carry a tremendous 
amount of information on the behavior of the systems, 
it nevertheless does not make it possible to calculate 
many-time correlation functions. It is known from ex­
perience that only a small number of observables satisfy 
only simple phenomenological equations. One can there­
fore hope (or even be convinced) that these equations 
can be derived from the dynamic ones. In addition, it is 
known that the phenomenological equations contain pre­
cisely many-time correlation functions. The "simplic­
ity'' requirement imposed on the density matrix is too 
strong and unnecessary. For the same reasons, knowl­
edge of the density matrix will hardly yield an equation 
for observables of a wide class of processes. On the 
other hand, the proposed method makes it possible to 
calculate the mean values of different operators and 
many-time correlation functions in accordance with a 
single scheme. Finally, within the framework of this 
method there are no fundamental difficulties for chang­
ing over to higher approximations. 

We call attention to one more important circumstance 
in connection with the Bloch equations (29) and (30). 
They contain five parameters, four of which can be ex­
pressed in terms of the fifth one 1/T1 , specified as a 
function of the constant external field. This possibility 
permits, first, at least in principle, to verify experi­
mentally the validity of the made statements; second, it 
determines the maximum information that can be ob­
tained within the framework of a given experimental 
method. Thus, in the given particular case it is clear 
that the entire information is contained in 1/T1 , and 
measurement of the remaining parameters will not 
yield anything new. 

The author is grateful to B. Ya. Zel'dovich and L. V. 
Keldysh for a discussion of the results. 
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