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By using the Firsov inversion formula it is possible to construct spherically symmetric systems 
which have the properties of ideal focusing from the point of view of geometrical optics. The equiv
alent mechanical problem leads to fields of force focussing particles of a given energy E. In particu
lar, the cut-off potential of the three-dimensional harmonic oscillator focusses at the edge of the well 
a parallel beam of particles of energy equal to the depth of the well. The cut-off potential for the 
Coulomb field possesses the property of reflecting particles of energy equal to one half the cut-off 
energy. In those cases when the trajectory varies discontinuously as the impact parameter is varied 
the problem of reconstructing the potential is nonunique, and by specifying in an almost arbitrary 
manner the index of refraction n(r) in one region we can satisfy the focusing condition by an appro
priate choice of n(r) in another region. This arbitrariness can be utilized to eliminate chromatic 
aberration, to select the region of variation of n, etc. The advantage of the systems considered is 
their wide-angle characteristic. 

1. THE INVERSION FORMULA 

THE Firsov inversion formula [1' 2J for the problem in 
classical mechanics of the scattering of a particle by a 
spherically symmetric field of force enables one to re
construct the potential U(r) if we know the angle of de
flection of the particle x as a function of the impact pa
rameter p for a given value of the total energy of the 
particle E.u Instead of the potential energy U Firsov's 
formula contains the quantity 

n(r) = v 1- U(r) = v(r) 
E v(oo) 

(1) 

(v(r) is the velocity of the particle at a given value of r) 
which has a particularly simple meaning if, using the 
opticomechanical analogy we go over to the equivalent 
problem in geometrical optics. Then n(r) will be the 
index of refraction at a given r, and from the condition 
U( oo) = 0 it follows that n( oo) = 1. From the formula for 
X 

n + x. f pdr 
--2-= ~ r([m(r)]'-p')'l, (2) 

0 

where r 0 is the greatest of the roots of the equation 

rn(r)= p, 
(3) 

in [1J the following inversion formula was obtained 

{ 1 s.. x.(p)dp } n(r)=exp - , 
n (p'-[m(r)]')'l, 

Tn(r) 

(4) 

!)This formula was rederived in [3) (cf., [4 ) where there is also no 
reference to [ 1) ). In Luneburg's book [ 5] containing lectures given in 
1944 but not published at that time a similar inversion algorithm has 
also been described. 
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which defines the dependence of n(r) on r implicitly.2 > 

Formula (4) is derived on the assumption that the 
minimum value r = r 0 for the trajectory decreases con
tinuously as p is decreased. This is satisfied only when 
rn(r) is a monotonically increasing function of r. In this 
case in going from a more distant trajectory to a closer 
one with impact parameters respectively given by p and 
p- t:..p, we incorporate a new region llr = r 0(p) 
- r 0(p- l::..p}, which must tend to zero together with l::..p. 
It is just in the case of such a "gradual probing" of the 
potential U(r) from the periphery towards the center that 
a unique reconstruction becomes possible and formula 
(4) is applicable. 3 > 

Another natural condition consists of requiring that 
n(r) should be a single-valued function of r. For this it 
is necessary that the function 

1 ., ( )d 
r(t)=texp{--J X. p p} 

n , )'p'-t' 
(5} 

should not decrease with increasing t. [1J It can be easily 
verified that this condition (which limits the allowable 
functions x (p)) is equivalent to the condition of "gradual 
probing" formulated above. 

We note, moreover, that for no n(r) can the function 
x (p) decrease discontinuously and cannot be less than 
-rr. 

If in formula (4) we set r = 0, then we obtain a sim
ple explicit formula for the value of the index of refrac
tion at the origin 

2lWe nvte that in the book [ 2) fromula ( 4) is given with an incorrect 
sign in the exponent, since the definition of the angle x there has the 
opposite sign. Our defintion (---rr < x < + =; x > 0 in the case of attrac
tion and X< 0 in the case of repulsion) is more convenient for attrac
tive fields. 

3lin [4) it is erroneously asserted that a monotonic dependence of 
X(P) is necessary. We shall see later than n(r) can be easily reconstructed 
in accordance with formula (2) for nonmonotonic x(p). 
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v 1- U(O) = n(O) = exp {..!_] X(P)~}, (6) 
E n 0 p 

which is applicable, of course, only when the trajectory 
with p = 0 passes through the origin, i.e., when X (0) = 0 
and U(r) < E for all values of r. 

2. FOCUSING SYSTEMS WITH SPHERICAL SYMMETRY 

We use the inversion formula in order to construct a 
spherical lens of radius R with an index of refraction 
n(r) (for r > R we have n(r) = 1 ), which focuses the rays 
coming from the point A at a distance R1 from the cen
ter of the lens to the point F at a distance R2 from the 
center (Fig. 1). Such an optical system will image a 
sphere of radius R1 on a sphere of radius R2 and con
versely and will be free from different aberrations 
characteristic of axially symmetric systems and asso
ciated with oblique rays (there remain only the chro
matic aberration and the diffraction brought about by 
deviations from ray optics). From Fig. 1 we immedi
ately obtain the formula for X : 

_ {a.+ 11 = arcsin(p/R,)+ arcsin(p/R,), p < R· (7) 
x(p)- 0 P >R. 

Substituting this relationship into (4) we can for given 
values of R, R1, R2 find an index of refraction n(r) which 
increases monotonically from a value equal to unity for 
r = R up to the value 

1 R/R, d:z: 1 R/R, • d:z: 
n(O)=exp{-;- J arcsinx--;-+-;- J arcsmx--;} (8) 

0 0 

for r = 0. 
In the general case the integrals occurring above 

cannot be evaluated analytically but still they can all 
be expressed in terms of one universal function (cf., 
also [5•61); some numerical results are given in [?l. 

We consider particular cases when the integral can 
be expressed in terms of elementary functions and the 
index of refraction n(r) can be obtained explicitly. Let 
R1 = oo, R2 = R, i.e., the lens focuses a parallel beam 
of rays on its own surface (Fig. 2). Then utilizing the 
,formula 

S• arcsinx dx = ~ln(1 + 1'1- a'), 
• '/x'-a' 2 (9) 

we obtain the index of refraction considered by Lune
burg:[51 

n(r) =1'2- (r/R)', (10) 

falling off smoothly from the value n = -./2 at the center 
of the lens to n = 1 for r = R. For the potential energy 
U(r) we obtain 

U(r)=E(r/R'-1), r<R; U(r)=O, r>R. (11) 

Thus, the spherically symmetric force field of a har
monic oscillator cut off at r = R focuses a plain parallel 
beam of particles if their energy is equal to the depth of 
the potential well. For charged particles such a field 
can be created by a uniformly charged sphere which is 
surrounded by a grounded conducting sphere of the same 
radius.4 l 

The trajectories of a particle in an oscillator field 

FIG. 1 FIG. 2 

FIG. I. Focusing system with spherical symmetry. 
FIG. 2. Focusing properties of a cut-off spherically symmetric har

monic oscillator potential. 

will be, as is well known, ellipses. From Fig. 2 it can 
be seen that the semi-axes of the ellipse are equal to 
R-12 cos (x/2) and R-12 sin (x/2). Thus, the sum of the 
squares of the semi axes does not depend on x and, 
consequently, all the ellipses correspond to motion with 
the same total energy E, i.e., the focusing property is 
easily proven also by a purely geometrical method. 

Another simple case can be obtained if we set R1 
= R2 = R, i.e., if we require that all the rays emerging 
from a certain point on the surface of the sphere should 
be brought together at the diametrically opposite point. 
Then x = 2 arcsin (p/R) for p < R; x = 0, p > R and 
we obtain 

n = 2/ [1 + (r/ R)']. (12) 

This distribution of the index of refraction was first 
found by Maxwell in his problem of the "fish eye."[91 

The inversion problem can also be solved exactly if 
we require that scattering should occur at a constant 
angle a1r, i.e., if we set 

x=an, p<R; x=O, p>R. (13) 

Then we obtain the following dependence of r on n: 

-.!:_=2(n'i•--j-n-''")-' =[nch(a-'lnn)]-'. (14) 
R n 

In particular, for a= 1 we have a "cataphot"-a field 
which scatters all the particles (rays) backwards 
(X = 1r) for p < R: 

n = l'2R / r - 1. (15) 

The corresponding potential energy for the particles is 
equal to 

U(r)=2E(1-R/r), r<R; 
U(r) = 0, r > R. 

(16) 

Thus the cut-off Coulomb field possesses the property 
of reflecting particles incident on it with an energy equal 
to half the cut-off energy. For charged particles such a 
field can be created by a point charge surrounded by a 
grounded sphere of radius R. From Fig. 3 it can be seen 
that the major semiaxis of an ellipse with a focus at the 
center of the sphere corresponding to the trajectory with 
x = 1r, is equal to Rand does not depend on p. From this 
it follows that all these trajectories correspond to one 
and the same energy which is equal to the energy of mo-

4) In the scattering of nucleons by nuclei the potential of a nucleus 
in the optical model can in a certain approximation be regarded as 
focusing and this leads to the appearance of a maximum in the wave 

• 8 
function at the edge of the nucleus ( cf., for example, ( 1 ). 
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FIG. 3. Reflecting property of cut
off Coulomb potential. 

tion along a circle of radius R. In virtue of this the fo
cusing properties of this potential are also simply es
tablished geometrically. 

Still more general will be the case when 

x =an+ 2b arcsin (p / R), p < R; X= 0, p > R. (17) 

Substituting (17) into (4) and utilizing (9) after a simple 
transformation we obtain an implicit formula for n(r) 

R (b-1 b r) -=ch --lnn+--In-
rn a+b a+b R 

(18) 

which contains all the special cases considered previ
ously. 

3. THE NONUNIQUE NATURE OF THE SOLUTION OF 
THE INVERSION PROBLEM 

If the condition of increasing rn(r) is not satisfied, 
then the distance of closest approach r 0 (p) changes dis
continuously at a certain p = p. We consider here the 
simplest case when there exists only one such discon
tinuity, so that 

R' ;:== r,(p- 0), R" == ro(p + 0), R"- R' > 0. (19) 

As a result of this the whole range of variation of r is 
divided into three parts: I (r > R 11 

), II (R" > r > R'), 
III (R' > r > 0) (cf., Fig. 4). This leads in turn to a 
discontinuous increase in x(p) at the point p, provided 
the potential or its derivative have a discontinuity at 
the point R 11

, in which the function rn(r) attains a 
minimum. 5 > . 

In region I the potential can be uniquely reconstructed 
with the aid of formula (4) from a given x(p) for p > p. 
However, then the range of values of r which is encom
passed by a given ray undergoes a discontinuity at p = p 
and Firsov's formula is inapplicable. We specify an in
dex of refraction in region II in an arbitrary manner 
requiring only that the angle through which the trajec
tory is deflected in region II for p = p- 0 should be less 

rn(r) 

i 
FIG. 4. Behavior of the function 

rn(r) in the simplest case of a non
unique solution of the inverse prob
lem. 

S)If the function rn(r) is continuous at the point R" together with 
its derivative, then X(P) has at the point ji a logarithmic singularity as
sociated with spiraling (cf., for example, [4 ] ). 

than a given value of the discontinuous change in the 
angle of deflection Ax for p = P, i.e., 

L'lx=x.(p-0)-x(f!+O);;. 2pr r([rn(r~i'-p')';,· (20) 

Evidently, the value of R' itself, i.e., the dimensions of 
region II, is determined simultaneously with the choice 
of the function n(r) in this region. If we now suppose that 
with a further decrease in p (i.e., for p < p) the rays 
encompass region III, then we can again use the Firsov 
algorithm and choose n(r) in region III in such a man
ner as to compensate for everything that has happened 
to the ray in region II (where n(r) was specified almost 
arbitrarily), and to guarantee a given angle of deflection 
x for p < p. In order for this to occur the angle of de
flection x of the ray in region III must be equal to 

1 1 } p 
[(rn(r))'-p']'l• [(rn,)'-p']'l• --;:-dr, (21) x=x(p)-2 j { 

R' 

n, == n(R'). 

We introduce a new index of refraction n which co
incides with the desired n(r) for r < R', while for r > R' 
it is equal to n1- If we now set x(p) = 0 for p > p, we 
can then utilize Firsov's formula, s> in order to obtain n 
(and, consequently, also n for r < R') in terms of X· We 
obtain 

1 00 
- d 

n(rl=n,exp{-J x<r> r } r<R'. 
n,n[p'-(rn)']'l• ' (22) 

Thus, if x(p) has a discontinuity (or becomes infinite) 
the inverse problem does not have a unique solution. 
This arises because we did not in any way characterize 
the trajectories corresponding to total internal reflec
tion of the ray and lying entirely within region II. The 
solution is determined uniquely by specifying the func
tion n(r) satisfying only the condition (20) in region II, 
with at the same time also R being specified, i.e., the 
magnitude of the region II which can be arbitrary. If 
R' = R 11

, then region II disappears, (22) goes over into 
(4), n(r) is reconstructed uniquely by a simple applica
tion of the Firsov algorithm and the function rn(r) is 
continuous and everywhere increasing. In this case the 
discontinuity in x(p) at p = p occurs as a result of a 
temporary capture of the particle into a circular tra
jectory with r = R ", with U(r) and n(r) having a discon
tinuous derivative at r = R 11

• 

In those examples of focusing fields which were con
sidered in Sec. 2, we have just such a situation, since 
the angle x(p) determined by formula (7) has a discon
tinuity at p = R. From the results of this section it fol
lows that there exists a whole family of potentials with 
given focusing properties which have a discontinuity in 
the index of refraction at r = R. It is this particular be
havior of n(r) which is the only possible one for real 
optical systems at the boundary between the lens and 
vacuum. 

We restrict ourselves to the simplest example al
ready discussed in Sec. 2, R1 = oo, R2 = Rand we make 
the simplest choice of n(r) in region II: n(r) = const 

6lFor the case when n(=) i= I, one should replace in formulas (2)
(4) n(r) byn(r)/n(=). 
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n 
l.fi 

FIG. 5. The index of refraction of 
a lens with a homogeneous external 
layer which focuses a parallel beam of 
rays on its own surface. 

= n1 = Fi:. Then R" = R, R' = R/Fl and the ray tangent 
to the surface of the lens is focused. In order to deter
mine n(r) in region III, R/Fl > r > 0, we obtain in 
accordance with formula (21) 

x=2arcsin~-arcsin£, O<p<R. (23) 
Ry2 R 

Utilizing (22) and carrying out a numerical integra
tion we obtain the index of refraction n(r) shown in 
Fig. 5. The maximum value of n(r) is attained at r = 0 
and is equal to n(O) = 2114 eG171 ~ 1.5918, where G is 
Catalan's constant (cf., [10l, formula (3.513.6)). It is 
interesting that in this case the variation of the index 
of refraction 1.4142 < n < 1.5918 is such that the lens 
can in principle be constructed from ordinary glass, 
although in practice it is apparently impossible at the 
present time to realize with a sufficient accuracy the 
variation of the index of refraction. However, it is pos
sible to construct layered systems with spherical sur
faces in which by a suitable choice of thicknesses and 
indices of refraction different aberrations can be elim
inated. [lll Moreover, it is not even necessary to require 
ideal focusing for all, since the glancing rays are 
strongly reflected and their contribution to the f number 
of a lens is not great. We note that for paraxial rays a 
sphere with the index of refraction n = 2 has the same 
property as the lens described above. 

Since the same focusing condition determining x(P) 
corresponds to a large number of indices of refraction 
n(r) we can, in principle, utilize this nonuniqueness by 
striving to satisfy certain additional conditions, for ex
ample, by reducing to a minimum the chromatic aberra
tion. 

We have here considered the simplest case when 
x(p) has only a single discontinuity, and the function 
rn(r) has only a single minimum. More complicated 
cases are, of course, also possible when there are sev
eral discontinuities, several minima in rn(r) and corre
spondingly several regions of arbitrary specification of 
n(r). In this case the problem of the reconstruction of 
n(r) will be solved by means of repeating the required 
number of times the procedure described above. 

4. CONCLUSION 

The principal advantage of spherically symmetric 
focusing systems is their wide-angle property which in 
the limit can be extended to 477 (if the lens is covered 
by a semitransparent light sensitive film and one ob
serves distant luminous point objects-for example 
stars). The disadvantage is the nonflat spherical focal 
surface (but this is, in any case, inevitable for a suffi
ciently wide-angle system). 

From the general theoretical point of view the prob
lem considered here is a special case of a general (and 
quite complicated) inverse problem of geometrical op
tics-the determination of the index of refraction of a 
system from its focusing properties. The question of 
the uniqueness of this problem-of establishing what re
quirements it is necessary and sufficient to impose on 
the system in order that the condition of uniqueness be 
satisfied-is also a complicated one. From the forego
ing it follows that this problem is sufficiently difficult 
even in the simplest spherically symmetric case, al
though here we can analyze the nature of the nonunique
ness, the method of removing it, and also the possibility 
of utilizing it. 
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