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A method is proposed for investigating the nonlinear interaction of quasimonochromatic waves in a 
plasma. It is used to analyze the character of the induced scattering of coherent high-frequency radi­
ation during the kinetic and hydrodynamic stages. The possibility of using the scattering processes 
for collisionless heating of a plasma is considered. 

NON LINEAR wave interactions in a plasma have been 
investigated by various methods in a large number of 
studies. The results of these studies, however, cannot 
always be used to describe the effects produced by 
propagation of powerful quasimonochromatic waves with 
fixed oscillation phase in the plasma. The present ar­
ticle is devoted to problems involved in the theory of 
interaction of quasimonochromatic waves in a plasma. 

The character of the processes of nonlinear trans­
formation of quasimonochromatic waves in a plasma 
can be clearly illustrated by using the concept of the 
averaged high-frequency force acting on a charged par­
ticle in an alternating electromagnetic field. r1J It is 
known r1J that in a field of two traveling electromagnetic 
waves with close frequencies 

the force averaged over the periods of the partial oscil­
lations, acting on a single charged particle, is potential 

F = -V!l> (2) 

with a traveling high-frequency potential relief 

(3) 

e and m are the charge and mass of the charged particle. 
This force produces in the plasma stimulated longi­

tudinal (in the K direction) wave motions. If n and K 
satisfy the dispersion equation of the natural oscilla­
tions of the plasma, i.e., if the condition of synchronism 
is satisfied between the driving force and one of the nat­
ural waves of the plasma, then resonant excitation of the 
plasma oscillations occurs at the difference frequency 
(the processes of wave decay and coalescence). If the 
decay conditions are not satisfied, then the main pro­
cess leading to the transformation of the spectra of the 
waves in the plasma is the interaction of the averaged 
force with the resonant particles whose velocity is 
close to the phase velocity of the low-frequency poten­
tial: 

lllt- Wz = (k,- k,, v). (4) 

Whereas the decay interaction of waves with fixed 
phase can be investigated on the basis of the quasihydro­
dynamic approximation, to describe the processes of 
nonlinear Landau damping in the general case it is 
necessary to use the kinetic equations. 
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In the usual procedure of solving the kinetic equa­
tions, the distribution function of the charged particles 
of a weakly turbulent plasma is represented in the form 
of a seriesr3-sJ f = f0 + f 1 + f2 + f 3 + ... , in which f0 is 
the unperturbed distribution function, f 1 is a perturbation 
linear in the field and determining the tensor of the lin­
ear dielectric constant of the plasma, f2 is an increment 
quadratic in the field, responsible for processes of the 
decay type and contributing to the induced scattering, 
and f 3 is a term with cubic nonlinearity, responsible for 
the effects of self-action and induced scattering of the 
waves. To describe the induced scattering of waves with 
random phase by particles, extensive use is also made 
of the method of trial particles. ra-sJ Introduction of the 
concept of the averaged high-frequency force acting on 
a charged particle makes it possible to develop a more 
compact method that is particularly convenient for the 
investigation of the interaction of quasimonochromatic 
waves. 

We use this method in the present paper to consider 
the problem of induced scattering in a plasma of an in­
tense monochromatic wave. Depending on the pump­
field intensity, there exist two stages of scattering: 
kinetic and hydrodynamic. 1> In the case of small am­
plitudes, the kinetic stage is realized, during which 
the field interacts with a small group of resonant 
plasma particles. In this case, if the plasma is dense 
enough, predominant heating of the ions takes place. 
During the hydrodynamic stage, which sets in at pump­
wave amplitudes larger than a certain threshold value, 
all the plasma particles take part in the scattering, and 
the result is an effective increase of their energy, and 
at large high-frequency field amplitudes it is the elec­
trons that are predominantly heated. This circumstance 
makes it possible, in principle, to regulate the heating 
of the different components of the plasma by changing 
the amplitude of the electromagnetic wave incident on 
the plasma. 

We determine in this paper the energy dissipated by 
the coherent electromagnetic field in the plasma, and 
calculate the nonlinear scattering increments. On the 
basis of the analogy with the theory of instability of os­
cillations of a plasma through which a beam of charged 
particles penetrates, we carry out a qualitative analysis 

!)Certain aspects of the hydrodynamic stage of induced scattering 
were considered earlier in [ 9 ] . 
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of nonlinear effects of saturation of wave scattering. 
Estimates are presented, illustrating the possibility of 
using induced scattering processes to heat a dense plas­
ma by coherent radiation. 

1. FUNDAMENTAL EQUATIONS 

1. In the investigation of the behavior of a plasma in 
a weakly inhomogeneous high-frequency field, we start 
from a system of kinetic equations for the distribution 
functions of the electrons and ions of a collisionless 
plasma 

of~ { 1 } of. -+(vV)f+e. E+-[vB] -=0, ot c . op (5)* 

where a is the species of the particles, with e and i 
standing for electrons and ions. Following [11 , we rep­
resent the motion of charged particles in electromag­
netic fields as a superposition of oscillator motion Pa 
and averaged drift motion Ra: 

(6) 

Such a representation is valid if the criteria of weak in­
homogeneity of the field are satisfied 

(7) 

where LE = I E;VE I is the characteristic dimension of 
the field inhomogeneity (in a traveling wave, LE ~ 1/k). 

We perform in the kinetic equation (5) the change of 
variables (6), which is equivalent to a transition to an 
oscillating system of coordinates. As a result we obtain 
the equations [101 

(8) 

in which 

(F1") = F;"- mp1 = e,E; + ~(V,B]; +(r. V)F~;" +(p. V.)F ~: (9) 
c 

is the total force averaged over the period of the high­
frequency oscillation; F ~ is the Lorentz force acting 
along the unperturbed (in the absence of a high-frequency 
field} trajectory r 0(t); p(t) and p(t) represent a solution 
of the equation of the oscillating motion (in first approxi­
mation) 

(10) 

E and B are low-frequency or static (B = 0) fields aris­
ing in the plasma under the influence of the averaged 
high-frequency force. 

2. We use the kinetic equations (8) to investigate the 
processes of induced scattering of electromagnetic waves 
in an isotropic plasma. In the case of the high-frequency 
field (1), Eq. (8) can be represented in the form 

of. of. { - 1 } of. -+V-+e. E--V<I>. -=0, ot oR e. lip 
(11) 

where the high-frequency potential is determined by ex­
pression (3). We shall solve the system (11) under the 
assumption that the perturbations are small, i.e., repre­
senting fa in the form 

fa =lao+/.,, (12) 

*(v'ii') = v·'ii'; [vB] = v X B. 

where faa is the perturbation produced by the averaged 
force. 

In addition, we change over to the Lagrangian coordi­
nates R0, V0 , and t, and determine the connection between 
them by means of the law of unperturbed motion 

t 

R(t)=R,(t)+ Jv,(t')dt' 
0 

We then obtain for the perturbation faa the equation 

of., { - 1 } of 
a~=-e. E(R(t),t)--V<D.(R(t),t) ~. 

e. op 

A solution of (13} satisfying the condition faa = 1 as 
t- oo is 

' { ~ , 1 , } of,. , 
f.,=- e. L E(t )--;;;- V<D.(t) ap.(t') dt. 

(13) 

(14) 

Further, using the analogy with the linear theory of 
electric conductivity of a plasma, u 11 we can write with 
the aid of (14) an expression for the total current in the 
plasma at the difference frequency 

(15) 

The field E entering in (15) is the field that e~cites in 
the plasma the extraneous current jextr due to the ac­
tion of the averaged high-frequency force V'<P. In an 
isotropic plasma, this is a purely longitudinal electric 
field resulting from the separation of the charges 

We have neglected here the averaged force exerted by 
the high-frequency field on the ions, and introduced the 
notation Ea ~ 47TiO'ae /S1, O'ae-the longitudinal conduc­
tivity due to particles of species a. From (16) in par­
ticular, there follows a condition for the decays 

e,(Q, x) = 1 + e, + e, = 0. 

The total current produced by the particles of spe­
cies a, is equal to Ja = aaeE~ff' where E~ff is the ef­
fective electric field acting in the plasma on the par­
ticle of species a: 

E' = - ix ~ ( 1 + B; )\ i(W-xR) E' - E 
eff e 1 + e, + e; e , eff - . (17) 

Expressions (16) and (17) contain the quantities Ee and 
Ei, which are well known from linear plasma theory 
(see [111 ): 

w . p 
s(x) = i I e-·"' dt = 7 + in.S(x). 

(18) 

To determine the power dissipated by the high frequency 
field in the plasma, we find the work, averaged over the 
period 27T /S1, performed by the electromagnetic field on 
the electrons and ions of the plasma: 

1 '\1 - 1 -. -. 
Q = 2Re .I..... j.E.· = 2Re(j,E, eff + j,E, err) (19} 

1 R ( IE-. I'+ 'JE' j') = 2 e cr,• eff cr, eff = 
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It follows from (19), in particular, that in the case of 
scattering by the electrons the contributions of the non­
linear and Compton scatterings cancel each other, [81 and 
this leads to a considerable decrease of the cross sec­
tion for scattering by electrons surrounded by Debye 
space-charge clouds (the Coulomb field due to the sepa­
ration of the charges offsets almost completely the av­
eraged force acting on the electrons). Formally this 
cancellation is expressed in terms of the factor K 
= 1(1 + €i)/(1 + €i + €e)l2, which can be a very small 
quantity. The cancellation disappears near the plasma 
resonance 1 + €e + €i ~ 0 and at €e << 1. The former 
case corresponds to an approach to the condition of the 
decay of three-wave interaction, when decays as well as 
scattering must be taken into account in the investigation 
of the nonlinear processes. The latter case of Compton 
scattering by free electrons ( €e < 1) is realized if the 
spatial period is small compared with the Debye radius 
of the electrons Krde >> 1, or else the beat frequency is 
large compared with the reciprocal relaxation time of 
the screening charge 0 » Woe· In the remaining cases 
the main contribution to the induced scattering is made 
by ions situated in a strong Coulomb field. 

Equations for the energy densities of the interacting 
waves can be obtained by using the conservation laws. 
In scattering of electromagnetic waves at positive en­
ergies, the law of conservation of the total number of 
quanta is satisfied:2 > 

d(N,+N,)/dt=O (20) 

as well as the law of conservation of the total energy of 
the plasma-plus-field system 

d(W,+ W,) 

dt 
-Q, 

As a result we have 

_W, = ( iJ[e(w)w']) E( . 
waw ·-· i 16:rt 

(21) 

dW, Wt dW, Wo (22) 
--= --Q = -a,W,W,, --=_::_Q = uolV,lY .. 

dt Q dt Q - -· 

3. The results obtained for the case of interaction of 
two quasimonochromatic waves are valid either if the 
initial amplitudes of the interacting waves greatly ex­
ceed the noise level in the plasma, or if the pump wave 
has a narrow spectrum and the scattering increment 
has a sharp maximum in a small frequency region, for 
example during the hydrodynamic stage of induced scat­
tering (see Sec. 2). In the general case, when consider­
ing induced scattering of waves in a plasma, it is nec­
essary to take into account the interaction of waves with 
broad spectra. A generalization of the theory to include 
this case does not entail any fundamental difficulties. 

We represent the electromagnetic field in the form 
of a Fourier integral 

E(r, t) = J dkdwE(k, w)exp(i6Jt- ikr) (23) 
and consider for simplicity3> the case when the correla-

2>The conservation of the total number of quanta in induced scat­
tering follows from the laws of conservation of the total energies and 
of the momentum of the plasma-plus-field system. 

3>we can obtain analogously equations for the energy density of the 
interacting waves when account is taken of the finite correlation time of 
the field. 

tion function of the electric field in the zeroth approxi­
mation is of the form 

(Em(w11 k,)En(w,, k,)) = /,(k, w)l\mnll(w,- w,)ll(k,- k,). (24) 

The averaged force acting on the charged particle in the 
field (23) can be represented in the form 

F = i J x!ll,dk, dk, exp(iQt- ixr). (25) 

We have introduced here the notation dlq = dki dwi, cl> 0 

= e2E1Ei/2mw1w2 • 

Acting in analogy with the case of quasimonochro­
matic waves, we can determine an expression for the 
extraneous current due to the action of the averaged 
force, calculate the fields excited by this current, and 
determine the work, averaged over the time and over 
the macroscopic volume, performed by the high-fre­
quency field of the plasma. By simple transformations 
we obtain 

Q, = s Q(k,, k,)dk, dk,, (26) 

where Q(k1, k2 ) is the energy dissipated in the plasma 
by a pair of monochromatic waves with frequencies w1 

and w2 (see (19)). To find the sought equations for the 
spectral energy density of the interacting waves, we 
use, as before, the conservation laws. As the result we 
obtain an equation describing the transfer of the energy 
of the spectrum in induced scattering of waves by parti­
cles in an isotropic plasma 

aw., J dt = W,, G(k,, k,) W,, dk,, (27) 

where the kernel G is defined by 

) t6n'e'(k,- k,)' {I 1 + e,(Q,x) I' 
G(k,,k, = , , 1 (O.), . •<) ") Reat(Q,x) 

m w, w,,~ + e, ""• X -, <c\•-, '· 

e,(Q,x) I' , }[iJ(w'e)]-' [iJ(w'e)]-' +I Rea, (Q,x) -- -- . 
'1 + e,(Q, x) + e,(Q, x) wiJ~J •-•· (•liJ(,) . ,_._., 

(28) 
Relations (27) and (28) coincide with equations ob­

tained in [8• 71 by other methods and describing the in­
duced scattering of waves with random phases. 

2. KINETIC AND HYDRODYNAMIC STAGES OF 
INDUCED SCATTERING 

Let us illustrate the application of the resultant rela­
tions by means of several examples that make it possible 
to explain the features of the process of induced scatter­
ing of coherent radiation in the plasma. 

1. As the simplest example, we consider the scatter­
ing of a quasimonochromatic electromagnetic wave by 
an electron beam with low electron density (the condition 
0 >> w0s, where w0s is the Langmuir frequency of the 
beam electrons). In this case we can neglect the effects 
of compensation of the scattering by the occurrence of 
a strong Coulomb space-charge field, and for a beam 
with a Maxwellian distribution function shifted by the 
average velocity V0 , the expression for the energy dis­
sipated by the field takes the form 

Q=-(x!ll,)'~~lm{z(Q-xV, )-1}, (29) 
e 8:-r. ~vT.; xVra 

. 
Z(x)=X(x)-iY(x), X(x)=2xe-•' Je"dt, Y(x)=y"nxe-•'. (30) 

0 
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H the initial energy densities of the interacting waves 
satisfy the relation W10 >> W20, then we can linearize 
Eqs. {22) and obtain a relation for the growth increment 
y of the wave with frequency w2 , under the assumption 
W1 = W 10 = const: 

v= a,w ... {31) 

It is necessary here to distinguish between two limiting 
stages {with respect to the magnitude of the increment) 
of the induced scattering. In the limit of small incre­
ments (y « KVTs) the value of the increment is deter­
mined by the imaginary part of the function Z(x), calcu­
lated for real a. In analogy with the theory of ordinary 
two-stream instability, we call this case the kinetic 
stage of the process of induced wave scattering. In this 
case Q is given by 

Q =( xtlJ, )'w~~' (Q~x~,)Q exp[-( Q-xV, )']. {32) 
· e 8)'n x VT, xVT• 

It follows from {32) that scattering by the beam can 
be accompanied either by a decrease or by an increase 
of the frequency, depending on the relation between 
ajK and V0 • The maximum increment under the condi­
tion w 1, w2 >> w0s is 

{33) 

and is reached if I a- KV0 I~ KVTs /-12. Here V ~ 
= eE10 j-./2 mw1 is the rms velocity of the oscillations 
of the electrons in the pump wave. 

Let us consider further the case of large increments 
y » VTs• when we can neglect the imaginary part of 
the function Z and the thermal spread of the electron 
velocities. The dissipated power is determined in this 
case by the expression 4 ) 

( x<ll, ) ' w,,' I { Q } 
Q= -e- Sit m (Q-xV,)' · {34) 

It follows from {34), in particular, that the work per­
formed by the high-frequency field on the electron beam 
differs from zero if a has an imaginary part, i.e., if the 
interacting waves grow or attenuate. 

Leaving out the details, we present an expression for 
the maximum growth increment of a weak wave during 
the hydrodynamic stage of scattering 

y3 (2V~ w,)'1• 
Vhyd=-w, --- ; 

2 c w, 
{35) 

The maximum is attained at I a- KV0 I~ Yhyd/13, 
Yhyd » Wos· It is interesting that, just as in the ordi­
nary two-stream instability of plasma oscillations, we 
have during the kinetic stage an increment Ykin ~ W;0Ns, 
and during the hydrodynamic stage Yhyd ~ {W10Ns)11 • 

2. Let us investigate with the aid of relations {22) 
and {23) the dependence of the scattering increments in 
an isotropic plasma on the intensity of the quasimono­
chromatic high-frequency radiation (w 1 >> w0e). Unlike 
in linear induced processes, in induced scattering and 
in an equilibrium plasma there are two possible inter­
action stages: hydrodynamic, when the increment is 

4lRelation (34) can also be obtained on the basis of the quasihdro­
dynamic equations. In such a formulation, the problem of the inter­
action of a given quasimonochromatic field with a beam of charged 
particles was first considered in [ 12]. 

y » KVTa• and kinetic, when y « KVTa· In the equilib­
rium plasma, the scattering of the waves is accompa­
nied by lowering of the frequency {it follows from (22) 
that in the case of Maxwellian distribution functions of 
the electrons and of the ions Q > 0). Under the condition 
a/KVTe « a/KVTi ~ 1/-12 the scattering is determined 
mainly by the ions, and the growth increment of a weak 
wave with frequency w2 during the kinetic stage of the 
scattering is equal torsJ 

1 / 2n w,( ( V- ) ' 
'Yill = v-- - a', 

e Uh Vri 

{36) 

where 
{ 4(xr.,)-' for xr •• ~ 1, 

a= (1+T,jT,)-' for xr.,<L 

During the hydrodynamic stage, in scattering by ions 
y » KVTi the maximum increment is given by 

and is reached at a ~ y. For transverse waves with fre­
quency w1 » w0e, the phase velocity of the wave is Vph 
~ c, but the expressions for the growth increments are 
also valid for other types of waves {with allowance for 
the coefficient [o{Ew2)/w ow]w=w1[o(Ew2)/w ow]w=w2), 
provided the velocity of the particles from which the 
scattering takes place does not exceed Vph· In the oppo­
site case {for example, in the scattering of ion-acoustic 
waves by Electrons or in the scattering of waves by rela­
tivistic beams) it is necessary to take into account the 
Doppler corrections. 

In scattering by electrons during the kinetic stage 
(y « KVTe) in a dense plasma, the scattering increment 
is small compared with the "ionic" increment {36), 
owing to the compensation effects. The hydrodynamic 
stage occurs if y » KV Te• and under the condition y 
>> w0e there is no compensation even in a plasma with 
Krde « 1, and the induced scattering by the electrons 
becomes decisive. The corresponding nonlinear incre­
ment is 

~ y3 (4V ~' w,', ) 'I• 
Ye _._ 2 -V ' -,- w,. 

ph w, 
(38) 

In the weak-turbulence approximation V ~/Vph ~ V ~/c 
« 1 relation {38) is valid under the condition 

w,, ( v ~ )' 
--~ - ~1. 

Wt C 
{39) 

The qualitative dependence of Yi,e on the amplitude of 
the incident wave is shown in the figure (the solid lines 
correspond to the case Krde >> 1, and the dashed ones 
to Krde « 1 ). 

To compare the roles of the decay effects and induced 
wave-scattering processes from the point of view of their 
use for collisionless plasma heating, it is necessary to 
solve the problem with simultaneous allowance for both 
processes. Obviously, in strong fields under the condi­
tion y >> KVTs the ion-acoustic oscillations are not a 
resonant state of the system (the increment is of the 
order of or larger than the frequency) and the hydrody-
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namic induced scattering turns out to be the only type 
of nonlinear wave interaction. 

In particular, such considerations were used in [131 

to determine the increment for scattering by ions (37) 
in an analysis of the limiting case of decay instability. 

We note that similar processes can take place in 
stimulated scattering of light in nonlinear dielectrics, 
if the pump intensity is such that the scattering incre­
ment exceeds the sound frequency, y » KVs· To obtain 
an expression for the increment we can use the results 
of [141, where scattering of ultrashort light pulses was 
considered: 

v gr is the group velocity of the pump wave. 
The aforementioned analogy with the theory of un­

stable oscillations of a plasma through which a beam of 
charged particles penetrates can be illustrated most 
clearly by writing down the dispersion equation obtained 
in the hydrodynamic approximation for a weak wave of 
frequency w2 in the presence of a pump wave at a fre­
quency w1• If both waves are transverse, and the scatter­
ing is by the ions, then this equation, accurate to terms 
~O(O/w1), takes the form 

00,,> + k/c' oo,he'V ~' Re(a,a,') = 0 (40) 
ro,' 2oo,'(oo,-oo,)' ' 

which is perfectly analogous to the well-known disper­
sion relation for oscillations in a plasma with a beam, 
the role of the beam being played by the pump wave (the 
photon beam). 

The foregoing expressions for the increments are 
valid for the description of induced scattering of waves 
of arbitrary type. In a rarefied plasma the scattering 
is accompanied by transformation of the transverse 
wave into a transverse one, the increment being maxi­
mal in the case of back scattering. On the other hand, 
if the pump frequency w1 is close to woe, then the major 
role is assumed by the transformation of a transverse 
wave into a longitudinal plasma wave, and the increment 
is maximal for scattering angles close to 1r /2, 51 and is 
equal to 

y3 (V~' m)''• 
v ~ 2 l'!>h.~ 111 oo,,, (41) 

where Vph. is the phase velocity of the plasma wave. 
As expecteS, in this limiting case expression (41) coin­
cides with the increment describing the parametric in-

5lin the case of scattering of a transverse wave into a longitudinal 
one we have k2 /k 1 ""' c/V Te ~ I. 

stability in a homogeneous high-frequency field. [151 

3. Let us consider the transition from the hydrody­
namic scattering stage into the kinetic one in the case 
of induced scattering of a wave packet of finite width t::.w. 
We start from Eq. (27). We assume that 0 = w2 - w1 

» KVTa· Then 

R ~- I Q oo:~ [z ( Q- ~eV,} 1] oo,~' I Q ea, -- m--- - ~- m----
4:rr x'V,.' xV,.. 4:1 (Q,- xV,)' 

(42) 
In the limit as t::.w - 0 we get from (27) and (42) expres­
sions for the increments during the hydrodynamic scat­
tering stage. In the case t::.w >> y, KVTa we have 

1 l\oo+iv , 
-Im =-n.S (Q-~eV,). (43) 
tiro (Q- ~eV,)' 

Substituting (43) in (27), we obtain an equation describ­
ing the differential redistribution over the spectrum [161 

where 

aw., S J -a-= W,, -[GW.,(oo,,rp,6)].,~.,-.v,sin6d6drp, 
t aoo, (44) 

= 16n'e'x' { I 1 + e, I' , G 2 2 Ct>oe 
m oo,oo, 1 + 8, + e, 

+ oo., --- --- . I 8, I' '} ( o(oo'e)} _, ( a(oo'e)} _, 
1 + 8, + c< ooaoo .~., ooaro .~., 

Thus, we can separate three stages of induced scat­
tering: 

1) Hydrodynamic stage with increments determined 
by expressions (37) and {38), which sets in at sufficiently 
large wave amplitudes, when YH(Wk) >max (t::.w, 
1CV0 t::. cos 9, KVTa)· 

2) Kinetic stage (integral redistribution) (see [81 ), 

when y, t::.w < KVTa with increment (36). 
3) Kinetic stage (differential redistribution), when 

t::.w > y, KVTa· 
4. The possibility of using the processes of induced 

wave scattering for collisionless81 plasma heating was 
discussed in U7, 161 , where plasma heating in a given 
field of opposing electromagnetic waves with a broad 
frequency spectrum was considered. An important fea­
ture of the processes of induced scattering is that their 
increments increase apprE'ciably with increasing pump 
power (the transition from the kinetic stage to the hy­
drodynamic one). Even in the case of a narrow pump­
wave spectrum, all the plasma particles take part in the 
interaction with the high-frequency radiation, unlike the 
kinetic stage, during which the high-frequency field ac­
celerates a small group of particles. This circumstance 
makes it possible to use coherent high-frequency radia­
tion for plasma heating. 

To determine the efficiency of the given method of 
plasma heating, it is necessary to consider the nonlinear 
stage of the induced scattering. In this case, too, the 
analogy with the theory of two-stream instability is very 
useful. During the hydrodynamic stage, the most impor­
tant saturation effect, leading to a decrease in the veloc­
ity of the induced scattering, is connected with the oscil­
lations of the particles captured in the high-frequency 
potential well. It becomes appreciable if the oscillation 

6lThe collisions in the plasma can be neglected if the effective col­
lision frequencies are small compared with the scattering increments 

'Y ""' 11eff. 
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frequency of the particle in the well is comparable with 
the growth increment. The condition under which this 
nonlinear effect can be neglected (Ocapt « y) has in 
the case of scattering by ions the form 

V~/c~ (ffio,/ffi)'(Mim)'f, (45) 

and is satisfied for practically all values of the plasma 
concentration. In scattering by electrons, it is impos­
sible to satisfy the inequality 

(46) 

analogous to (45) (by virtue of relation (39)). Conse­
quently, the indicated f'".turation effect should lead to a 
limitation of the amplification of the scattered radiation 
at the levels W2 « W10 and it is possible to disregard 
the change of the pump amplitude during the hydrody­
namic stage. The system of equations describing the 
induced scattering then becomes mathematically iden­
tical with the system of equations of the nonlinear the­
ory of two-stream instability, u91 and it is possible to 
use certain results of this theory. In particular, the 
monotonic growth of the intensity of the scattering wave 
should give way to periodic oscillations above a certain 
mean value. 

In scattering by ions, the hydrodynamic saturation 
effects do not play any role, and most pump quanta 
should experience single scattering after a time ~y-1 • 
The plasma then receives an energy Q:;:,; W10y/w1 • This 
is expected to be followed by a sharp decrease of the 
scattering velocity, since as a result of the first stage 
of the interaction the width of the radiation spectrum 
may become comparable with the value of the hydrody­
namic increment t:.w;;:, Ymax (y ~ Ymax in the frequency 
region t:.w ~ Ymax), and the kinetic stage sets in, in 
which quasilinear relaxation of the particle and photon 
energy distributions takes place. It is possible, how­
ever, that the nonlinear effects of the interaction of the 
spectral components of the scattered radiation lead to a 
narrowing of the line width and to a retention of the in­
tegral character of the succeeding transformation of the 
radiation spectrum. A transition to the kinetic stage of 
scattering can also occur if the ion heating causes vio­
lation of the condition Vti « y/K. 

We note, finally, that the efficiency of the transfer of 
the coherent-radiation energy to the plasma depends on 
the relation between woe and w1 and is maximal when 
Woe :;:,; w1, for in this case there occurs a transformation 
of the incident electromagnetic wave into longitudinal 
Langmuir oscillations which, in turn, can be absorbed 
by the plasma. The bulk of the radiation energy will then 
be transferred to the electrons. For ion heating, it is 
necessary to ensure the possibility of multiple passage 
of the scattered radiation through the plasma. 

Of course, the considerations advanced above can be 
used only to construct a qualitative picture of the phe­
nomenon, and should be supplemented by a quantitative 
nonlinear theory of induced scattering. 

In conclusion, to illustrate the importance of the con­
skdered processes for different applications, we present 

some numerical estimates. Expression (37) for the max­
imum increment of scattering by ions can be represented 
in the form (in the case of a hydrogen plasma) 

[ 20N,P[Br/c.~t'] ]''• 
y=10' ' 

(J)l 
(47) 

where P[W /cm2] is the energy flux density of the coher­
ent radiation. For example, for optical breakdown at at­
mospheric pressure, Ne = 3 x 1019 em-s and >.. ~ 10-4 em 
we find that at the presently realistic values P = 1018 

W/cm2 the increment is equal to Yi = 1013 sec-\ and 
consequently the processes in question turn out to be 
significant if the plasma-formation length exceeds c/y 
= 3 x 10-3 em. Analogously, in the microwave band, we 
obtain for waves with >.. = 1 em, P:;:,; 108 W /cm2 at Ne 
= 1012 em -3 an increment y = 3 x 108 sec -1 • 

The authors are grateful to A. A. Andronov for inter­
est in the work and for numerous useful discussions. 
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