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The differential probability is obtained for the stripping of an electron from a negative ion passing 
through a magnetic field. In addition, the influence is considered of the change of the statistical weight 
of the final state of the electron on electron detachment due to some forces in a strong magnetic field. 

1. INTRODUCTION 

IN view of improvements in the technique of obtaining 
strong magnetic fields, it is of interest to investigate 
different processes in such fields. So far, experimental 
studies were made of the stripping of electrons from the 
ions H-ll, 21 and n-Lll on passing through a magnetic 
field. The most accurate results, obtained inl21 , agree 
with the theoryl4 ' 51 that takes into account only the action 
of the electric field on the detached electron, if the un
known parameter of the theory is taken to be approxi
mately three times larger than the value corresponding 
to a potential with zero radius of action of the forces. 
This conclusion agrees with the information given inl21 

andl31 with respect to the theoretical results of Riske 
and Vogt (although the author did not succeed in estab
lishing whether the papers of the latter were published). 
The numerical results for the probability of extracting 
an electron from H- by an electric field are given inl61 • 

In Sec. 2 of the present paper we consider the strip
ping of electrons with account taken of the specific 
features of the constant magnetic field, thereby obtaining 
a more complete description of the phenomenon. As ex
pected, for a nonrelativistic system of the H- type, the 
total probability of separating the electron is determined 
by the formula for the tunnel extraction of the electron 
by an electric fieldt4 ' 51 , if the ion velocity is much lar
ger than the velocity of the bound electron. 

In Sec. 3 there is discussed a unique kinematic effect 
of intensification of the stripping of electrons by a strong 
magnetic field when eH » P~ff, where Peff is the effec
tive momentum of the outgoing electrons. This is in 
essence an extrapolation to atomic systems of the fol
lowing result by Schwinger: the presence of a strong 
magnetic field collinear with the electric field increa
ses (decreases) the probability of production of spinor 
(scalar) pairs by the electric fieldt7 1 • 

2. STRIPPING OF ELECTRON FROM A NEGATIVE ION 

A. Matrix element and probability. The process of 
separating an electron from a negative ion in an electro
magnetic field is conveniently regarded as the trans
formation of elementary particlestsJ. This means that 
the decay is described by a Feynman diagram with three 
ends and the entire influence of the short- range forces 
of the coupling of the external electron reduces to an 
"interaction constant" at the vertex. 

Such an approach is justified if the distances effective 
in the decay are large compared with the atomic distan-
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ces. Then the formula for the probability contains an 
exponentially small factor. If in addition we are not 
interested in spin effects, then we can regard all the 
quantities as scalar. Thus, we arrive at the matrix ele
ment 

!JJlP'P = f Jqr •. •(x)e-"''¥r(x)d'x[2k,L')-'1•. (1) 

Here p, p', and k are respectively the 4-momenta of the 
ion, electron, and atom, f is the interaction constant, the 
order of magnitude of which is given bylsJ 

!'I 32nm' ~ l'(M + m'- m) I 2m', (2) 

p2 = _ m2 , p' 2 =- m' 2 , k2 =- ~, L 3 is the normalization 
volume; wp(x) is a solution of the Klein-Gordon equation 

for a charged particle in a field. 
Choosing the vector potential of the magnetic field 

directed along the XJ axis in the form 

A, =A,= A,= 0, .4, = l!x,, 

we obtain 

'¥ r (x) = [2p,L']-'!.C, exp {i[p,x, + p,x,- p,x,)}.p, (TJ), 

(ell)'!• -( p ) 
C, = -----.. --:::- 11 =yell x,- e'H , 

(}'n/!2') '/, 

(3) 

Po= Ym' + P.L' + p,', P.L' = ell(2l + 1), l = 0, 1, 2, ... , (4) 

l/!z(77) = [exp(-7JZ/2)]Hz(77) is the Hermite function. 
Carrying out the integrations in (1), we obtain 

!JJl •• ,. = f[8p,'p,k0L')-Y•11J(l', l) (2n)'6(p,- p,'- k,)6(p,- p,'- k,) 

X6(p,-p,'-k,), (5) 

where M(l', Z) can be written in accordance with tal in 
the form 

~ 

M(l', l) = C,.C, J dx,.p1.(TJ').p1(TJ)e-"•x, 

(-1)" { ik,(pc +Po') . I S } 
= --=::::-CXfJ - + Hf(/-/ )--

y/'! l! 2ell 2 
>q;<'+'V ,F,( -l', -l; - 1/1;), 

b= 
(p,'- p,)' + k,' 

2eH 

TJ' = yell (x, - p,' I ell). 
(6) 

Starting from the integral representation for M(l', l) 
and using the completeness of the system of functions 
l/!z(77), we can easily obtain the following relation: 

L !M(l',l) I'= 1. (7) 
1~0 
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Further, without loss of generality it can be assumed 
that in our system p3 = 0. (Obviously, the probability 
can be expressed in terms of invariant quantities.) Then 
we obtain in the usual manner the differential probability 
of ion disintegration per unit time: 

dW = L IM(l' l) I' lkl 
8Po ' Po'+ ko cos'-& 

dcos-& 

2n · (8) 

The total probability of disintegration per unit time is 
obtained by integrating (8) with respect to the angle " 
between the vectors k and H and by summing over l' 
from 0 to l~ax• determined from the energy conserva
tion law 

Po= M + [m" + eH (2l,:= + 1)] 'I•. (9) 

B. Approximation of weak field and high velocities. 
For l' ~ 1 the probability W is obtained directly from 
(8) and (6), since 2F0(-l',-l;-1/') consists of a small 
number of terms. For l' >> 1, we can find an approxi
mate expression for M(l', l). In this case 

M + m'- m = I, I> 0 (10) 

and, as will be shown below, n = l- l' > 0. Then 

(l ~/')!(- O'',}'o ( -l', -l;- ~) = <D(-l', l-l' + 1; 1;), (11) 

where <I>( a, {3; t) is the confluent hypergeometric func
tion, with 

<D(-l' n+ 1·")= 1 f(1+l')f(1+n) ,r,.:!!_e'<'l 
' '" 2ni f(1+1) Jt ' 
f(t)=t~-l'1n(-t)+l1n(1-t). (12) 

The asymptotic form of <1>(-l', n + 1; /;) for n, l', t :::?> 1 
was investigated inl81 (see also£91 ). The results are 
used here also to the extent that they are needed for the 
present problem. 

The saddle points of the function f(t) are determined 
from the condition 

j' (to) = 0, t, = 1/2 - n /21; ± 6, n = l- l', 

6= [(-{--;1;r- ~ r= [(++ ;J--+r· (13) 

6' = (~- 1;,) (1; -1;,) /41;', ~;,,, = ()'f"f' yf)'. 

The conservation laws 

P•' + k, = P• = 0, p,' + k, = Po (14) 

guarantee that I;< {, 1, i.e., 62 > 0 if I> 0. 
Indeed, for the maximum value of k~ for a specified 

p~ we obtain 

k1 m= = P1.' + P.1."- 2[ (m' + P.l.') (m" + P.1.'')] 'I• + m' + m" -· M', 

(15) 

and since 

(P.L' + m') (p/' + m")- (P.l.P.l.' + mm')' = (mP.l.'- m'P.l.)' > 0, (16) 

it follows that 

(17) 

Analogously, from (14) it is readily seen that 

p.l.'-p.1.''-k.1.' = m''+M'-m'+2p,'ko > (m' +M)'-m' > 0. 

Taking (10) into account, this yields 

n=l-1'>1; (1;>0). (18) 

By the same method as in£8 ' 91 we can verify that for 
the process in question the integration contour in form
ula (12) should be drawn through the point 

(19) 

and 

/" (t.} = 21;11 [ v ~~ + ~~· -~~ r [ v ~ + ~~· -~~ r . 
f "( ) 2!' 2l 

t, = -t:'- (1- t,)' (20) 

For our purposes it suffices to confine ourselves to the 
simple saddle-point method, without taking into account 
the term with f"' (t1). We thus obtain 

M(l',l)= r+ r(-t,)-'[2itf"(t,)]-'~>exp{tncr- ik,(p;e~p,') +Q }. 

Q = ~ + l' Arsh liYTil' -l Arshll}'ffi" l,l' ~ 1. (21) 

The condition for the applicability of formula (21) is 
satisfaction of the inequality If"' (t1)(t- t1)~ffl « 1, i.e., 

li"'(t,)j"-'1•(tt)i ~ 1. (22) 

The approximation (21) solves our problem. It is 
still quite complicated, however, and it is difficult to use 
it to integrate formula (8). Fortunately, at sufficiently 
high ion velocities the effective values of l' and t are 
such that 

(23) 

Then formula (21) becomes much simpler. Indeed, from 
(13) we have 

(24) 

and from (15), (16), and (10) we get 

(25) 

Here t is obtained by expanding with respect to the 
parameter 

.l. .l. ~ 1. (p m'-p'm)' 
P.l.P.1.' + mm' 

(26) 

The value I; max corresponds to spreading of the par
ticles in a plane perpendicular to the magnetic field. We 
now have for o ~in 

(27) 

We use further the fact that 

I~m'~m. (28) 

In addition, from physical considerations one should ex
pect the field to have little effect on the particle velocity 
in the effective region of the values of l' and ?; , i.e., 

( v') - ~1 
V eff ........, ' 

( P.l.1
) y~' m' 

p; eff ~ ( -y)eff ~ m' (29) 

Let us assume for the time being (until (36) is obtained) 
that 
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e ;::; 2M/ I P.L'· 

From the obtained expressions it follows that 

6!,,;::; e[m'/m + e/4]. 

(30) 

(31) 

Thus, to satisfy condition (23) it is necessary to have in 
any case 

~ 2 ~moxm'e ( m' e ) em ( m ) em 32) -bmin~--· -+- ;::;_ 1+-e ;=::;-~ 1, ( 
l' lm' 2 m 4 m' m' m' 

or, taking (30) into account, m 2I/pim' = '/2(Ill1]/p1m')2 

<< 1, i.e., 
2 I TJ2 1 2 

v > m' = 2m"= 2Vat. (33) 

This condition will be strengthened somewhat below 
(formula (35)), in order to have a compact expression. 
We note for the present that the condition (33) means 
that in the rest system of the ion the action of the elec
tric field on the bound electron is much more important 
than the action of the magnetic field. 

Taking the conditions (23), (28), and (33) into account, 
we obtain in place of (21) 

IM(l', l) I';::; ..!!..=......ezo, 
4nl]l (34) 

Q =-2''· (ll') •;, (i/- ilz' -1"1>'/, [ 1 +~~+a ( s2.s•)] . 
3 (yl-1'1') 'f, 40 l' l" 

This expression is valid in the effective region of values 
of l' and /, if 

F( mTJ,)'~1. F=~B,m (F~1). (35) 
PJ_m 3 HpJ. 

Here Bo = 71 3/ em' is the characteristic atomic field. 
Using expression (34), it is easy to integrate formula 
(8) with respect to J and l': 

f'PJ. 2 
{ [ 1 ( mTJ } 2 ]} W= exp -F 1+--

64n'p0p,'1Jl 30 pJ.m' 

' 
m= 3eHF (l'fi- '0)' ' 3 ' . X J exp{--.- . ', 0

• }di'J exp{--!!.=....Ft'}dt 
, 1']- 1 + pJ.-;rw _1 2 1] 2 

f' m11 2 { [ 1 ( mT] ) 2
]} ;=::;--. --exp -F 1+- --

32.'<m' Po 3F 30 p1 m' 

ml 2 { [ 1 ( mT] } 
2 

] } ;::;C'--;-;exp -F 1+- -, , 
Po 3F 30 PJ_m 

t =cos t't, 
rn' 2 

l,'=-l, 
tn 2 

C' ~ 1. (36) 

The integrand in (36) gives the differential probability in 
the effective region of values of l' and J. Details of the 
calculations that lead to (34) and (36) are given inlloJ. 
Agreement with the experimental data ofl2 J will occur at 
C' ~ 3. The quantity f2 (or C') can be regarded as a free 
parameter. On the other hand, as noted inl 5J, 

f' I 32mn' = 2nN', (37) 

where N is a coefficient in the asymptotic wave function 
of the external electron in the ion 

e-rtr s 
ljJ(r} I.~~= N-r-, 2m' f.p(r) l'd'x = 1. (38) 

In the limiting case of a potential with zero radius of 
action, the first equation in (38) is valid for any r. Then 
the second equation gives N2 = 7J/41Tm', i.e., c' = 1. 

3. KINEMATIC EFFECT OF INTENSIFICATION OF 
IONIZATION OF THE A TOMS BY A STRONG 
MAGNETIC FIELD 

Let us consider by way of an example the ionization 
of a hydrogen atom by a constant electric field E. The 
probability of extracting the electron from the s state 
with principal quantum number n is equal tolllll> 

W,=C,JdpJ.2 exp{- ~ ~· (1+~::)"'};::; 
00 

~, { 2B"}J, f B,pj_'} { 2B,}ETJ.' ~ [,cxp --- dpJ. expl--- = C,exp --- --, 
0 E , E 11.' 3 E B, 

C - 1 [4B" ]'" 
"- 4[n!] 2m' £ · 1],2 =2m'/,. (39) 

Assume now the presence also of a strong magnetic 
field parallel to the electric field. The question is: how 
does the probability Wn change? The shift of the levels 
of the atom in the strong field can be readily included 
in the change of 71 n· It is more difficult to take other 
changes of the matrix element into account. It can be 
assumed, however, that they are not too large. In the 
model of the type considered above, where no account is 
taken of the long- range character of the Coulomb forces, 
it is easy to show, by using (7), that the matrix element 
remains the same, but, of course, pj_ must be taken to 
mean eH(2l + 1). A similar situation arises in the case 
of pair production by a constant field l7 ' 13l. If this is true 
also for the Coulomb forces, then we obtain in lieu of 
(39) for the probability of emission of an electron in the 
spin state r 

{ 2B,} f { B,2eH(l+r-1)} 
W,,,=C,exp -SE eHt:exp -y---1]-,,-- = 

= C,exp{-~ ~," _ B, 2eH(r-;-1)}eH[J _ exp{ _ B~ 2e~ }]-' 
3 E E TJ, L 1'], 

(40) 

r = 1 or 2. We see therefore that when BneH/E71~ « 1 
the dependence of the total probability on Tin does not 
change when the magnetic field is turned on. When 
BneH / e71 ~ » 1, only the term with r = 1 and l = 0 makes 
a decisive contribution and the emerging electron is 
strongly polarized. 

Thus, when eH >> Pi eff' assuming that the matrix 
element is independent of the magnetic field, the ioniza
tion probability changes both because of the change of 
1J n = 71 n(H) and as a result of the change of the statisti
cal weight in proportion to eH. It does not matter here 
which of the external fields has caused the ionization. 
This may be in the field of the photon or of the incoming 
electron. Obviously, the foregoing considerations are 
even better applicable to negative ions, for in these the 
external electron is in the field of short- range forces. 
We note also that for a scalar charged particle p~ 
= eH(2l + 1) increases with increasing H even if l = 0. 
Therefore the law of energy conservation can forbid in 
general the decay with emission of such a particle, if 
the magnetic field is sufficiently strong. 

!)The total probability Wn, i.e., the right-hand side of (39), was 
obtained earlier in [ 12 ] ; it is not important for us to know the distri
bution with respect to pf, i.e., the integrand in (39). 
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In conclusion, the author is grateful to N. B. Delone, 
M. S. Rabinovich, and V. I. Ritus for a fruitful discus
sUm. 
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