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The Bogolyubov-Born-Green-Yvon-Kirkwood (BBGYK) set of equations for a classical gas in non
equilibrium is reduced to a set of integral equations for the correlation functions in terms of an 
auxiliary "time." These equations presuppose that the problems of the motion of two, three, ... 
particles are solved. This form of the equations is convenient for the case of a long-range interac
tion potential, in particular, for the Coulomb potential: it enables us to take the "screening" of the 
interaction easily into account at large distances while describing it exactly at small distances 
where the potential may be arbitrarily strong. We consider the spatially uniform case. We obtain 
results for the pair correlations and use those to derive a kinetic equation for an electron 
plasma in the first approximation in the density. The collision integral has no divergences. Its 
Fokker-Planck part, which contains the "dynamic polarization" effects of the plasma, resembles 
the well-known Balescu-Lenard-Guernsey integral, but in contrast to it is finite. 

1. INTRODUCTION 

IN the present paper we propose a general method for 
solving the BBGYK set of equations for the reduced dis
tribution functions of a non-equilibrium classical gas 
with a long-range potential for the interactions between 
the particles which is strong at small distances. It is 
well known that these equations are integro-differential 
equations in which the direct interaction between the 
particles is described by the differential part and their 
interaction through the medium by the integral part. In 
the case of short-range or of weak long-range forces 
this form of the equations is very convenient to find ap
proximate solutions, [ll since the integral part or the 
differential part containing the interaction can appro
priately be treated using perturbation theory. If, how
ever, the long-range potential is not weak at small dis
tances, very serious difficulties arise when we try to 
solve the equations in this form (see the recent paper 
by Myerscough [2 J which deals with the Coulomb case; 
one can find there a short survey of earlier literature). 
We reduce for that reason the BBGYK equations, writ
ten in the form of equations for the correlation functions, 
to a purely integral form in terms of the coordinates 
and momenta, by means of transformations which pre
suppose that the problems of the motion of 2, 3, ... par
ticles are solved. The equations obtained enable us to 
split off small terms for the case of a rarefied gas; 
these terms correspond physically to the interference 
of the two above-mentioned interactions. It then turns 
out advisable to consider separately the case of "glob
ally weak" potential, since such a potential can be de
scribed in a unified way without being split into a strong 
and a weak component (a particular case of this is the 
purely Coulomb potential). We consider the spatially 
uniform case (Sec. 3). We obtain in explicit form the 
kinetic equation for a stable, spatially uniform plasma 
(Sec. 4). 

2. EQUATIONS FOR THE CORRELATION FUNCTIONS 

The BBGYK equations for the reduced distribution 
functions F s have, for the case of an ensemble of sys-
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terns of identical particles in a volume V, where V ~ co, 

the form 

F. (x, 0 0 .. x., t) = v-' s dr,+l s dp,+,F•+! (x, 0 0 0 X,+,, t)' s ~ 2 (1) 
v 

V-' J dr J dpF, (x, t) = 1, x, == {r,; p,}, 
v 

where <Pi,j = cp( lri- rj I) is the interaction potential, 
Hs(x1, ••• , xs) the Hamiltonian of s particles, [ ... ; ... ] 
the Poisson brackets, and n the particle density. We in
troduce in the usual way the correlation functions 
gs(Xl• .. Xs, t): 

g,(x, t) == F,(x, t), 
g,(.:r,, x,, t) == F,(x,, x,, t)- g1 (x" t) g,(x,, t), (2) 

g,(x, .. ox.,t)== F,(x, .. ox,.t)- LIT g, 

where the second term indicates a sum of all possible 
products of g's with indices less than s and a sum of in
dices equal to s; each set xi occurs in the product ex
actly once. In terms of the gs Eqs. (1) take the form 

a ,_, •-1 

~· +[H,;g,)=- L L L [<p;,;;g,( .. ox, ... )g,_,( .. ox; ... )] 
~>j J=l a=1 

X {t,g.(o .. X,.oo)g,_a+t( .. ox,+t)+g.+t(x,· ... x,+t) }. 

V-'J dr, Jap,g,(x, .. ox; .. ox,)-+6,," V-+ooo (3) 
v 

We transform Eqs. (3) with s ~ 2 as follows. On both 
sides of the equation we act with the operator 
Sf~i,(x1 ••• xs) which describes the evolution of the co-
ordinates and momenta of s particles with a Hamiltonian 
Hs{x1 ••• xs) during the interval from t' to t. Since 

a <·l } <•> ag,(t) nl.•> [ l -{S,_,,g,(t) =8,_,,--+o);_,, H,; g,(t), 
at at 

we get after integrating over t from some t 0 to t', after 
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some obvious transformations the following set of equa
tions: 

• 
g,(t)=S~~,g.(t,)+ J d't'S~·l {11>~'1 (t+T)+ID!'1 (t-;1-T)}, 1;;;;, 2, (4) 

t0-t 

where ~~s> and ~~s> indicate the first and second terms 
on the right-hand side of (3). 

Let us consider the second integral term on the right
hand side of (4). We start with the case of a purely Cou
lombic interaction. The following fact is important: in 
the case of a rarefied gas the Coulomb potential is 
"globally weak" in the sense that 

n ~ dr<p(r)<H1 av. 
r~n-11• 

One sees easily that if this condition is satisfied the 
contribution from the "strong potential" region (cp(r) 
~ H1av) is, when we integrate over Xs+l and T, small 
compared to gs for each term in ~~s); in the first ap
proximation we can thus neglect the term in gs+ 1 and 
the cp-dependent part of the operator s~s). In other 
words, a potential which is strong at small distances 
but is globally weak must be taken into account exactly 
in the first integral term in (4) which does not contain 
gs and gS+ 1, but can be considered to be weak in the 
second term. To construct consecutive approximations 
we must thus solve equations which are analogous to 
the case of weak interactions. If the potential at small 
distances is so large that even for a rarefied gas (nr~ 
« 1, cp(r0) ~ H1av) it is not globally weak (for instance, 
the left-hand side of the inequality may become infinite), 
we must first split off in ~~S) the contribution from the 
strong potential region, which is small compared to 
~is>, as nr~. 

We shall in what follows consider ensembles in which 
the correlation functions satisfy the Bobolyubov condi
tion:r1J 

s~·~g.(t) = o, s;;;:. 2. (5) 

If we introduce some auxiliary "times" we can obtain 
for them equations which permit the above-mentioned 
simplifications but which are with respect to the time 
of a differential nature which in a number of cases turns 
out to be more convenient. We act upon both sides of (3) 
for s ;::: 2 with the operator S~S)(x1 ... xs) and integrate 
over T from- oo to 0. As 

(•) [ (•) ...<•) ] d { (•) ( ) } S, [H.,g,(t)]== S, H,,o); g,(t) = dr: S, g, t , (6) 

we have by virtue of (5) 

g,(t)+ ~ ]
00

d't'S!'1 g,(t) = 1 dr: s!'1 {11>\'1 (t)+ ti>\'1 (t)}, s;;;;. 2. (7) 

If the average time of flight of the particles through the 
region where there are strong correlations is small 
compared to the characteristic time for changes in gs(t) 
the second term on the left-hand side of (7) can be con
sidered to be a small perturbation. If the time of flight 
of the particles through the region of strong interactions 
is small in this sense, that part of this term which con
tains the cp-dependent component of the operator s~s) 
will be small. 

If we assume that (5) is valid, Eqs. (7) have a mean
ing only when there are no bound states of the s particles 

(or if we neglect them). In that case condition (5) is an 
obvious consequence of the vanishing of the correlations 
when the particles are at infinite distances apart. We 
assume now that as the result of a sufficiently long evo
lution from a state where the correlations vanish when 
the particles are at infinite distances apart the functions 
gs(t) asymptotically approach some "stationary" form 
which is independent of the initial conditions and deter
mined only by the behavior of F 1(t) in the "immediate" 
past. One sees then easily from (4) that for such 
"stationary" correlations the following limit relation 
must be satisfied: 

• 
g,(t)~ J d't'S,''1 {11>~'1 (t+T)+ID~'1 (t+T)}, t-t'~oo, t'-to~oo. ,,_, 
As then they must also satisfy (4) where t 0 is replaced 
by t', it follows that the "stationary" correlations must 
satisfy the condition (5) as was assumed by BogolyubovUJ 
(the more restrictive character of the assumptions of [ll 
are justified only in particular cases). 

3. CORRELATIONS IN A SPATIALLY UNIFORM GAS 

We consider the "stationary" correlations for the 
case of relaxation of a spatially uniform gas. We shall 
start from the set of Eqs. (7). The characteristic time 
for changes in the gs(t) is in that case the same as the 
relaxation time of the system so that the second term 
on the left-hand side of (7) is small compared to the 
first one. We rewrite Eqs. (7) as follows: 

• 
g. ex, ... x., t>- n E s dr: s~·~ ex, ... x.> s dx.+l 

f=l -ao 

a<fl<, •+I iJj(p,, t) 
X -a - -iJ-- g, (x, ... x,_, x,+l, . .. x<+., t) 

r, P1 

• 
= J d't'{S!'1 11>~·> (t)+ s:''1ti>!'·'-'1(t)} 

0 
(8) 

+ S d {S in!(o)..-. (o)(t) + S O(•) ( ) • 't' -c w2 n" Xt ••• Xa 

-~ 

\"1 fax a<p,, •+I ag,+!(t) _ 8,.1 ag,(t)} 
x .i....l ~+• iJr, ap, ' at ' 

i=i 

where S~(S) is the operator S~S) when there are no inter
actions and ~~s,s-l) is the second term on the right-hand 
side of (3), ~~s) without gs and gS+l' The first integral 
on the right-hand side of (8) contains only gs_1, gs-2 , ••• , 

and the second is a small perturbation when the condi
tions for the rarefaction of the gas are satisfied (we 
consider here the case of a globally weak potential). To 
find the successive approximations for g2 , g3, • • • we 
must find gs as a functional of the right-hand side of (8). 
Formally the left-hand sides of Eq. (8) are analogous to 
those considered in the case of weak long-range inter
actions. [l,s-5J We solve them for an arbitrary form of 
H1(p) (which is important for the electron plasma in 
solids) by applying the usual method of the theory of 
singular equations. 

We start with the lowest approximation for g2• When 
s = 2 there is no term ~<s,s-l) and on the right-hand 
side of (8) there remains only 
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g,'(xhx,,t)""' -J ~r:S, (Xt,X2}[<jl1,2 ;/(p,,t)f(p2,t)j 

= {S~>l..(x"x,)- 1}/(p,,t)/(p,,t) 

(by virtue of the spatial uniformity of the gas and of 
Eq. (6)). According to (8) g2 is in this approximation 
determined by the function h(xi, rj ), 

. h(x,, ri) ""'J dpi g,(x,, xi). 

(9) 

Integrating both sides of (8) over p2 for s = 2, we get an 
equation for h. We write its Fourier transform with re
spect to r 2 - r 1 after integrating over T in the follow
ing form: 

where 

e.(kv)Ji.(p)+ncp.k iJf(P) J~ droH>(w) = Ji.'(p), 
Op -~ro-kv-l6 

11. (p) == J dr' e-'"<•'-'lh (P, r, r'), 

H.(ro)""' J dp 1i.(p)6(kv- ro), 

J dp 
e.(w)""' 1 +nip. k . kaj(p)/Op, 

w- v+z6 

(10) 

(11) 

while the func,!_ion hk(p) is determined through g~ in the 
same way as hk(p). Multiplying both sides of (10) by 
o(k · v - w) and integrating over p we obtain an equation 
for Hk(w): 

( )H ( ) 1 "( ) ®J dro'H>(w') e. ro • ro--e. ro , . =H•"(ro), 
lt -~w -w-z6 (12) 

e•" (w)""' Im e. (w) = - nn<Jl• J dp6 (kv- w) k 0/(p) fOp. 

The algebraic connection between hk(p) and Hk(k ·V) is 
clear from (10) and (12). 

To solve Eq. (12) we first consider its imaginary 
part: 

KimH.(w) =ImH>k(w), (13) 

where the operator K is defined by the equation 

Kljl(ro)""' ~>•'(ro)ljl(w)+~s."(ro) f~ dw'ljl(ro'), 
n -~ w'- w (14) 

1 ~f dw's "(w') 
e.'(ro)""'Ree.(ro)=1+- , • . (15) 

lt (j) - (j) 

(j indicates a principal value int~;ral). Applying to (13) 
a regularization "from the left." [SJ We introduce the op
erator K': 

K'ljl(ro)Ea a(ro)ljl(ro)+ ~ b((J)) t d~~~ro2 (16) 

and consider the expression K'KI/J(w ). Writing the double 
integral which occurs in the form 

~C dw's•"(ro') fdw"ljl(w")(-1-+-1-) 
1t2 ~DO ~"" w"- w w'- w w"- u/ 

b f~ dw'ljl(w') 
= z , {e.'(w)- e.'(w')}- bs."(w)ljl(w) 

lt -~ (j) - (j) 

(we used the Poincare-Bertrand rule [eJ to change the 
order of integration in the second term and also used 
Eq. (15 )), we get 

K' Kt!J (w) ={as.' (w)- bs." ( w) }ljl ( w) 

+_i. {ae.''(w)+ bs.'(w)} J dro'ljl(w'). 
Jt _Joo w'- (t) 

We put 

a== Reek' (w), b"""' Imet (w). (16') 

Then 
K'K=1 (17) 

and acting on both sides of (13) with the operator K' we 
see that if there exists a solution of Eq. (13) it has the 
form 

ImH.(w) =K'ImH~(w). (18) 

The right-hand side of (18) is clearly a solution of 
Eq. (13) for any form of Im Hk(w ), provided 

KK'=1. (19) 

It is well known that in order that a spatially uniform 
distribution function is stable, Ek(z) as function of the 
complex z must not have any zeroes for 1m z ~ 0. The 
function Ek:1(z) - 1 has therefore no singularities in that 
region. As, moreover, it vanishes as I z I - oo, the fol
lowing relation holds: 

-'() 1 _ 1 J~e.-'(w')-1d, e. w- -- ro. 
2ni_~w'- w- i6 

(20) 

In the case of stability there is thus a connection similar 
to (15) between 1m Ei{1(w) andRe Ei{1(w) which one easily 
sees to lead to (19). In the case of instability there is in 
(20) a contribution from the zeros of Ek(z) for Im z > 0, 
and Eq. (19) does not hold which in this case corresponds 
to the non-existence of a "stationary" solution. 

The real part of (12) gives · 

K'ReH.(w) = le.(w) 1-'{ReH~ (w) + 2s~(w) ImH.(w)}. 

By virtue of (17) this equation always has the solution: 

Re H.(w) = Kl e.(w) 1-'{ReH~ (w) + 2e~(w) ImH.(w) }. 

When (19) is satisfied, i.e., in the case of stability, it is 
unique. 

We now formulate by means of the operators K and 
K' a method to obtain successive approximations for the 
higher correlation functions. The Fourier transform of 
Eq. (8) with respect to r 1 ••• rs has, after integration 
over T the form 

g,(y, ... y,)- ( .t,k,v,- i6) _,n t iJi•,k, · 
i=t i=l 

Of(p,) J .. 
X ap;- dp,g,(y, ... y,) = M,(y, ... y,), (21) 

where 

Y•""' {k;,p,}, g,(y, ... y,)==JII (dr,e-'•i'•)g,(x, ... x,), 
i=i 

while Ms is the Fourier transform of the right-hand 
side of (8). We introduce the functions is a• 1 :sa :s s: , 

e .. a(z, ... Za, Ya+t ••• y,)""' fIT {dp,6(k,v,- w,)}!.(Y •... y,), 

z, == {k,, w,} 

and similarly Ms a. According to (21) is can be ex
pressed in terms' of gs 1• Multiplying both sides of (21) , 

a 
by .rr o(ki •Vi- wi) and integrating over p 1 •. ·Pa we get 

1=1 
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equations connecting is a with gs a+ 1: 

' ' 
e ..• (z, ... z.)+ ! ( .E w, + .E k;v,- i6 r 

1:::1 i=a.+t 

" 
( 

• -1 • of( ) ~ 
+ .Ew•+ ,Ek.v,-i6) n,E•'p.,k,-f-Jdw,g,,.+•(z, ... z.,z.). 

'=1 '=<+1 i=<+1 p, -ro (22) 

When a = s the second term on the right-hand side of 
(22) is not present so that we find for gs a an expres
sion in terms of the right-hand side of (22) and we can 
then successively determine gs s. gs s-1 ••• gs. In order 
to do this we note that the oper:itor K' by virtue of the 
dispersion relation (15) has the property that 

1 ~ 

K' {wljl(w)+-;:;- e•"(w) Ldwljl(w)l} = wK'IjJ(w). 

Therefore, multiplying both sides of (22) by 
a s 

(L;wi + L; ki •vi- iii) and acting with the operator 
i=1 i=a+1 

a 
.n Iq(wi) we obtain on the left-hand side 
1=1 

( ~ W; + t k.v,- i{j) rt K,'(w,)g,,.(z 1 ••• Za, Ya+l .•• y,). 
i=t i=o:+t i=l 

By virtue of (19) this operation does not introduce re
dundant solutions and we have in an obvious way 

g,,.(z, ... z.,y<+1···Y·)= ITK,(w,) (i:,w,+ tl;,v,-i{j)-' 
i=t i=t i=.J;-j-1 

X ri K,'(w.) ( .t w.-t- .t k,v,- i6) { ... }, (23) 
i=i i=l i=·;;+t 

where { ... } is the right-hand side of Eq. (22). We have 
considered here o to be a finite quantity as equations of 
the kind (21) but with a finite (complex) quantity o occur 
and with F 1 containing a small component which changes 
fast in space and time. 

4. KINETIC EQUATION FOR AN ELECTRON PLASMA 

Using the results of the preceding section for pair 
correlations we consider a "stationary" kinetic equa
tion for a stable spatially uniform plasma. We write 
Eq. (3) for s = 1 in the form 

iJf(p,t) = -n!_J~Im7i.(p t)cn,k 
iJt iJp (2n)' ' '~' ' 

4ne' 
q;.=7. 

After a few transformations we have from (10), (12), 
(18), (16), and (16') 

lm 7i. (p) =I e. (kv) 1-' lm {e.- (kv) 7i.'(p) 

(24) 

-nq;,k~J dwH."(w) }· 
iJp -ro w-kv-tli 

(25) 

The approximation of a weak long-range interaction 
(Balescu-Lenard-Guernsey collision integral) intro-

duced by Bogolyubov lll corresponds to the substitution 
into (25) of the asymptotic expression for hk ask -0: 

k'7i.'(p)-+k'q;. sdp' k(iJ(iJp'- iJ/iJp)f(p)f(p') + O(k). (26) 
k(v'-v)-z6 

Different constructions of the collision integral as a 
combination of the results of three approximations
strong short-range interaction, weak long-range inter
action, and weak short-range interaction-proposed by 
Hubbard l7J and later by other authors (see the review [SJ) 

correspond to s_elitting off on the right-hand side of (2"5) 
the function 1m hk and taking in the remaining part the 
asymptotic expression (26). 

We now change in the kinetic equation (24), (25) to 
the limit as n - 0. Writing I Ek(k. v) r2 in the form 

- [2i Im e. (kv) ]-1 [e. - 1 (kv)- e=-• (kv)], 

we verify easily, using (26 ), that the terms in Im { ... } 
proportional to n in (25) give a finite contribution which 
vanishes as n - 0 to the integral over k in (24). We 
write the remaining part of the expression for 1m hk 
in the form 

lm 7i.'(p) k d { I x.'(qv) 
1 . I e•(kv) I'= 2'dk -In x.'(qv) + k' 

Rex.'(qv) } + 1 '(. ).arge.(kv) lm7i.'(p), 
mx. qv 

-n < arg e• (kv) < n, 
where 

dp' at( ') 
x.'(qv) == 4nne' J :-q--P-, q == k/k, (27) 

qv - qv' + z{j ap' 

and integrate by parts in (24), using (26) and the fact 
that as k - co we have k2nk - 0; dropping quantities 
which are of higher order than the first in n we get 

of(p, t> a { s dk . I k I d 
-i1-t-=nap (2n)'ln x.(qv) q;,dk[k'lm7i.'(p)]q 

where 

- e' 'dp'J do.y.(qv)Q(p,p;,q) }. (28) 

y. == I lm x•l-' Rex' arcctg{ I Im x ~ 1-'He xq}, 

0 ~ arcctg { ... } < n, 

Q(p, p', q)""' c'l(qv- qv') [ q (:p - a:,) f(p)f(p') ]q. 

The first term on the right-hand side of (28) is respon
sible for the "dynamically screened" direct Coulomb 
interaction of two particles while the second one can be 
interpreted as the result of the exchange of plasma 
waves. 1 > We emphasize that the kinetic equation (28) 

1lThe difference in the meaning of the terms on the right-hand side 
of (28), which is clear already from the fact that the first one depends 
only on the modulus of the "dynamical screening length" K- 1 while the 
second one depends only on Re K2 llm K2 l- 1, becomes physically clear 
if we write IEI-2 as Re €- 1 + Re K2 (Im K2r 1 lm €- 1 (the first and second 
terms give, respectively, as n-+ 0, the first and second terms in (28): 
The regions were lEI ~ I corresponding to plasma oscillations are only 
important in the integral in the second term-the contribution of the 
first one from those regions is close to the principal value integral. We 
note that lim €- 1 1 has as a function of k a maximum fork= IKI and de
creases as k2 for small and as k-2 for large values of k. The contribution 
from the second term is thus finite when we take instead of Im h~ its 
asymptotic value (26) (Balescu's collision integral); it is then equal to 
the second term in (28). The term Re €- 1 gives, however, in the Balescu 
integral a divergence. 
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is valid for any functional form of H1(p). 
If H1(p) = p2/2m, we can reduce Eq. (28) to the follow

ing explicit form (see Appendix 1): 

fJj(p, t) fJ J J { m'w' 
--= ne'- dp' do• ln.----::-:---:-:---:-

iJt iJp lx.'(qv) le' 
(29) 

- Y• (qv)- 2C }Q(p, p', q) + R/(p), 

where w = v' - v, 
mw J. d ' dOt. Ll2 

-Rf(p)=:4ne4 ~dp' ~ dllln mw a,;r~-;r-·6(wA+-;n) 
0 

x {! (P- A)/(p' +A)- I (p)/(p')}. 

The first term on the right-hand side of (29) is the low
est ("Fokker-Planck") approximation in terms of the 
momentum transfer .1 when there are binary collisions 
while the term containing the logarithm corresponds to 
the Landau collision integral. (gJ The second term having 
a purely binary character gives corrections of higher 
order in 6. 

When there are several kinds of particles present 
(a, b, ... ) we must supplement the operation ne 2jdp' in 
(27) and (29) by a summation over the kinds of particles, 
m must be replaced by 2mamb(ma + mbf\ ... , and e4 

by e~ei,, .... 2 > We note that the correction term does 
not contribute to the exchange of momentum and energy 
between the components of the plasma. 

Hubbard[71 obtained an equation (in somewhat differ
ent form) which is close to (29) but is the same only 
with logarithmic accuracy; he started from the intui
tively justified idea that in the lowest approximation the 
collision integral must be equal to the Boltzmann colli
sion integral with a correction due to the polarization 
of the medium which is equal to the difference between 
the Balescu-Lenard-Guernsey and Landau collision in
tegrals.3> The logarithmic divergences cancel one an
other but a "correct" cancellation requires clearly that 
all integrals should be written in the same representa
tion. This requirement was not satisfied in [?J and this 
clearly explains the difference between the equation ob
tained there and (29) (we show in Appendix 3 that when 
this requirement is satisfied the above-mentioned com
bination of collision integrals gives the correct result). 

APPENDIX 1 

We denote the first term on the right-hand side of 
(28) by J and shall consider it to be the limit as TJ - 0 
of the integral over k with the lower limit of integration 
equal to TJ. We integrate by parts over k and in the re
maining integral over k we change to an integration over 
the coordinates. We obtain 

J(p,) = nlim-fJfJ { Jdr,h'(p,, r,, r,)~rp,( I r,- r,l) 
,_., p, iJr, 

2>In this case one must when solving the equations for the pair cor
relation functions (gab(Xa, xb), ... ) after changing to the Fourier rep
resentation introduce instead ofhk and Hk, respectively, the functions 
h~ (k, Pa) = ~ nbeb fdpbg ab(k, Pa• Pb) and Hk' (w) = ~ naeaf dpa X 

- a 
li(kv.- w )h~(k, Pa) where the summation is over all kinds of particles. 
The equations obtained for these functions are analogous to (I 0) and 
(12), respectively. 

3>see Appendix 2 for a comparison between the results of the present 
paper and of [ 7] . 

(A.1) 

where 
J dk - 2 e's~ dx 

<p,,(r)==o -(2 )'rp,cos(kr)=-- ~sinx. 
k<TJ Jt Jt r lJ r X 

We write the first term on the right-hand side of 
(A.1) in the form 

nfdp,u dr+ J dr}(-f---:-)g,'(p,,p,,r,,r,)-:-<p,(r), 
P<Po P>Po Pt P2 rl 

p==ow-'l[rw]l, w==ov2 -v,, r==or2 -r,, (A.2)* 

where p 0 - oo in such a way that TJ p - 0. The first in
tegral is finite for TJ = 0. In the second integral for g~ 
we can take the asymptotic value as p - oo: 

0 s' f) e' ( i) f) ) g, (p,,p,,r,,r,)-+ d•a I _ ·+· I -rJ --a /(p,)f(p,). 
~oo rl rz rl tW Pt Pz 

By virtue of the linear connection between v and p we 
get from symmetry considerations 

i) d ~ f) ( ) ' 
ne' -s dp,f ~ J dz --'£'>_!_ Jdz' 

fJp, W -w fJp -oo 

X up[p'+(z')']-';,(a:,- a:Jt(p,)/(p,) }. 

pw=O, z' +P' = r'. 

Making the transition 
d ~ 

J ;1P(p)=JpdpJdo.6(qw)1jJ(pq), q==oi, 
P>Po Po 

we get after integration over z' and p 

2ne' J dz<p,(ypo' + z')+ J dp, J do.Q(p,, p2, q), 
0 p, 

We can write the integral over z in the form 

ze' WJ dx ~5 dy ze' ~5 ( 1 1 ) S dy - - ~siny+- dx -=-~ ~siny. 

:rt 'lPo X x Y :rt t "J'x2- 1 X TJPo.t Y 

Integrating by parts in the first integral over x, we get 
as TJPo- 0: [-ln(TJPo)- C + ln 2]e2 , C = 0.577 .... We 
have thus for J the following equation: 

J(p,)=nlim{e•.!:..Jdp,Jdo.[Inl 2 I' -zc] 
p,.-.~ fJp, · PoXq ( qv) 

XQ(p,,p,,q)+B(p,, p,) }. (A.3) 

where B (p 1, p0 ) denotes the integral over the region 
p < Po in (A.2). 

Since [H2 ; g~] = - [ cp12; f(p 1 ) f(p 2 ) ], we have, as of/or 
= o, 

B(p,,p,)= J dp, J drwa: {S~'~(p,,p,,r,,r,)/(p,)f(p,)} 
P<Po 

=J dp,w J dp{f(p,-A)/(p,+A)-/(p,)/(Pz)}, 
p<po 

where p 1 - .1 and p2 + .1 are the momenta of the particles 
before the collision while after the collision they have 
momenta P1 and P2· 

Because of the momentum conservation law 

~t- 1 8. = w'- w, (A.4) 

*[rw] =rx W. 
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where w' is the difference of the particle velocities be
for the collision and iJ. the reduced mass. As w' = w, it 
follows from (A.4) that 

Aw-t-A'/2Jl=O, A'=2Jl'(1-cosx)w', (A.5) 

where ;x(p) = ww' is the "scattering angle." By virtue 
of (A.4) and (A.5) and of the spherical symmetry we can 
write B (p1, p0) in the following way: 

., A 
B(p,, p,) = J dp, w' ~pdp J do.6 ( qw + 2Jl) 

X {/(p,- Aq)/(p, + Aq)- /(p,)/(p,)}, (A.6) 

where q is a three-dimensional unit vector. In the Cou
lomb case 

(A.7) 

One sees easily that as A. - 0 the integral over doq 
in (A.6) up to terms of order A.4 is equal to 

+A• ( :p,- ~,) J do.Q(p., p,,q). 

Therefore, forming the function 

A(p, w)""' f p' dp' A'{p', w) =- 4~ln A (p, w) (A.8) 
, w' 2f.tw 

and in (A.6) integrating by parts over p we have 

B(p., p,).,....~-+ ~ a:, s dp, w'A (p,w) s do• Q(p1, p,, q) 

- s dp,w'1 dpA(p, w) :Ps d:,. e.( wA + ~~) 
X{f(p.-L'i)f(p,+t.) -/(p.)/(p,)}. (A.9) 

In the Coulomb case the first term diverges logarithmic
ally as Po- 00, while the second one is finite. We get 
(29) by substituting into (28) the result obtained from 
(A.3), (A.9). (A.8), and (A.7) for the first term on the 
right-hand side. 

APPENDIX 2 

The kinetic equation in the Fokker-Planck approxi
mation was considered in [71 in the form 

of = - _!_(D,j) + _!_ ~(D,,f) at ap. 2 ap,op; 
(here and henceforth ai> aj, ... are the Cartesian com
ponents of the vector a). The following expression was 
obtained for the diffusion coefficient (Eq. (6.9) of [71 in 
the case of a one-component plasma in our notation): 

2ne' J dp'f(p') { 1t 3w,w;;;. w'6tJ 

J dk.doo k,k; } 
+2 •<m~'!Z••k'le•(oo) I' 6{oo+kv)6(oo+kv') . 

The second term in the braces takes, after integration 
over w and k and dropping of quantities which vanish for 
n = 0, the form 

J do.q;q;ll(qw) [In 4 1x.~';') le' -v.{qv)]. 

One sees easily from Eq. (29) from the present paper 
that 

D;; = 2ne'S dp'f(p') s do.q.q;6(qw) [In lx.7;;:) le' v.(qv)- 2C] 

with a clear difference with Hubbard's result. The dif
ferences in the results for the Di are similar. 

APPENDIX 3 

We consider the expression 

as ~ . . 
-~& iJp (2n)' Im {7i.'{p)-7i."{p)+ ls.(kv) l-'7i."{p)} tp,.k, 

where h~0(p) is the asymptotic expression (26). Sepa
rately the terms in the braces give, respectively, the 
Boltzmann, Landau, and Balescu-Lenard-Guernsey col
lision integrals. We write this expression as the limit 
as 11 - 0 of the integral over the region k > 11 • Split
ting off the two last terms and integrating over k we get 

nlim!__{- J (dk. 3 Im7i.'(p)tp,.k 
,..., iJp •<• 21&) 

-t-e'J dp' J do.(In lx •• ~:v> I v.(qv) ]Q{p,p',q) }· 

One sees easily that this expression is equal to the re
sult of substituting (A.1) into (28). 
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