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It is shown that the resistance of a metal depends significantly on the anisotropy of the nonequilibrium 
electron distribution function. Such anisotropy mainly arises as a result of umklapp processes in 
electron-phonon interaction, and also as a result of anisotropy of the phonon spectrum and exists in 
the case of a spherical Fermi surface. Allowance for the anisotropy of the distribution function, whose 
role becomes apparent on going beyond the limits of the usual single-moment approximation, may lead 
to a change (decrease) in the resistance by an order of magnitude compared with its standard value. 
It turns out that the introduction of impurities sharply reduces the effect of the anisotropy of the dis
tribution function due to purely elastic scattering. The latter therefore begins to play an important 
role in the temperature-dependent part of the resistance p(T) and this leads to a nonlinear dependence 
of p(T) on the impurity concentration c at extremely small values of c for which the mutual effect of 
the impurities may certainly be neglected. The results permit us to explain the previously observed 
experimental anomalies in the behavior of the resistance of metals: a) the nonlinear character of the 
dependence on concentration of the impurity part ~p(T, c) of the resistance of a metal in a wide tem
perature range; b) the strongly nonmonotonic character of the dependence of ~p(T, c) on c and its 
large magnitude; c) the strong dependence on concentration of the coefficient of T5 in fue total resis
tance at extremely low impurity contents. 

1. INTRODUCTION 

THE temperature dependence of the resistance of met
als containing nonmagnetic impurities was investigated 
in [13 • It was found that at a low concentration of impur
ity atoms there is an incoherent inelastic scattering of 
electrons by randomly distributed dynamical perturba
tion regions connected with the change in the character 
of the vibration of the impurity atom itself as well as 
the surrounding atoms of the matrix. Allowance for this 
scattering revealed a strong temperature dependence of 
the impurity part of the resistance ~p(T) with a very 
distinctive mode of behavior in a wide range of temper
ature; in particular, the asymptotic behavior of the total 
resistance p for T - 0 was changed. 

The theory led to the linear dependence of Ap on the 
concentration c, which seemed perfectly reasonable in 
view of the absence of any overlap between the per
turbed regions at sufficiently low values of c. However, 
it was discovered in experimentsc2' 33 performed after 
this work that at very low values of c, when the c2 terms 
are certainly negligibly small, the dependence ~p(c) has 
a nonlinear character at intermediate temperatures. It 
was found at the same time that the residual resistance 
and the impurity part of the resistance at high tempera
tures linearly depend on the concentration. Similar re
sults were obtained in c4• 53 • It must be said that the non
linear dependence of Ap on c was observed in earlier 
investigations (see, for example, c6• 73 ), but no fundamen
tal importance was attached to this since it could be said 
that the impurity concentration was not sufficiently low 
(c ~ 1 %). 

In a recently published work by TsorcaJ in which he 
measured the resistance of pure samples of indium in 
a limited interval of very low temperatures, the Bloch 
law for total resistance p = AT5 was found to hold, with 

A, however, showing a significant dependence on the 
impurity concentration (in the range of c ~ 10-4-10-5 

at.%). A similar effect had previously been discovered 
in tin, [9 ' 103 cadmium and indium. c93 The manifestation 
by the coefficient before T5 of concentration dependence 
was one of the results obtained in ell. However, this de
pendence was linear and in the indicated range of very 
low concentrations it must have led only to a slight vari
ation of A. Thus, we again return to the question of 
strong nonlinear concentration effects at extremely low 
c. Analysis of the nature of this nonlinearity and of the 
general character of the behavior of resistance as a 
function of T and c is the aim of the present paper. 

In a perfect metal the distribution function fk for 
electrons in an electric field together with a term of 
the same symmetry as the field term in the kinetic 
equation, in the general case, should contain anisotropic 
terms which reflect the symmetry of the lattice. It turns 
out that this anisotropy of the distribution function, as 
a rule, is strongly expressed even in the case of a 
spherical Fermi surface, which is connected with the 
scattering anisotropy in electron-phonon interaction, 
primarily as a result of umklapp processes (see below). 
Allowance for the anisotropy of the distribution function 
leads to a significant decrease in the resistance of a 
perfect metal as compared with the standard approxi
mation for fk, which is practically equivalent to the ap
proximation for isotropic space. We emphasize at once 
that we are here dealing with such strong effects as the 
change by several factors of the resistance in a definite 
temperature region (see below). 

In the presence of impurities, elastic scattering on 
the impurities substantially suppresses the anisotropic 
part of the distribution function without its being gener
ated back as a result of the nonequilibrium caused by 
the electric field. As a result, the scale of the aniso-
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tropy of fk is determined by the competition between 
inelastic scattering on phonons and elastic scattering 
on impurities. Since at any small concentrations we 
can, by decreasing the temperature, make the two scat
tering mechanisms equal in order of magnitude, then 
this competition should always appear. 

Such a distinctive "interference" between elastic 
and inelastic electron scattering clearly entails the ap
pearance of strong nonlinear concentration effects, 
whose scale of influence on the resistance depends on 
the relative scale of the anisotropy of the function fk 
in a perfect metal. 

The manifestation of anisotropy by the distribution 
function may be seen only by going beyond the limits of 
the standard single-moment approximation in the solu
tion of the kinetic equation. In this connection, we should 
mention that again Sondheimer and Wilson u 1J (see also 
[4J) drew attention to the possibility of the appearance 
of a similar "interference" in scattering on taking the 
characteristics of the Fermi surface into account in the 
so-called two-zone approximation when just the two
moment approximation is used (see also the more gen
eral article [12l). However, a systematic quantitative 
estimate of the role of the anisotropy of the Fermi sur
face which, moreover, requires that we take at the same 
time the change in the electron wave function into con
sideration, has up till now not been done. On the face of 
it, it seems that in the transition metals where the model 
of quasi-free electrons works well, for quantities which 
are determined by integrals over the Fermi surface (as 
is the case for resistance), the distinctive features of 
the structure of the energy surface should exert less in
fluence as compared with the strong effects connected 
with the scattering anisotropy and, in any case, will not 
lead to any qualitative results. In the present paper, the 
Fermi surface is everywhere assumed spherical and all 
the results are, thus, wholly dictated by the anisotropy 
of the distribution functions which is connected with the 
scattering anisotropy. 

2. ANISOTROPIC SCATTERING OF ELECTRONS AND 
THE RESISTANCE OF A PERFECT METAL 

In the absence of drag processes, the quasi-classical 
equation for electrons in metals has the form 

( Dff'l) 1 (o) (o) (o) 
- -c- ev,E = -T J dk'Wkt'('P•- <~•·)/• (1- /.• ), 

<let 
(2 .1) 

where CPk is a nonequilibrium correction to the electron 
distribution function fk: 

Wkk' is the probability of transition of an electron from 
the state with the wave vector k to the state with the 
wave vector k'. 

Usually, CPk is sought in the form 

(2.2) 

qualitative results, while quantitatively, it only leads 
to small corrections not exceeding a few parts in a hun
dred (see, for example, u 3•14l). 

The symmetry of (2 .2) corresponds to the symmetry 
of the field term in (2.1). For a spherical Fermi sur
face the collision operator does not change this symme
try if the transition probability wkk' depends only on the 
angle between k and k'. In that case, the solution strictly 
has the form (2.2). However, if Wkk' depends on the ab
solute orientation of the vectors k and k', then higher 
harmonics ink should appear in (2.2). Such a situation 
exists practically for all metals as a result of the aniso
tropy of the scattering of electrons on phonons, which 
is connected with umklapp processes and the anisotropy 
of the vibrational spectrum of metals. In this case, on 
the assumption that the Fermi surface is spherical, we 
have 

(2.3) 

Let us consider a crystal of cubic symmetry and let 
us choose a rigid system of coordinates along the 4-fold 
symmetry axes. Restricting ourselves to a simple ap
proximation corresponding to the retention in (2 .3) of 
the first two terms of the expansion (concerning the weak 
role of the corrections connected with the subsequent 
terms in the expansion, see below), we obtain 

(2) (2) 

<fta = A<'lrpka + A<2lrpka, (2.4) 

(2.5) 

(in the selected form q;<2 > is orthogonal to q;<1 > with the 
Weight function of~0 )/oEk). 

The coefficients A<il in (2 .4) depend on k2 • However, 
this dependence, as in the case (2 .2), has a very weak 
effect and we may limit ourselves to the zero-order 
terms in the expansion of A(i) in powers of k2 • For defi
niteness, we shall seek the solution in the form of (2.4); 
we then arrive at the following system of equations: 

The index zero determines the quantities pertaining 
to metals with no defects. (In (2.6) we made use of the 
hermiticity of the collision operator.) Solving the sys
tem (2 .6) and substituting (2 .4) in the usual expression 
for current, we obtain directly for the resistance 

plo) 
p(ll) = --':!-- ( 1 - l])' 

r 

p<ol 2 
12 

l] = Pl·~ p~~) . (2.8) 

Let us analyze the temperature dependence of the 
quantity 1J. In the region of low temperatures when the 
umklapp processes are exponentially small, P{~> differs 
from zero only within the limits of the anisotropy of the 
long-wave phonons, i.e., within the limits of the aniso
tropy of sound in a metal. Then, 

which is rigorous for an isotropic medium. In the single
moment approximation, A = const and we have the usual 
solution. Allowance for the expansion of A(Ek) in powers and 
of Ek- EF in the framework of the variational procedure 

(2.9) 

(2.10) (or of the method of moments) does not yield any new l] (T->- 0) = consl. 
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If, for small q, the surfaces of constant frequency are 
nearly spherical, then Y!2 is small and the constant in 
(2.10} is close to zero. 

In the high temperature region T ;;:. en, we have Pik 
~ T and again TJ assumes a constant value. This limit
ing value is, as a rule, small and this is connected with 
the smallness of the off-diagonal matrix elements of the 
collision operator, if the integral in (2.7) is taken over 
all phase space. 

However, at intermediate temperatures, TJ (T) may 
have values comparable with unity-which sharply 
changes the values of p<o>. In order to make this asser
tion clear, we reproduce here results of the computation 
of the function TJ (T) obtained for the simple cubic lattice 
model with a phonon spectrum corresponding to nearest 
neighbor interactions. We recall that this spectrum con
sists of three branches of equal frequency with polariza
tion along the cubic axes and with the dispersion law 

w.'= 1/2wo'[t- [;cos(qxax)- 1/2(1- £) (cos(q,a,) + cos(q,a,))] (2.11) 

when the polarization of the oscillations is along the X 
axis, and similarly for the other two polarizations (the 
equivalent Debye temperature en = 1.1 Wo). For the 
transition probability W~', we have used the expression 
given in UJ, choosing the scattering amplitude of an elec
tron by an ion a:;>>(q) to correspond to a screened Cou
lomb interaction with a<0 >(q = 2kF)/a<0 >(q =0) = 0.25 (kF 
is the radius of the Fermi sphere). 

Figure 1 shows the curves TJ (T), corresponding to 
k F /q0 = 0.9 and 1.45 (q0 = 1Tbmin• where bmin is the 
nearest vector of the reciprocal lattice) and ~ = -!- in 
(2.11). A few facts are at once conspicuous. The first 
one is the existence of a very large change in the mag
nitude of the resistance at relatively low temperatures 
as compared to the value obtained in the standard ap
proximation corresponding to (2.2). Allowance for the 
anisotropy of the distribution, i.e., transition from (2 .2) 
to (2.4), changes the value of the resistance p<o> several
fold in some temperature range. 

The second peculiarity of these curves is the exis
tence of a sharp asymmetric peak with the maximum at 
T = T*« w0 and this may have a significant effect on 
the form of the dependence p<0 >(T), in particular, the 
range of T, where the Bloch law is obeyed, drastically 
narrows down. 

Finally, we draw attention to the fact that the limiting 
values of TJ for T- 0 and at large temperatures are, in 
fact, very small (TJ(T =en)= 0.022 for kF/qo = 0.9 and 
TJ(T =en)= 0.023 for kF/q = 1.45), especially if we take 
the values of TJ at the maximum into consideration. 

We have selected for illustration curves which corre
spond to the parameters k F /q0 that are characteristic 
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FIG. l.1J(T) curves for different anisotropies of the probability for 
the scattering of an electron: a-kF/<io = 1.45, b-kF/q 0 = 0.9. 

of real metals. All the calculations with other values of 
kF /q0 > 0.9 gave a qualitatively similar picture. A dis
crepancy arose only when this parameter was drastically 
decreased, when the weak role of the umklapp processes 
led to the decrease of the quantity TJ. Thus, when k F /q0 

= 0.6, the maximum value of TJ did not exceed 0.02. 
In view of the importance of the obtained result, es

pecially for the impurity problem (see the following sec
tion), it was important to verify that it was not connected 
with the form of the chosen approximation (2.4)-(2.5). 
The analysis, which was carried out, showed that all the 
results are decidedly connected with the allowance made 
for the anisotropy of the distribution function CPk and 
that, qualitatively, these results change only slightly 
when the form of the approximate solution is changed. 
For the purpose of illustrating this assertion we show 
in Fig. 2 the TJ (T) dependence (curve 2 ), obtained in the 
three-moment approximation, that corresponds to taking 
one more term in the expansion (2.3) into consideration: 

(2 .12} 

(for such a choice, cp<3 > is orthogonal to cpu>); all the 
parameters of the problem were kept constant (kF /q0 

= 0.9). For comparison, we show in the same figure the 
curve 1, which was constructed using the approximation 
(2.4) with the functions (2.5) (see Fig. 1) and also the 
curve 3, corresponding to (2.4) but with cp<3> substituted 
for cp<2 >. It can be seen that there is little difference
even purely quantitative-between the curves. 

To demonstrate the relative role of the anisotropy of 
the phonon spectrum, we show in Fig. 3 two curves of 
TJ (T) corresponding to ~ = -!- and ~ = ! (isotropic sound) 
and kF /q0 = 0.9. These curves, as, incidentally, the re
sults of all the other computations with kF /q0 ;c 0.9, do 
attest to the fact that it is the umklapp processes that 
determine the shape of the sharp peak of the curve TJ (T). 

3. NONLINEAR CONCENTRATION DEPENDENCE OF 
THE RESISTANCE OF A METAL CONTAINING 
IMPURITIES 

In the presence of defects, the electrons in a metal 
undergo additional scattering and the total transition 
probability Wkk', appearing in the collision integral 
(2.1), assumes the form 

(3.1) 

The expression for WkU' -th~ scattering probability 
on impurities in the regions of dynamical perturbation 

FIG. 2. 77(T) curves for dif
ferent trial functions (see the 
text). 

FIG. 3. 17(T) curves for dif
ferent phonon dispersion laws. 
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caused by these impurities-for a substitutional alloy 
has been obtained in Ul (for the case when the change 
in the force constants in the vibration problem is taken 
into consideration, see [151 ). 

We may still retain the expression for the resistance, 
introducing in place of Pfk/, the value 

(3.2) 

where P~k! is obtained from (2. 7) by substituting w<ll 
for w<o>. The quantity p~k)• like w(l), linearly depends 
on the impurity concentration c (c « 1). 

Let us separate in Pf~> in an explicit form the elastic 
(e) part corresponding to static scattering on an impur
ity itself and the part corresponding to inelastic (i) 
scattering by phonons in the dynamical perturbation 
regions: 

(3.3) 

In conformity with the fact that in elastic scattering on 
impurities, W~~' depends only on the square of the 
transferred momentum q = k - k', 

(3.4) 

Let us substitute (3.2)-(3.4) in the expression (2.8) 
and take into consideration the fact that in the tempera
ture range from 0 to T ~ en, RfU<T) « R~~) almost al
ways. Then, we have approximately 

i [ p<•> T ,<,> R<'> T P~;> ( T) 2 ] 
pz ..,.- 11 ( ) + chu + c 11 ( ) - p<r•) T) R(') o 

J ,.( +c,, (3.5) 

Hence we find for the temperature dependent impurity 
part of the resistance f:.pT 

i 
ApT = p (T) - p(G) (T) -- p (T = 0) z -cT 

I. 

X [cni;J (7') + Piil (T) '1 (T) cRW ] 0 

pl,l(T)+cll;~> (3.6) 

Notice that to the customary single-moment approxi
mation correspond the expressions (3o5) and (3o6) ex
cluding the last term~ in the square brackets (the cor
responding values RHJ(T) and R~~l(T) were found in [11 ). 

Let us analyze the expressions obtained. In the re
gion of extremely low temperatures, when 

we obtain by taking (2o9) into consideration 

p ~ [P,<:> (T) + cR\'! + cR\'! (T)] /i'o 

(3.7) 

(3o8) 

The resistance and, in particular, the residual resis
tance 

(3.9) 

retain, in this case, the linear dependence on concen
tration. 

In the high temperature region when the opposite in
equality 

is valid, we find for L::.pT 

(3.10) 

Thus, in both limiting cases, allowance for the aniso
tropy of the distribution function and deviation from the 
single-moment approximation do not lead to the viola
tion of the linear concentration dependence. 

The picture becomes completely different when we 
consider the intermediate temperature range for which 

(3.11) 

As can be seen from (3.5) and (3.6), there is in this 
case a strong nonlinear dependence of the resistance on 
concentration. The magnitude of the impurity resistance 
itself turns out to be large in this region: 

(3 .12) 

i.e., if for temperatures corresponding to (3.11), T ~ T* 
(T* is the temperature corresponding to the maximum 
of the function 1J (T)), then L::.pT and, consequently, the 
deviation from Matthiessen's rule may be comparable 
in magnitude with the residual resistance. It is pre
cisely this circumstance that makes the second term 
in (3.6), in the temperature region under consideration, 
large in comparison with the first term which contains 
the small-with respect to the residual resistance
additional factor ~ (u2 )/a2, i.e., the ratio of the mean 
square displacement of the ions to the square of the in
teratomic distance. [11 (For small values of k F /q0 , when 
1J is small in the entire temperature range, the decisive 
role is played by the first term in (3.6) and L::.pT should 
be appreciably smaller in magnitude than p0 .) 

The cause of the appearance of the nonlinear depen
dence lies in the isotropization of the distribution func
tion as a result of the elastic scattering of electrons by 
the impurities. It is significant that the latter does not 
lead only to a relaxation of any part of the distribution 
function that does not have the symmetry of (2.2). As a 
result, scattering on the impurities in a definite tem
perature range "eats up" the second term in (2 .8) (the 
last term in (3.5)) which was due to the anisotropy of the 
distribution function and which significantly changed the 
resistance of a perfect metal (see the preceding section). 
Hence, the measure of the effects when impurities are 
introduced is large in magnitude. 

Notice that the temperature range, where the non
linear concentration effects are most vividly manifested, 
changes slightly with concentration. In fact, in confor
mity with (3.11) and (2.9), when c « 1 we have for the 
characteristic temperature T (P~~>(T) = cR~~>) the law 

(3.13) 

Because of this, the nonlinear concentration dependence 
can be observed in a wide range of low concentrations. 
The nonlinearity will disappear only at those extremely 
low concentrations for which T « T*. Estimates show 
that, as a rule, this corresponds in multivalent metals 
to such extremely low values of the concentration as 
10-7-10-8 • 

For r,3latively large values of c (but, naturally, 
c « 1) T begins to much more strongly depend on the 
concentration (Pig\T) exhibits a weaker temperature 
dependence) and relatively rapidly shifts with the growth 
of c to a region of higher temperatures where 1J (T) 
sharply decreases. Therefore, the nonlinear effects 
are weak in "dirty" samples and, moreover, the scale 
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of deviation from Matthiessen's rule (in units of p0 ) is 
itself much smaller. 

Let us consider now the general character of the 
temperature dependence. At sufficiently low tempera
tures, when (3.8) is true, the term quadratic in the tem ... 
perature, which is due to the incoherent scattering o{ 
electrons by the vibrations of the impurity atoms, Ul 

predominates in the impurity part of the resistance, as 
a result of which 

p ~ Po + y,T' + y,cT' (3.14) 

(for the relation between y1 and y2, see u1). 

When T ~ T* the terms connected with the anisotropy 
of the distribution function begin to play a significant 
role. This is most vividly exhibited on the example of 
fl~JT· It is easy to deduce from (3.10) that at sufficiently 
low impurity concentrations the impurity resistance will 
have a sharp maximum, whose position shifts with con
centration according to the law (3.13). The relation 
fl~JT /Po will then grow as the concentration is reduced. 

The behavior of the resistance is described at high 
temperatures by the relation (3.10). One of the main 
results of [11 was the proof that RHJ linearly depends on 
T in the classical temperature region and that the sign 
of this quantity is determined by the sign of the differ
ence between the scattering amplitudes of an electron 
on an impurity and on an ion of the matrix (in the simple 
approximation-by the sign of the difference between the 
valencies of the ions of the impurity and the matrix). As 
for the second term in (3.10), it does not, in general, de
pend on temperature. The magnitude of this constant is 
small, since in this limit 

P,<:>(T)'/P\~ (T)'~ 1. 

Hitherto, we have practically ignored in the discus
sion the question of the role of the rearrangement of the 
phonon spectrum on the introduction of impurity atoms, 
in particular, in the presence of quasilocalized levels 
(an explicit change in the phonon spectrum is taken into 
account in RHJ(T)[11 ). Such a rearrangement will play a 
decisive role in a wide range of temperature in those 
cases, when the umklapp processes are hindered and 
17 (T) is small in the entire temperature range. All the 
results presented in Ul will then be correct. In those 
cases, however, when the role of the umklapp processes 
is large, even at comparatively low temperatures the 
rearrangement of the phonon spectrum proves to be im
portant at relatively high values of c, for which Tis ap
preciably higher than T*. At e.xtremely low concentra
tions a specific behavior of R~P(T) plays a significant 
role only when T « T* and when T » T*. 

The described pattern of temperature and concentra
tion behavior may be followed on the example of the de
pendence curves of fl~JT /Po on T for different values of 
c, shown in Figs. 4 and 5. The same model used in the 
preceding section was used here with a <o>(q = 2kF) 
x 1/a <o>(q = 0) = 0.25, ~ = ! . The parameter kF jq 0 was 
was equal to 0.9 (Fig. 4) and 1.45 (Fig. 5). The param
eters, characterizing the variation from one lattice site 
to another of the mass M and charge Z, were varied in 
the following way (see [11 ): 

L'lM M'- M, L'la(O) Z'- Z, t,Z 
M, = ~ = O.B, a<'>(O) = -Z-,- = Z: = + i,- 1. 

Jp/T,c I I p/I~O,c} 
OZ I 

0.25 

A fl IT, c I I fl { T =0, c} 

o.z 

/ 
J 

AM/Mu=O 

b 

---·"'-"'O<~~"":._--~:::---::-=~...==:-=::--c:::::~::_:;-~~.:::-~--::::.--=:==::-===::,_=:=--~-::;,--::=.-:=-~ 

-o.t 

I 
FIG. 4. Temperature dependence of the impurity part of the resist· 

ance for kF/q0 = 0.9, in the cases: a-(Z'-Z0 )/Z0 = I, b-(Z'-Z 0 )/Z0 = 
-I and for different concentrations: 1-c = 10"\ 2-c = 10"3 , 3-c = 
1 o·2• 

Here, the prime denotes the quantities pertaining to the 
impurity (changes in the force constants of the vibration 
problem were neglected). 

It can be seen from the figures that flpT /p 0 rises 
very sharply as the concentration is reduced, the value 
of flpT at the maximum exceeding the residual resistanc' 
when kF /q0 = 1.45 and c ~ 10-4 ! Therefore, there is 

/J p {T, c I I fl IT =0, c) 

) 0 ~\ J 

'-

-ui "·"~~;::~~z~~~=~~2u 
-o.zl ;;;~;:0~ 

4M/M0=5 

FIG. 5. Temperature dependence of the impurity part of the resist· 
ance for kF/q0 = 1.45 in the cases: a-(Z' -Z0 )/Z0 = I, b-(Z'-Z0 )/Z0 = 
-I and for different concentrations: 1-c = I 0"4 , 2-c = I 0"3, 3-c = 
I 0"2 • 
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direct evidence of large nonlinear effects and a most 
drastic deviation from Matthiessen's rule. It is inter
esting to note that at c ~ 0.01 all the effects are already 
very feebly marked and, consequently, this concentra
tion, for the problem under consideration, is large. 

The difference between curves corresponding to dif
ferent values of the parameter t.M/Mo in the region of 
the maximum of t.pT, is also noteworthy. This differ
ence is explained by the appearance in the phonon spec
trum when t.M/M0 = 6 of a quasilocal frequency wp 
« w0 , scattering by ~hich leads already at T ~ wp /2 
to the dependep.ce R~}l ~ T, [11 whereas in the case when 
t.M/M = 0, R~il ~ T5 in the region under consideration. 

Further, the broken lines in the figures represent 
the values corresponding to the second term in (3.10). 
It can be seen that at high temperatures, the decisive 
contribution is made by RHJ ~ T. Notice that the 
curves for different t.M/M have in the classical tem
perature region one and the same slope, although they 
do not coincide with each other-which is connected with 
the allowance made in the residual resistance for the 
zero-point vibrations through the Debye- Waller factors 
(see [11 ). 

Let us return now to the general expression for the 
resistance (3.5). We should like to point out that circum
stance that the presence of the last term in (3.5) can 
imitate, in a limited range of low temperatures, a tem
perature dependence which is similar to the Bloch law 
but with a coefficient that significantly depends on con
centration. This is connected with the structure of this 
term and the characteristic behavior of P~~> as a func
tion of T. In fact, it is possible to show (and this can be 
seen from the nature of the curve 1J (T)) that in a com
paratively narrow range of temperature near T*, where 
P~~> ~ T5, P~~\T) alters the temperature dependence 
from a stronger than T5 to a weaker dependence. It is 
easy then to verify that at a sufficiently low concentra
tion there is always a range of T in which the last term 
is proportional to T5 • As a result, p- p0 ~ A(c)T5 in 
this range, with A decreasing as the concentration de
creases. We emphasize that this temperature range is 
bounded from above as well from below (at lower tem
peratures the same temperature dependence is mani
fested but with A= const). 

The temperature dependence of p - Po is shown in 
Fig. 6, in which T5 has been plotted along the abscissa. 
The parameters are the same as in the case of Fig. 4 
with t.M/M = 0 and t.Z/Z = 1 and, for definiteness, the 
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FIG. 6. Temperature dependence of the total resistance (in arbitrary 
units) in the cases: a-kp/q0 = 0.9, b-kp/q0 = 1.45 and for different 
impurity concentrations. 

temperature was assumed to be eD = 300. It can be 
seen that in the region of temperatures T > T* we have 
a clear-cut linear dependence but that the slope changes 
appreciably in the range of such low concentrations as 
10-3-10-5. 

4. CONCLUDING REMARKS 

The results obtained in the present paper for the de
pendence of the impurity part of the resistance t.pT on 
temperature and concentration are in good agreement 
with the experimental results which have been obtained 
in recent years from the study of the resistance [3- 51 of 
alloys with very small impurity contents (c « 10-2 ). 

We are dealing here with the coincidence of all the qual
itative peculiarities of the curves (a dependence of the 
form p ~ cT2 as T- 0; nonlinear concentration depen
dence; the existence of a maximum of the function 
t.pT jc, which increases in magnitude and shifts to the 
left as the impurity concentration is reduced; the nature 
of the temperature dependence at high T), as well as 
with a purely quantitative explanation of the scale of 
variation of t.pT which causes a most violent violation 
of Matthiessen's rule. We note that these results turn 
out to be stable with respect to variation of the param
eters in a comparatively wide interval corresponding 
to the parameters of the multivalent metals. All this 
does not leave in doubt the fact that the experimental 
results pertaining to the intermediate temperature re
gion are connected, to a decisive degree, with the iso
tropization of the electron distribution function as a 
result of elastic scattering on impurities, whereas the 
nature of the behavior of t.pT when T « T* and T » T* 
is determined by scattering by the dynamical disorder
ing near the impurities. 

The strong dependence of t.pT on concentration has 
long before been experimentally observed in a series of 
investigations[6• 71 in which the resistance of compara
tively "dirty" alloys was investigated. The relatively 
high concentration of the second constituent ( ~ 1%) left 
the field wide open for every kind of speculation about 
the nature of such a concentration dependence. How
ever, in the light of the analysis carried out above, it is 
now clear that this nonlinearity is, in the main, con
nected with the same isotropization of the electron dis
tribution function. It is precisely because of this that 
the ratio t.pT !Po turned out in the experiment to be 
much smaller in the case of the "dirty" alloys than 
for the alloys with a lower concentration (see the curves 
for different c in Figs. 4 and 5). 

Special attention must be paid to the behavior of t.pT 
in the region of high temperatures where this behavior 
is of a general character for "dirty" and "clean" al
loys. It was found in UJ that the predicted theoretical 
linear temperature dependence and the connection of the 
sign of t.pT with the difference between the scattering 
amplitudes of electrons on the ions of the impurity and 
the matrix are in good agreement with all the then known 
experimental results beginning from the classical inves
tigations of Linde (see the corresponding discussion in 
[11 ). It must be said that recent precision measure
ments [2• 31 have totally confirmed this interesting physi
cal result. 
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As regards the total resistance, we must mention at 
once that the family of curves shown in Fig. 6 is quali
tatively very similar to the curves obtained in Tsol''s 
work (as well as to the results of the earlier article [QJ 

in which the discovery of a significant concentration 
dependence of the coefficient before T5 in Bloch's law 
in the region of extremely low concentrations was re
ported). This is, primarily, the consequence of the 
above-described distinctive "interference" between 
inelastic scattering on phonons and elastic scattering 
on impurities. 

Notice that the drastic change in the electron distri
bution function as a result of the anisotropy of scattering 
in a perfect metal (the role of 1J (T)) and the drastic de
crease of its influence even at extremely low values of 
the impurity concentration are the reasons why it is so 
difficult to elucidate the Bloch law in metals or why the 
corresponding temperature range turns out to be so nar
row. In fact, in a perfect metal this range corresponds 
to the temperature T << T* «en. At extremely low 
concentrations one more narrow range of temperature 
appears, where the Bloch law is valid (see Fig. 6), the 
law being violated in the gap between the two ranges. In 
"dirty" alloys the role of the term cRHJ(T) in (3.5) turns 
out to be extremely important and the temperature de
pendence is given by a varying power law with an expo
nent smaller than 5. 
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