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The method used in [11 to calculate the electric conductivity tensor of polarons in a magnetic field is 
extended to the case of electrons obeying a nonquadratic dispersion law, where scattering both by lat­
tice vibrations and by ionized and neutral impurities is taken into account. Allowance for the non­
quadricity leads to a renormalized temperature-dependent effective mass in the expressions for the 
shift of the cyclotron resonance (c.r.) frequency we, the polaron effect, and the relaxation times. Im­
purity scattering is considered; as examples, the longitudinal and transverse magnetoresistances are 
calculated and also the contributions to the half-widths of c.r. resonance lines. Cyclotron resonance 
of optical polarons is investigated at we = w (the frequency of longitudinal optical phonons). The de­
rived equations predict a resonant variation of the polaron mass, and describe a resonant increase of 
the c.r. line half-width at any arbitrary temperature. The theory is consistent with experimental data 
on c.r. in InSb. 

IN our previous article Ul (which will be cited as I) we 
developed a method for calculating the electric conduc­
tivity tensor O'ik 11 of polarons in a magnetic field H for 
quadratic dispersion of electrons interacting with the 
phonon subsystem. In the present work we extend our 
method to the case of nonquadratic dispersion and to 
electron interaction with charged and neutral impurities. 
The chosen Lagrangian contains a nonparabolic term in 
the zeroth approximation. Electron scattering by im­
purities has not previously been considered in quantum 
mechanics within the framework of a Lagrangian for­
malism. 

We must point out one feature of this problem. When 
the Lagrangian includes the potential of an isolated im­
purity we are not enabled to consider scattering, be­
cause this (dynamic) system does not possess dissipative 
properties. In this case we obtain localized states. Dis­
sipation arises when we allow for the interaction of an 
electron with all impurity centers distributed randomly 
in the interior of a crystal. 

We know [I, Eq. (46)] that at low temperatures and 
low energies polaron corrections to the mass are posi­
tive, but become negative at sufficiently high tempera­
tures and energies. This effect occurs for both acoustic 
and optical interactions. The polaron correction asso­
ciated with quadratic electron dispersion is given by 
Eq. (46) of I. The indicated sign change of the ~olaron 
correction has been observed experimentally[2 for elec­
trons in InSb at we = w. In the present work this correc­
tion is obtained for the nonparabolic case and is com­
pared with experiment. 

When the optical vibration frequency w equals we we 
observe resonant broadening of cyclotron lines. A the­
ory that allows only for the emission of optical phonons 
has been discussed in [3- 51 • We shall here develop a the­
ory for the temperature dependence of this effect ~J.nd 
shall obtain the cyclotron line shape at an arbitrary 
temperature. (A temperature limitation arises only when 

!)The notation of I is used. 
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powers of momentum higher than the fourth are neglected 
in the electron dispersion.) 

I. POLARON MASS WITH ALLOWANCE FOR 
NONPARABOLICITY 

AmBv compounds, of which InSb is a typical repre­
sentative, possess a narrow forbidden band (bandgap) 
and the Hamiltonian of the electron must include higher 
powers of its momentum than the second: [61 

p' K, p' fzw,<'J P1.' fzw,<'l p,' 
:1€=-+--±Ko--±K,--+V(r) (1) 

2m' E, 4m'' E8 2m' E8 2m' 

Here p =- ihV- eA/c, tiw6° 1 = eH/m*c, Egis the width 
of the forbidden band, and m * is the effective mass at 
H = 0 and p = 0. The values of the coefficients K0, K1, K2 

for the two-band approximation are given in [61 ; the 
symbol "±" corresponds to spin ± ~ . Interaction between 
the spin and magnetic field is omitted as unimportant in 
cyclotron resonance; V{r) is the energy of the interaction 
with impurities. 

The Lagrangian corresponding to (1) is 

m.1. • m11 e Kzm*2 • ( 2) 
P(r t)=-rl.'+-i·,'--i-A·---r'- V(r) 

' 2 2 c ' ' 4£, . 

Here 
m~ = m' ( 1 + K,n~:<'), m.1 = m• ( 1 + K, n;:<'). 

The trial action So(r) is selected as in Eq. (17) of I; now, 
in addition to the polaron effect and dissipation, non­
parabolicity is taken into account in the effective masses. 
Therefore Eqs. (27}-(29) of I are again obtained for O'ik• 
except that the trace g(T- a) is here expanded using a 
difference between functionals: 

F( ') nl·j-111, J': r,r -F,(r,r')= cD(r,r')+-' -2- dtl!'.'(t)- i·,"(t)J 

' 1111.- m;; oo K.m" oo {3) 
+ .E ? Jdt[l','(t)-f/'(t)J+---S dt[r'(t)-r"(t)J. 

i=l - -oo 4£, -x 

We shall now consider the calculation of the contri­
bution to 
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N i {)' 
G .. =---g,(F-F,), 

2e' o~,oe. 

that is derived from the last, nonparabolic, term in (3), 
where the fourth power of r will be represented by 

~ ~ 

Jdtr.'(t)r,'(t)= J dtdsdt1ds1ll(t-t1)/l(t-s)ll(t1-s1) 

{)' ( ) ( I I X 08,0812 r, t)r,(s r, t )r,(s ). (4) 

Here we must first differentiate with respect to s and 
s 1 , and then integrate taking the c5 functions into account. 
Continual averaging of (4) is achieved by means of the 
generating function 

'¥.~~. (£, TJ, ~~. TJ') = (ex:p[ix,(if,(t)- TJT;(s)) + ix,(s'r,(t') -Tj'r,(s')) ])0 
(5) 

and the formula 

<r(t)r (s)r (t1)r (s'>> - 1 a• ur c•> ,. .~ 1> I -' • • •- x.'x.' o6 OTJ o61 iJTJI T• ... s, TJ,"' TJ ~-•=i'=•i'=•· 

(6) 

Calculating w~~Kk like w~1; in I, we obtain for i * k 

w.~?. (6, TJ, 61 , TJ1) = w!;> (6, TJ) w~~ (6', TJ'), (7) 

where wk~1(~, 71) is given in I (Eqs. (37)-(39)); fori= k 

w.':) .(5. T), 51 '11
) = w~·~ (5, TJ)W~·: (6' 'I') IT exp ( tlix.' 

2nm• ·-· ~ 

X Ldv{[55' cosv(t- t')- ST)1 cosv(t- s')- 61'1 cosv(t'- s) 

+TJTJ'cosv(s-s')][/(ro~;,v)+iA(ro«,v)]} )· (8) 

Calculating G~1(11) with the aid of (4)-(8), from the 
condition G1~(v) = 0 [I, Eq. (20)] we obtain the compo­
nents of the effective mass tensor: 

M.. llm .. • ·s -=1+-.--Im dt(i-cosvt)S«(t), 
m• m 0 

(9) 

where am{t/m *, which describes the contribution from 
the nonparabolic term, has the values 

llm ~ 1iro~•> [ ( ')..F;,ro~•> 1 ) _ ] 
----,;r = ~ - 2K, cth - 2- + 2')..1iro~•> + K 0 , 

llm i nro~•> [ ( Mro~•> 3 ) _ ] 
----,;r = ~ - K, cth -2- + 2Mro~•> + Kt . 

(lOa) 

(lOb) 

The last term in (9) describes the contribution from the 
interaction with lattice vibrations and differs from (43) 
of I by taking nonparabolicity into account in the effec­
tive masses that appear in the function D(t). 

We note that at high electron energies sixth-order 
terms begin to play a role in the dispersion law. How­
ever, for most ArnBv compounds, except InSb, the uti­
lized approximation is quite adequate when considering 
cyclotron resonance. 

2. INTERACTION WITH THE IMPURITY SUBSYSTEM 

The interaction of an electron with impurities leads 
to impurity contributions in the parameters Mu and .6.11 
of the trial action. 

1. Let us consider the bound states of an electron. 
In (2) we insert 

V(r) = -e' I e,r (11) 

and into the trial Lagrangian we introduce a linear os­
cillator with frequency w along the z axis, to simulate 
a localized electronic state in a high magnetic field. The 
frequency w can be found from the condition 

c~& i a• 
G.,, imp (r- o) = -. -, -. --g,(r- o) 

:le i!~,ae, 

<m•w• • '• 1 1 
X - 2-J dt[r,'(t)-ra"(t)]+_:_J dt[---, -]) . (12) __ e,_~ r(t) r (t) 0 

The requisite calculations yield 
2 4e2m•l nta 

w = ---J d-&sin-11-cos'-ltt)-'/. nY.e,li'l• 0 • 
(13) 

where 
1 . 2 1../iw, m.L• 1 l..liw 

'I= -sm t}c.th--+--cos'-&cth-- H/ • ro, 2 mu• w 2 ' ro, = e m.L c. 

For H = 0, we= w (changing to a three-dimensional os­
cillator), and A- co we obtain liw = 32E0 /91T, where E0 

= m*e4/2li2 e~ is the ionization energy of an impurity 
center. 

We note that w can be obtained by maximizing the 
trial sum of impurity center states, using the model of 
Coulomb interaction represented by an oscillator with 
the frequency w and regarding w as a variational pa­
rameter. C?l Both procedures yield the same result for 
w. 

The impurity effective mass is determined from the 
relation G~~!imp(ll) = 0, which gives 

(14) 

2. For a free electron the interaction with all im­
purities is 

V(r)= L, V:(r), V;(r) = Vu(r) + V,(r) + V31 (r). (15) 

' 
Here 

(16a) 

is the energy of the interaction between the electron and 
a screened Coulomb impurity; Ri is the radius vector of 
the impurity center; q is the reciprocal Debye radius; 

v,.(r) = e" e• ----+ --,-_:___,.. 
eoiR.-rl eolr,-rl 

(16b) 

is the energy of interaction with a hydrogen-like im­
purity center; ri is the radius vector of a bound elec­
tron; 

V,.(r) = - V, exp (- _,l_r -_R....:.I~') 
4r,' (16c) 

is the energy of interaction with a deep neutral impurity 
center, where V 0 and Ro are parameters of the impurity 
potential. 

Regarding V(r) as a perturbation, we add to F- F0 in 
(3) the term 

Fimp (r,r')=- J dt[V(r)- V(r')]. (17) 

Since this functional is real, the first-order correction 
describes certain mass and energy changes that result 
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from the shift of the bottom of the conduction band but 
does not contribute to scattering. To obtain Timp we 
must continue the expansion (18) in I: 

G,.('t- o) = G,.'('t- o)+ cf>('t- o)+ G.~>('t- o)+... (18) 

and calculate 

''> 1i a• 1 i • .. , 
G,, ('t-O)= 2e' {}~,ae, g,('t-o) 2 (Tt) ((F-F,)")o. (19) 

where only Fimp (17) is retained in the difference 
F-F0 • 

The impurity relaxation times are obtained from 

G,~>(v)+cf:>(v)=O. (20) 

a) In a Fourier representation Ffmp(r, r') for 
screened Coulomb impurities is given by 

• ?Ne' ~ dx 
Fi~p (r, r') = ~ J dt ds J .. . ... [cxp(ix, r,- r,) 

:'tEo -~ (X"+ rr)-
- exp(ix,·r(- r,)- exp(ix, r,- r/) + exp(ix. r.!- r.') ]. (21) 

Continual averages of exp (iK, rt- rs) and the other ex­
ponents .are calculated by means of the generating func­
tions w}l' (~, 7J) given in I. From (20), using (21), we 
obtain 

~ = 4N,e' sh l..hv J dx x,' 
1:,. nhe,'m'v 2 (x' + q')' 

J~ [ hx' ( il.li ) ] X dtcosvtexp --.-.-D t+-.,- , 
0 n.,.L We .... 

(22) 

where 

D(t) = sin' -It [cth l..hffi, _ cos ffi,(t- il..h/2) ] 
2 2 sh '/ ,l.tiffi, 

-1- mL• cos'-tt[l..hffi, ~-~(t- i'.h)'] 
ma' 2 4 i.h ::!. ' 

and Ni is the concentration of ionized impurities. 
Equation (18) determines the relaxation time at ar­

bitrary temperatures and magnetic field strengths. For 
example, with 11 = 0 and in the absence of a magnetic 
field we have 

_1_ = 2 (2n)'i•N,e'l..'" In(~) 
1:(0) 3 r_,'m•'f, h'q'i.y ' (23) 

where y = ec is Euler's constant. Equation (19) agrees 
with a quantum mechanical calculation averaged over a 
Maxwellian distribution. 

In high magnetic fields at low temperatures we have 
Aliwc /2 » 1, and with 11 = 0 we obtain from (22) for the 
transverse magnetoresistance [I, Eq. (57)] 

PL(H) 3 ( mn' ) '/• ln(2/q'l'y) ( I..E) 
~ = 4 7 ln(8m'/h'q'l..y) K, 2 · (24) 

The dependence of p 1 on H and T agrees witi1 the result 
obtained by Adams and Holstein for this case. [8J Meth­
ods of cutting off Born divergences of the energy E are 
given in [8- 10J. Within the framework of our present 
method it is also possible to consider a non-Born ap­
proximation in the scattering. We shall describe a 
method of determining E without showing details of the 
calculation. In zeroth approximation the cutting-off in­
teraction is simulated by an oscillator with frequency 
w0 • For small w0 we represent D(t) by a series in (w0t)2 , 

which leads to a cutoff at characteristic energies E 
- tiw0 • For example, when the electron-electron inter-

action is taken into account we have w0 = Wp (the plasma 
frequency). 

Under the same conditions as in (24) the longitudinal 
magnetoresistance is given by 

Pu(fl) = ~ ( mn' )''•_1_ [1 - a ln(2/q'l'y) ] a= 4m11'c 
p(O) 4 m' 1- a ln(8m'/h'q'l..y) ' ),heH • 

(25) 
When a < 1 this equation gives negative magnetoresis­
tance. [llJ The temperature and field dependences of 
p 11 (H) agree with those given in [8J. The value of (weT 1r 1 

that is required for calculating the c.r. line halfwidth 
when 11 = we, ~tiwc/2 > 1, l 2q2/2 « 1 is 

1 Ne" l'zm '"' 'E (2 )'' i '' II ('') 
WcT.L = Jt 

12 £ 0 200/'hm• Ko Z · (26) 

b) The Fourier component Ffmp(r, r') for the inter­
action of an electron with hydrogen-like centers (16b) 
has the form 

F~·· (r, r') = ZNd~· \ d~ ({exp(ix, r 1 -r,) [1-2exp(-ixp,,) 
tmp ne0 J X 

+ exp (- ix, Pti- p,,)]- exp (ix, r/- r,) [1- 2exp (- ixp,,) 
+ exp (- ix, p1;'- p,;)]- exp (ix, r 1 - r.')[1- 2exp (- ixpti) 
+ exp (- ix, Pu-p,;')]+ exp (ix, r,'- r,') [1- 2exp (- ixp1;) 

+ exp (- ix, Pu' -p,;')]}>Fo<P;- P;">• (27) 

where Pi = Ri- rt. and Nd is the donor concentration. 
Impurity electron states are taken into account in the 

zeroth order functional F0(pi, pi) by following the pro­
cedure described in Par. 1 of this Section. Calculating 
Tj:f from (20) and using (27), we obtain 

1 4N,e' l..hv J x,' ~J . [ hx' 
-= , , sh-- dx-:-; dtcos(vt)exp ---.-
Tii nfteo m V 2 iG ·' rn.L roc 

( il..h) { ( hx' ) [ hx' ( 1t.fi)]} XD t+-,- 1-:!L•xp ---.11 +cxp ---. -D.P t+- , 
2 ~ ~~ 2 

{28) 

where 
D . (t) _sin'~ ( 1 l..hffi, cos co,(t- il..h/2) ] nnp --- clt----.....2 _ ___;_.:.::.:._ 

:2 2 sh'/,i.flr,,, . 

+ mL' ~cos'~ [ cth l..hw _cos w(t- il..h/2) ] 
m ,"' w :2 2 sh 'llJ..hw · 

(29) 

At very low temperatures, when ~tiwc /2 » 1 and ~tiw /2 
» 1, by neglecting terms with cos wet and cos wt in 
Dimp(t +i~ti/2) we obtain an equation for scattering by 
neutral hydrogen-like impurities with an interaction 
potential that is averaged over the motion of a bound 
electron. 

At higher temperatures, when ~tiw /2 ~: 1, the process 
of scattering with ionization of a center (inelastic colli­
sion) becomes effective. Expanding in this case with 
respect to 7J and Dimp• we obtain [11 = 0, H = 0, we = w 
(three-dimensional oscillator)] 

(30) 

With Aliw /2 < 1, when the exponential terms inside the 
curly brackets in (28) are smaller than unity and can 
be neglected, only scattering by an ion remains in (28). 

We also give the equation for (weT 1r 1 subject to the 
limitations t~ti !11- w I> 1, 11 =we: 

2'bnN,e' s~ dy y' + 2y 

m•'l•e,'ffi,''•wh'\ )'1+y (y'-2y+a)' 
(31) 
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{ )./ilro,- wl } 
X exp - 2 y . 

c) Performing calculations similar to those in cases 
a) and b), we obtain the following result for the compo­
nents of the relaxation time tensor: 

1 16NV,'r,' J...liv J , , ~J 
-= . sh- dxx.'e-'"• dtcos(vt) 
,;,. lim v 2 0 

(32) 

[ fix' ( i'Aii } ] xexp ---.-D t+-- . 
mJ. ro, 2 

When v = 0, H = 0, We = w we obtain 

_1_ = 4n'1• NV,''A'r,lt ( 8m"ro' )'''( . 16m"r,'} _, 
,;(0) 3 m• li''A 1 + li''A · (33) 

We note that with 16m *r~ /l'h. « 1, 1/T ~ T112 the tem­
perature dependence is the same as for piezoelectric 
scattering. 

At low temperatures, with .\liwc /2 >> 1, v = we, we 
have 

_1_ = 1 3'Aiiro, mJ. ''m11"" K ( 'AE} . 
,;J.(H) ,;(0) 16 m'''' ' 2 (34) 

Without presenting the results completely, we note that 
with v = 0, .\liwc /2 » 1 we have p 11 (H) ~ HT-112, but 
p 1 (H) ~ H2T-3; 2 , in agreement with the results obtained 
by Adams and Holstein. [8l 

Unlike the results given in [8• 11l, with which our equa­
tions have been compared in special cases, the general 
expressions for Tj:f[Eqs. (22), (28), and (32)] are valid 
for arbitrary electric field frequencies v, magnetic field 
strengths H, and temperatures T. 

3. CYCLOTRON RESONANCE IN InSb 

Nonparabolicity, the polaron mass shift at we = w, 
and the resonance broadening of absorption lines were 
observed in InSb by the authors of [12• 2 l. Cyclotron line 
broadening was predicted by Harper [4l and by one of the 
present authors and Kabisov, [Sl and has been discussed 
in detail by Korovin. [sl 

For the real part of aii(v), determined from Eq. (27) 
of I, we obtain 

( _ e',;" v'tu' + Q,,;,.,;" + 1 
Reo,.v)--M (Q' ')', '+ '( '+ ')+ 2Q' +1' ii c - V 'tii 'ttt V 'TH T11 c 'tu'Tu 

i ,l = 1, 2, i =I= l. (35) 

In the isotropic approximation, when a11 = a22, for the 
half-width (in units of the magnetic field) Eq. (35) gives 

(36) 
We obtain the contribution of optical phonons to the 
half-width by means of Eq. (47) of I, derived for arbi­
trary fields and temperatures, with the substitution of 
IV Kj l2 as given by Eq. (54) of I. Confining ourselves to 
the inequality .\liwc /2!:. 1, which is sufficient for the 
discussion of the experimental work in [2 J, and using 
the notation 0 = .\liw/2, Oc = Aliwc /2, b(x) 
=../a+ (1- a) x2 , we calculate 

_1_ = ~ mJ.'mu''" ( 'Aiiro} '!. ea,-o{ K,( I Q,- Q I) +K,(Q,+ Q) 
,;J.(H) 2 m•'/, n 

+ e-",[2K,(Q) + K,( I2Q,- Q I)] 

(37) 

I I ( Q, + Q ) ] s' 1 - x' + Q, + Q K, b(x) --- - a'e-0 , dx--
x , xb'(x) 

X [Q'K,(b(x) ~)++(2Q,-Q)'K,(b(x) 12Q,_:-QI)]}. 

Here we consider the first term, which describes 
electronic transitions with phonon emission. With We 
< w and % .\li I we - w I > 1 we have the asymptotic form 
Ko(z) ~ ..Jrr /2ze-z, which gives 

(38) 

According to (38), to the left of the resonance point the 
half-width falls off exponentially as H decreases. This 
is accounted for by a reduction in the number of elec­
trons having energies p~ /2m~> li (w- we), which can 
emit an optical phonon following a cyclotron transition. 
For We> wand .\li(wc - w)/2 > 1 we have 

(J) ( (J) )'" !:J.H~Ha- --- . 
We We- W 

(39) 

The limit in (39) agrees with Harper's theoretical re­
sult assuming zero temperature. The half-width to the 
right of we = w in (39) is considerably greater than to 
the left in (38), because with we> w each electron, fol­
lowing a transition, can emit an optical phonon. The 
magnitude of AH is independent of the temperature. 
Temperature corrections arising out of Ko in (37) do 
not increase, but rather decrease AH; this effect is as­
sociated with the temperature spread of the electrons 
in the zeroth Landau band. 

For we ~wand .\li(wc- w)/2 < 1 we can in the 
Macdonald functions limit ourselves to the first term 
of the series, Ko(z) ~ ln (2/yz), thus obtaining 

!:J.H~Ha- -- ln . ro ( 'Aiiro } '" ( 4 ) 
ro, n v 'Ali 1 ro, - ro I 

(40) 

For we = w this expression gives a logarithmic diver­
gence, which can be eliminated by allowing for phonon 
dispersion (at low concentrations of electrons) or re­
normalization of optical vibrations as a result of elec­
tron-electron interactions (at high electron concentra­
tions). [13l 

A theory, more complete than Harper's, of cyclotron 
line resonance broadening has been developed by Koro­
vin [sl for T t- 0, but taking into account the instability of 
only the n = 1 state; this involves the electronic transi­
tion from the first Landau level (n = 1) to the ground 
level (n = 0) with phonon emission. 

The first term in (37) describes processes with pho­
non emission, as in Korovin's paper. The second term, 
which is proportional to Ko(Oc + 0), makes a contribu­
tion ~(w/(wc + w)112 e-A/liw to AH that is associated 
with phonon absorption and a transition from the n = 0 
to then = 1 state. The term containing Ko(O) describes 
intraband (n = 0) absorption of an optical phonon with a 
change of electron kinetic energy. 

At high temperatures, when .\liwc /2 ~ 1, we must in 
cyclotron resonance also take into account transitions 
from n = 1 to n = 2. Instability of the n = 2 level against 
phonon emission results in a contribution to the cyclo­
tron resonance line width that is described by the term 
~ Ko I20c - 0 I and that becomes especially important 
under the resonance condition 2wc = w. 

In [2l the cyclotron resonance line width of electrons 
in InSb was measured at 15° and 88°K in a broad range 
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FIG. l. Half-width tili of cyclotron resonance line versus magnetic 
field strength at (a) T = 15° and (b) T = 88°K. Curve !-contribution 
from scattering by optical vibrations, a= 0.014; 2-total half-width in­
cluding the "background" (denoted by a dashed line); 0-experimental 
data [2] for N = 1.13 X 1014 cm-3 , b.-for N = 5.7 X 1013 cm-3• 

of magnetic fields from 20 to 60 kG. In Fig. 1a, which 
shows the magnetic field dependence of the half-width 
at 15°K, curve 1 represents the contribution of the op­
tical interaction that leads to resonance broadening at 
we = w = 3.65 x 1013 sec-1 • The remaining interactions 
form a "background" (nonresonance broadening), whose 
contribution is represented by a dashed line. The re­
sultant curve 2 agrees with the experimental data (rep­
resented by small circles). Figure 1a shows that in 
weak fields the entire half-width results from the "back­
ground." Since this broadening has no singularities its 
asymptote (the dashed line) is easily constructed. 

The calculated nonresonance part of the broadening 
was calculated from (26) with allowance for scattering 
by ionized impurities, whose concentration is given in 
the discussed experimental work, and by the deforma­
tion potential, for which 

1 a,' mtl•m.c'' 1 ( 2a ) 
Ulo't-'- = (2n)'l• 2pm'w'li't..'f, n t..m 11•w'y ' (41 ) 

where a0 is the constant of the deformation potential. 
To these two interactions it was necessary to add scat­
tering by small-radius impurities, whose concentration 
and other parameters were chosen to obtain agreement 
with the control measurements of mobility at H = 0 and 
T = 77°K that are given in [2J. Although the experimen­
tal data for different samples do not agree, subtraction 
of the background yields full agreement, as is shown by 
curve 1. 

A similar comparison with experiment was carried 
out at 88°K (Fig. 1b). Although at 15°K the main contri­
bution to the half-width comes from the first term in 
(37), the remaining terms also begin to play an appre­
ciable role at 88°K and double the width in low fields 
(H = 20 kG). For comparison with the theory we se­
lected data [2J that had been obtained from a sample with 
the electron concentration N = 5.7 x 1013 cm-3 • We note, 
however, that the experimental data obtained at 88°K 

/0 

""1/ 't~~ zo ~ ~~70--~J~0--~~~0 

0.017 

H,kOe 

FIG. 2. Cyclotron mass as a function of the magnetic field at l5°K 
and m* = 0.0135 m0 ; curve !-omitting the polaron effect, curve 2-the 
polaron effective mass M 1/m0 ; experimental data from [2]. 

are not very reliable; this is shown by the nonagreement 
of the optical contributions for different samples. 

In [2J a change of sign was also observed in the po­
laron correction to the mass at we R:: w, when, accord­
ing to (9), for the optical interaction we have 

(42) 

X [ sign(Ul- Ul,)+ 1 2/JMUl, ] 

1 + 2/Yi..liUl, 

For w > we we have sign (w- we) = 1, while for w < we 
we have sign ( w- we) = - 1; ( 42) is thus discontinuous 
at w =we. 

The plot of (9) in Fig. 2 (T = 15°K) agrees well with 
the experimental points except in very high fields. The 
break in the curve at resonance is accounted for by 
phonon emission, which becomes possible for we 2: w. 
The deviation of the theoretical curve from experiment 
at high fields is attributed to the neglect of sixth order 
momentum terms in the electron dispersion law. 

We note in conclusion that in [2J cyclotron resonance 
of bound electrons was also observed, whose absorption 
band peaks are shifted towards lower fields; [l4, 151 this 
corresponds to a reduction of the cyclotron mass. The 
calculation of this effect by means of (14) gives 
(am 1 /m*hmp =- 0.05 as the change of the impurity 
mass at 20 kG and - 0.03 at 60 kG, in agreement with 
experiment. 
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