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We consider the stimulated Mandel'shtam-Brillouin scattering (SMBS) in a plasma that admits of the 
quasi-dynamic description. Assuming that the damping of the sound is not too large, we investigate 
the stationary processes in the layer. The dependence of the amplitude and of the waveform of the 
generated sound pulses on the intensity of the incident electromagnetic wave and their variation in 
the interior of the layer are determined. The question of the use of SMBS for plasma diagnostics is 
discussed. Corresponding estimates are presented for a laboratory plasma. 

IN the investigation of SMBS in nonlinear media, one 
usually considers the case when the damping of the 
sound is quite large, and therefore the acoustic wave 
produced upon scattering turns out to be practically 
sinusoidal, that is, the case when the hydrodfl!amic 
(or elastic) nonlinearity does not appear. u,a On the 
other hand, if the damping of the sound is very small 
(for example, in crystals at sufficiently low tempera
tures r31 ), then as a result of the action of this nonlin
earity and of the very weak dispersion for the acoustic 
branch, the energy of the initially harmonic wave gen
erated during the SMBS is transferred upward through 
the spectrum and deformation of the wave profile takes 
place. 11 The result is apparently the possibility of for
mation of a periodic shock wave of sound. Approximate 
estimates of the characteristic distances over which 
such a wave deformation can be attained in crystals are 
given in tsl 

For many cases of practical interest, however, none 
of the foregoing approximations is valid for SMBS in a 
plasma. The reason is, on the one hand, that the damp
ing is not so large that allowance for it permits one to 
ignore the appearance of the acoustic nonlinearity, and 
on the other hand one cannot neglect the damping and 
assume beforehand that the wave is a shock wave, for 
in this case only the first two harmonics take part ef
fectively in the formation of the wave. 

In the present paper we consider the interaction of 
electromagnetic waves with acoustic waves in a heated 
partly or fully ionized plasma. We note that the obtained 
results are qualitatively valid also for other types of 
interaction, particularly for a nonisothermal plasma, rsJ 

where pulses of ion sound can be generated under the 
influence of the electromagnetic radiation. Similar ef
fects should be observed also in the interaction of elec
tromagnetic and magnetohydrodynamic waves in a plas
ma with a constant magnetic field. 

We shall investigate the one-dimensional process of 
backward scattering of plane waves. Assuming that the 
nonlinear medium is a plasma (or liquid) filling a flat 
layer of thickness L and is described by the hydrody-

UQwing to the damping of the hannonics, a quasistationary wave 
may become established. A similar process for drift waves in a weakly
ionized plasma was investigated by the perturbation method in [4]. 

namic equations, we represent the initial system of 
nonlinear equations in the form21 

an,= _ _::_ dE,+..!...(!.:..) .!._(pE,), 
az c at c ap, , at 

ap au a 
-at+P•a.x=-ax(pu), (1) 

iJu c.' ap au + c.' iJp +. a'u + 1 ( ae ) aE.' 
~+--=-u- --p T)-- -- -- --
at P• ax ax P•' ax ax' 8n ap. T ax . 

Here p and u are the deviations of the density and the 
velocity of the medium from the equilibrium values p0 

and 0, cs is the speed of sound, and TJ is thf1! viscosity 
coefficient; for a plasma TJ ~ av1:/veff, where Veff is 
the frequency of the collisions between the ions,t5l 

a ~ 1, vT= KT/M (M-ion mass, T-ion temperature, 
K-Boltzmann's constant), and € = 1 - 4nNe2 /mw2 (N
concentration, and e/m is the specific charge of the 
electron). 

Bearing in mind that the attenuation of the sound in 
the medium is proportional to the square of the wave 
number, we confine ourselves to consideration of the 
interaction of only three harmonics of the acoustic 
wave, 31 assuming their phase velocities to be equal. 
Then the sought solution of (1) can be written in the 
following form: 

E,= EAI.2(x,t)exp{i[w1,,t-k,,,x+<p1 ,2 (x,t)]}+ c.c., 

'·' 
• (2) 

p= EB,(x,t)exp{in(Qt-qx)+i6n(x,t)} + C.C., 

·-· 
where w = ck1 /f€ is the frequency of the incident elec-

2lwe note, incidentally, that for an analysis of nonlinear acoustic ef
fects one sometimes uses a nonlinear wave equation. However, being 
obtained by the method of successive approximations, it is valid only 
for small nonlinear distortions of the wave and is obviously not valid in 
the present case. 

3lThe choice of such a relatively simple model is connected with the 
fact that even with this model as an example it is possible to reveal all 
the most characteristic features of many-wave interaction, something 
that cannot be done in principle by considering qualitatively another 
case-the interaction of two hannonics. 
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tromagnetic wave, - k2 R: k1 = k, q = 2k, and w2 = w1 

- n (n = csq). The boundary conditions for the interact
ing waves will be represented in the form 4> 

A, (O) = .4,., .4,(L) =Au. (3) 

Reflection of the acoustic wave by the boundary of the 
layer x = L will henceforth be neglected. 

To obtain partial differential equations with respect 
to the amplitudes and phases of the interacting waves, 
we shall use an asymptotic methodC7' 81 used for systems 
of first-order equations with small nonlinearity. As a 
result of averaging, we obtain the following equations 
for the complex amplitudes aj = Aj exp (icpj), bj = Bj 
x exp (i8j): 

a,~ a,= - 1-w(!.!...} , 
2s op, x 

cil- Vaaa' = iazat.bs" - vzah Yt. ~ Vz = v.. v, ~ Vz = c I yB; 
li, + c,b.' = iv(b."b, + bab,") + ia,a,a,*- 't],b,, 

(4) 

li, + c,b,' = iy(b,'- 2b,b.')- 11zb,, li, + c,b,' = i·3vb,b, -TJ,b,; (5) 

Q p,q' ( oe ) 1 . " . 
'I'=-, a,= -8 Q -;;- , •t; = ?'I'J(Jq)·, 1 = l, 2, ;3 

Po 1t uf)~J T .... 

(a dot denotes here differentiation with respect to t 
(o/ot) and a prime differentiation with respect to x 
(a/ax)). 

The waveform of the acoustic wave, i.e., the am
plitude and phase relations between the interacting har
monics, is determined by the form of the nonlinearity 
and by the character of the dispersion, which in this 
case is expressed by a strong dependence of the ab
sorption coefficient on the frequency. It is precisely 
the presence of such a unique dispersion that causes 
the impossibility of occurrence of periodic shockwaves 
in the medium in question, since many harmonics take 
part effectively in the formation of the shock waves. It 
should be noted here that strong absorption of the higher 
harmonics does not merely deplete the spectrum of the 
quasistationary nonlinear wave, but essentially violates 
those phase and amplitude relations between the remain
ing harmonics which would correspond to a periodic 
shock wave. 

Assuming that all the times of establishment are sig
nificantly smaller than the duration of the pulse of the 
incident electromagnetic wave, let us consider the sta
tionary processes in the layer. The system (4) and (5) 
with o/at = 0 can be investigated if account is taken of 
the fact that at real amplitudes and interaction coeffi
cients, a and y, the variables in the sound wave assume 
their steady-state values rapidly with increasing x, from 
the boundary values at x = 0 to the equilibrium values 
bj = 0, and subsequently follow the slow variations of the 
amplitudes of the electromagnetic waves. The charac
teristic distances over which there are noticeable 
changes in the amplitudes of the acoustic and electro
magnetic waves are in a ratio ls /l ~ (1 - 103) cs /c, 
and therefore to describe the processes in the greater 
part of the layer, the parameters of the sound wave on 
its left-hand boundary are practically inessential. The 

4lThe layer boundaries are assumed to be transparent to electromag
netic waves. 

waveform of the acoustic wave then depends only on the 
value of its first harmonic. 

The connection of b2 and b3 with b1, and also of b1 

with ala: is determined from (5) with o/at = 0: 

i·3y1),b,' 
b, = 2v'b,b,· + 12'1].' ' 

where 
2 3y"'],b,b,• . 3y'1), (b,b,')' 

'I'J <I bd > = 11 • + zv'b,b,· + 12'1'),' -~.- (2v'b,b,• + 1211,')' 

(6) 

As seen from the last expression, the coefficient of the 
effective damping of the first harmonic increases with 
increasing I b1 I = B1 because of the transfer of its en
ergy to the second and third harmonics, and at large 
amplitudes of the wave it reaches the value 7]~ = 3.257]i 
(see Fig. 1). The amplitude of the second harmonic at 
such B1 also attains saturation and is equal to 1.57] 1 /y, 
while the third harmonic increases linearly in this case, 
B3 R: % B1 (Fig. 2). Recognizing that the phases of the 
second and third harmonics are shifted relative to the 
first by 1t /2 and 1t, respectively (see (6 ))5 >, it is easy to 
trace the evolution of the nonlinear acoustic wave along 
x. The changes that will be experienced by the form of 
the periodic wave with increasing amplitude are clearly 
seen from Fig. 3. 
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To determine the law governing the decrease of the 
amplitude of the first harmonic along x, it is necessary 
to integrate (4) (with o/at = 0), taking into account the 
connection b 1 = a3a 1a:/7](lb1 l2 ). It is easy to see that, 
independently of the form of the function 7J (I b 1 12 ), these 
equations have an integral (we assume that v R: 0) 

.4,'(x) - A,'(x) =C. (7) 

Using this, we obtain the A~(x) dependence at 7J = const 

5lJt can be shown that the equilibrium state ( 6) is stable precisely at 
such phase relations between the harmonics. 
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= TJ 0 (here TJo = TJ 1 at B~ ~ TJ 2 /y3 and TJ 0 = 3.25TJ 1 at B~ 
;::, 20TJ~/'l): 

A,'(x),=C{A,'(O) + [C-A,'(O)]e-•;c}-'A,'(O), cr=2crcr,/v, (8) 

where C is the root of the transcendental equation 

{A,'(O)- [A,'{O)- CJe-<•c}[C + A,'(L) J - CA,'(O) = 0. (9) 

In the intermediate interval of values of B~, where 
the dependence of TJ on B~ is essential, it is impossible 
to obtain expressions for A~,2(x) in terms of elementary 
functions. However, by using the well-known 71 (B~) de
pendence, it is possible to obtain certain qualitative re
sults. Inasmuch as in this interval the nonlinear damp
ing coefficient is a monotonically growing function of 
B~, the amplitude of the first harmonic in this region 
depends on B~ more smoothly than when 71 = const. The 
damping of A1 and A2 along x is in this case also slower. 

We note that when the number of harmonics partici
pating in the formation of the sound wave increases, the 
region of the rapid dependence TJ (B~) broadens, and con
sequently the distance over which the amplitude and the 
waveform of the wave change insignificantly increases. 
This is due to the fact that upon an increase (decrease) 
in the energy fed into the wave, there takes place a 
sharp increase (decrease) of the amount of energy ab
sorbed by the strongly damped higher harmonics, and 
as a result the amplitude of the first harmonic changes 
little. 

Inasmuch as in the considered SMBS process the 
generated sound wave is essentially nonsinusoidal, in 
the presence (on the boundary x = L) of electromagnetic 
perturbations at frequencies that are multiples of the 
Stokes frequency (for example, w 3 = 3(w - 0)), the elec
tromagnetic waves can become scattered by the har
monics of the sound. (The scattering of light by the 
second harmonic of sound in a liquid was observed in 
rol.) The intensity of the scattered wave can be esti
mated easily by assuming the field of the sound wave 
of the harmonic to be specified. Thus, in the simplest 
approximation, B3 = const, by integrating equations 
analogous to ( 4) we obtain 

A'<•-•>(x = L) 
A,(x) = ch pL sh pz (p ~ oB,). (10) 

We present estimates of the considered effects for a 
laboratory plasma. For a hydrogen plasma we shall as
sume the following: molecule concentration Nm R: 1013 

cm-3 (equilibrium density p0 R: 2 x 10-13 g/cm3), degree 
of ionization N/Nm R: 3 x 10-2 (N-electron concentra
tion), frequency of collisions betwen the ionsrel lleff 
R: 107 sec-\ temperature T R: 300°K. By specifying the 
frequency of the incident electromagnetic wave w R: 3 
x 1011 sec-1 (~I R: 6 mm) we obtain the values of the 
parameters Cs R: 2.5 x 1010 cm2/sec2, (aE:/ap0)T R: -2 
x 107 cm3/g, and 71 R: 103/sec. Then, taking the expres
sions (4)-(19) into account, we obtain for a tube of 

length L = 1 m at electromagnetic field intensities A01 
R: 3 x 103 V /em (p1 R: 15 kW /cm2 ), ALaR: 600 V /em the 
following values for the maximum amplitudes of the 
sound-wave harmonics: B1 R: %Pc• B2 R: 10-2 p0 , B3 

R: B1 /2 (these values are reached at x R: 1.5-2 em). 
On the boundary of the tube x = L the amplitudes of 
the harmonics are equal respectively to B1 R: 1ft0 p0 , 

B3 R: B1 /2. The intensity of the scattered third har
monic of the electromagnetic wave is in this case 
equal to 

A,.(x = 0) = 0,8A'<•-•>(x = L). 

To verify the validity of the analysis let us esti
mate the amplitude of the fourth harmonic of the sound, 
which was not taken into account in the analysis. For 
the indicated parameters in the given field of the waves 
B1, B2, and B3, the maximum amplitude is B4 R: B1 /7. 
Actually this quantity will be even smaller, since for 
the fourth harmonic, in view of its strong damping 
(TJ 4 R: 16TJ 1), the deviation from synchronism is 
appreciable. 

In conclusion we note that it is possible in principle 
to use SMBS for the diagnostics of a plasma with a large 
number of collisions. With the aid of this process, in 
particular, it is possible to determine the speed of 
sound in the plasma, and consequently to obtain an idea 
of its temperature. If we find the waveform of the gen
erated sound pulses and their amplitude experimentally, 
then we can also easily calculate the ionization coeffi
cient of the plasma and the effective collis~on frequency. 

The authors are grateful to A. V. Gaponov and M. I. 
Petelin for a discussion of this work. 
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