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The joint scattering of electrons by magnons and impurities leads to a number of anomalies in the 
kinetic properties of ferromagnetic metals. If the impurities are magnetic, then the thermal emf 
depends on temperature in a nonmonotonic fashion for a given impurity concentration and on im
purity concentration at a given temperature. At the peak, the thermal emf may have values com
parable with k/e and its sign is determined by the nature of the impurity. As the impurity con
centration increases, the thermal emf peak shifts towards higher temperatures; scattering of elec
trons by phonons decreases the thermal emf and shifts the peak towards lower temperatures. The 
theoretical results for the thermal emf are in good agreement with experiment. It is fouhd from 
comparison of the theoretical with the experimental thermal emf that the characteristic tempera
ture for single-magnon scattering in Ni is T0 ~ 25°K. The effect on the thermal emf of the scat
tering of electrons from the s- to the d-band by magnons and phonons is discussed. It is shown that 
Mathiessen's rule for thermal resistance is violated in the scattering of electrons by magnetic as 
well as nonmagnetic impurities. 

INTRODUCTION 

THE scattering of conduction electrons by spin waves 
leads to interesting peculiarities in the kinetic proper
ties of ferromagnetic metals. In ordinary metals, the 
thermal emf is a~ k 2T/eEF, since the thermal flux 
due to the "cold" electrons and the flux due to the 
"hot" electrons cancel each other to within the tem
perature width of the Fermi distribution[!] (EF is the 
Fermi energy, T-the temperature, e-the electron 
charge, and k-the Boltzmann constant). This is not so 
with ferromagnetic metals. The scattering of electrons 
by magnons is asymmetric in character: an electron 
with spin t can only absorb a magnon, while an electron 
with spin I only emits a magnon. Consequently, the 
thermal flux of the ''cold'' electrons does not fully 
cancel out that of the "hot" electrons, and at tempera
tures that are small compared to the Curie tempera
ture Tc the thermal emf in pure ferromagnetic metals 
is of the order of kiT/eEFTc[ 2• 31 (I is the s-d exchange 
energy, I ~ E F), whereas in metals with nonmagnetic 
impurities, it may have values of the order of 
ki/ eEF[ 3l. It is assumed here that the s-s electron 
scattering predominates over the s-d electron scatter
ing. In both cases the thermal emf contains small 
parameters, since the dynamical properties of elec
trons with spins t and I differ by a small quantity of 
the order of 1/EF. If, however, apart from the electron
magnon scattering, there exists another scattering 
mechanism, the effectiveness of which is different for 
electrons with different spin directions, then the 
thermal emf may not contain a small parameter. 

Precisely such a situation arises when electrons 
are scattered by magnons and by those impurities for 
which the relaxation times for electrons with spins I 
and I ( r 1, r 1) are not equal (we shall henceforth call 
these impurities magnetic). The situation is, in many 
ways, analogous to the case of inelastic scattering of 
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electrons by magnetic impurities in nonferromagnetic 
metals in a magnetic field (see[ 4 J and the papers cited 
therein). The large magnitude and other anomalies of 
the thermal emf of ferromagnetic metals with magnetic 
impurities were predicted by us in[sJ. 

In the present paper we calculate the thermal emf 
and the thermal resistance of ferromagnetic metals 
for electron scattering by magnons, impurities, and 
phonons. The thermal emf depends in a nonmonotonic 
fashion on temperature and impurity concentration, 
may have large values and strongly depends on the 
nature and concentration of the magnetic impurities. 
The results obtained here and in[sJ are in good agree
ment with the recently published experimental data on 
the thermal emf of Ni with magnetic impuritiesr 6l. 

The most interesting feature of thermal resistance 
is the considerable deviation from the Mathiessen rule. 
This is not only the case in electron scattering by 
magnons and magnetic impurities, but also in electron 
scattering by magnons and nonmagnetic impurities. 

1. THERMAL EMF 

A. Let us first consider the thermal emf in s-s 
electron scattering by spin waves, magnetic impurities, 
as well as by phonons. We shall assume that the con
centration of impurities is sufficiently large so that 
relaxation of the electrons with respect to momentum 
occurs on the impurities, while only energy relaxation 
occurs on the magnons and phonons. Accordingly, we 
retain in the kinetic equations for electrons with spin I 
and I only terms of lowest order in the small parame
ters T/Tc and T/To (To is the Debye temperature). 
We recall that the ratio of the momentum relaxation 
time to the energy relaxation time in electron scatter
ing by magnons and phonons is Tc /T for the case of 
scattering by magnons and (To/T)2 [ 3• 71 for phonons. 
We also neglect terms of the order of I/ t F and kT/ E F· 
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The spectrum of the s-electrons is assumed isotropic. 
Such an assumption is satisfactory, for example, for 
Ni[aJ. Since we consider in this paper an interval of 
temperatures which are low compared to Tc, a quad
ratic spectrum may be assumed for the magnons; tiwq 
= q2/2J..L, where 1-L is the magnon mass. 

Representing the nonequilibrium correction to the 
electron distribution function in the form 

an. 
n.l.t = -(u!.t(e),p)-fJ -, 

Ep 

where p is the electron momentum and np is the 
Fermi distribution function, we write the system of 
linearized kinetic equations for electrons in an ex
ternal electric field E in the form 

e ~ 
-J d£a>+(x,£)[u1(x+£>-ut(x)] 
lso tje 

} 
1 on eEv on 

+a>-(x,£)[u!(x-£)-u!(x)] +-- ul(x)=--:;-· 
1:1 fJx p ux 

Here x = ( <0 - <0 F )/kT, E is the electron energy, v 
its velocity, and 

ea:+~ 

<D+(x, £) = <D-(- x, £) = --:(-::e":-+:-;-;1):-;(---:e":-;-;H;-+-:-:-1);-(;-e1;-------:-1) 

(1) 

(2a) 

(2b) 

(3) 

The energy kT0 is the minimum magnon energy that 
may be absorbed or emitted by an electron in the 
single-magnon process. It is determined from the con
dition kT0 = (6-p )2/2J..L, where 6-p « PF is the mini
mum change in electron momentum in a scattering 
with spin flip at the Fermi surface. The dimensionless 
temperature is ® = T/T0 • The quantity tso has the 
meaning of energy relaxation time for electrons on 
magnons at the temperature ® = 1. If we consider the 
electron-magnon interaction in the framework of the 
customary model of s-d exchange, then we obtain for 
ts 0 an expression which coincides with the expression 
for Ts in[ 3l at T = T0 • The quantity tpho has the mean
ing of energy relaxation time for electrons on magnons 
at e = 1. We shall not need the explicit form of tpho 
(see, for example,r7 l). In the collision integrals of the 
system (2), which describe the scattering of electrons 
by phonons, the upper limit of the temperature region 
considered is much larger than unity. Nevertheless, 
we shall not replace it by ""• since, as we shall see, 
the dependence of these integrals on the upper limit 
can be significant. 

For Tt ~ r 1 the scattering of electrons by magnons, 
described by the first term of each equation of the 
system (2), influences the transfer of momentum by 
the electrons to the impurities since flipping of the 
electron spin occurs in such scattering. There is, how
ever, no momentum transfer from the electrons to the 
magnon system itself. 

It follows from (1) and the Onsager relations that 
the thermal emf can be expressed in the following 
manner in terms of the drift velocities u 1(x) and 
uj(x) given by the system (2): 

k +~ a +~ a 
a=- J dxx__!:_[ut(x)+u!(x)] / J dx__!:_[ut(x)+ul(x)]. (4) 

e -~ iJx -~ iJx 

We see from this that the thermal emf differs from 
zero only in the case when the function u t( x) + u 1 ( x) 
is not an even function of xr 3l, The symmetry proper
ties of the function u 1(x) + u,(x) can be seen directly 
from the system (2). 

Let us, following[ 3 l, introduce the function 

(5) 

so that 

ut(x) + uj(x) = 1h[w+(x) + w+(-x) + w_(x)- w_( -x) ]. (6) 

The system (2) may be rewritten in the form 
e ~ - J d£a>+(x,£)[w+(-x-£)-w+(x}] 

tso t,e 

9Di8 

8' 
+- Jd£s'{a>+(x, ?;)[w+(x + £)- w+(x)] 

tpho o 

+ a>-(x, 6) [w+(x- £)- w+(x)]} 

1Dn{ (1 1) (1 1)} 2eEvon +-- w+(x) -+- +w-(x) --- =---,-, 
2 dX T• 'tj Tt Tj p OX 

' (7a) 

When Tt = Tl the system (7) separates into two in
dependent equations for w+(x) and w_(x), and the equa
tion for w_(x) has only a trivial solution, i.e., accord
ing to (6), the function ut(x) + u 1 (x) is even. If elec
tron scattering by magnons is insignificant (ts 0 -"" in 
(7)), for an arbitrary relationship between Tt and r 1, 
the solution of the system (7) has the properties w+ (x) 
= w+ ( -x), w_(x) = w_( -x), i.e., ut{x) + u!(x) is again 
an even function. In both cases, the thermal emf 
vanishes to within the previously neglected terms of 
order I/EF and kT/EF· 

If, on the other hand, T t ~ T 1, and the scattering of 
electrons by magnons is considerable, then, as can be 
seen from (6) and (7), ut(x) + u,(x) ceases to be an 
even function of x and the thermal emf becomes ano
malously large and comparable with k/ e. 

We shall seek the solution of the system (7) in the 
form 

where w~11 and w< 21 do not depend on x. Then the 
system of integraf equations (7) reduces to a system of 
four algebraic equations for w~11 and w~21 • Solving 
this system, we find with the aid of (4) and (6) the 
thermal emf: 
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(8) 
Here, 

3 
t,- 1 = -;:f 8K,(8)t.o-1, t h-I= 8'Q (~)t -1 

p 8v pho ' 

A(8) 
4n'K~(8)+ 3K,(8) 

12K,(8) 
B(8)=~ KI(8)K,(8)-K,'(8) 

3 K,'(EJ) 

C(8)=~ K~(EJ) 
3 K (8)' 

""ne~ 
K (8)- j' s d'· 

" - " ( e' - 1) ' s, 

3 ttL £~e~ 

Q(z) = -;:f I (e'- 1)' d£. (9) 

We have again left out in the denominator of (8) one 
addend which, as an estimate of it showed, is consider
ably smaller than the remaining terms at all tempera
tures. 

At low temperatures e << 1 we have 

1 
A(8)=-

48' 

n' 
ts = 3 8e 116tso, 

n' 
8(8)=38', 

2n' 
C(8)=-8. 

3 
(10) 

The exponential increase of ts as ® decreases at low 
temperatures is connected with the "freezing" of 
magnons with momentum larger than Llp which are 
responsible for electron scattering with spin flip at the 
Fermi surface. 

At high temperatures e » 1 

1 
t,= 8 t.o, A(El)= 1 + 9;~~) +ln8, 

C(8)=2+2ln8, (11) 

where 1;(3) is the Riemann Zeta function. 
Thus, the functions 11 A(e ), B(e) and C(e) vary 

more slowly with changing ® than the ''relaxation 
time" ts(® ). The function Q(z) entering into the 
"relaxation time" (9) for electrons on phonons is 
tabulated in[ 9l. Its dependence on z becomes signifi
cant when z » }'4 • For z < 7'4 we have Q(z} F:;j Q(O) 
= 5!?;(5). It can be seen from (8) that the sign of the 
thermal emf is determined by the sign of the difference 
(Tt- r1) and, consequently, depends on the nature of 
the impurity. 

1. At sufficiently low temperatures, when ts » T 1 
and Tt. the first addend in the denominator of (8} is 
the most important and the thermal emf has the form 

a=~ k 'tt-'tl . (12) 
6 e t,(i + 1/,('tt +,;,)/1$) 

If, moreover, tph >> T 1 and T 1, then the thermal emf 

a=~.!:_ 'tt -,;, 
6 e t, 

(13) 

increases with temperature 

(14) 

llThe functions A(EJ) and B(EJ), which were introduced by us in [ 5], 

are larger by a factor of two than the functions A(EJ) and B(EJ) in the 
present paper. 

and is inversely proportional to the impurity concen
tration c. We may also obtain formula (13) by solving 
the system (7) by perturbation theory. 

Scattering by phonons weakens the concentration 
and temperature dependences of the thermal emf. 

If tph « T 1 and T 1, then 
n' k 'tt -'t• 1ph (15) 

a=37 Tt+'t• t,· 

The thermal emf does not depend on the impurity con
centration and varies with e as 

8-%1 { e-•e-110, 
a~ 

e-'Q-1 (8/8v), 8;J;>1' 
(16) 

2. At high temperatures, when ts « r1 and 

a=~}:_-rt-'t'I(B(8) +C(El))- 1
, (17) 

6 e 'tt't'• t, tph 

i.e., the thermal emf decreases as e increases and is 
proportional to c. If, at the same time, scattering by 
magnons predominates over scattering by phonons, 
ts « tph• then 

EJ-%1 
8;J;>i' 

(18) 

For the opposite inequality ts >> tph• when scattering 
by phonons predominates, 

(19) 

Thus, when electron scattering by magnons predom
inates over scattering by phonons, the thermal emf as 
a function of temperature has a maximum at ts 
F:;j ,fTjTj. Scattering by phonons shifts the peak 
towards lower temperatures. As the concentration of 
magnetic impurities increase, r1 and r1 decreases, 
so that the peak shifts towards higher temperatures. 
The thermal emf at the peak may be comparable with 
k/e. 

l<ri,I'VfK 

20 

f(j 

12 -

1/ 

--f 
-·-2 
---J FIG. I. Thermal emf as a function 

of the dimensionless temperature e = 
T/T0 for 'Y = 0. For the curves I, 2 and 
3, r is respectively equal to 5, 15 and 
2. The curves a, b, c and d correspond 
to (:i equal to 0.5, 2, 8 and 20. 

~ ..... , I, 
:--. ' cl 
' '<J '-...,b c l FIG. 2. Thermal emf as a function 

'-.... of the dimensionless temperature e = 
-.... To/T 0 for r = 5 and (:i = 2. The curves 

I and 2 correspond to To/T 0 = 40 and 
20; a, b and c correspond to 'Y equal to 
0.63, 0.13 and 0.03, respectively. 
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Figures 1 and 2 show the dependence of 1 u 1 on tem
perature for different values of the parameters 
r = Tt/T,, {3 = ts 0 /Tt for Tt > Tj (orr= Ti/Tt, 
{3 = tso/TI for Tf < Tl) and y = Q(O)tso/tpho· The 
nature of the curves in Fig. 1 is determined by the 
values for (3. We see that the smaller {3 is and the 
larger r is, the higher and sharper the peak of the 
thermal emf. Since at low temperatures the thermal 
emf decreases with increase of the impurity concentra
tion while at high temperatures it increases, the curves 
a(®) intersect each other (for a given r). 

The thermal emf, as a function of the concentration 
at constant temperature, has maximum values at con
centrations c0 given by the relation 

Tfrl = t,/(B(8)t,-• + C(8)tpJi']. (20) 

B. Apart from s-s scattering, s-d scattering by 
magnons or phonons can be important in ferromagnetic 
metals. Let us consider the effect of this process on 
the thermal emf. 

Let us, as is customary, suppose that the mobility 
of the d-electrons is considerably smaller than the 
mobility of the s-electrons; hence we assume the d
electrons to be in equilibrium. This permits us to de
scribe the scattering of s-electrons into the d-band 
with the aid of the relaxation times tJ• I (x): 

1 1 1 (21) 
td '(x) = t~ 1(x) + t;i,l (x) ' 

where the relaxation times on magnons are given by 

I 
1 1 T e TjT + e-x 

-,--=--1 In 1 , 
t,.(x) t1 T1 eT{T _ 1 

(22) 

while on,phonons, the relaxation times are given by 

The tern peratures T 1, T i( T L T! ) are analogous to the 
temperature T 0 in the case of s-d scattering and are 
determined by the minimum magnon (phonon) energy 
capable of transferring an electron from the s- to the 
d-band at the Fermi surface. The times t 1 and t 2 are 
constants characterizing respectively the magnitudes 
of the electron-magnon and electron-phonon interactions 
in s-d scattering. 

The time thh(x) and tbh(x) are even functions of x. 
Therefore, s-d scattering by magnons alone, as can be 
seen from (4), leads to a vanishing thermal emf. In the 
case, when, apart from this mechanism, s-s scattering 
by magnons is important, s-d scattering plays a role 
similar to scattering by magnetic impurities if TJ 
;.e TL i.e., thh ;.e tbh· Then the thermal emf is given by 
an expression similar to (8). Since now the effective 
times Tf and Tj depend on temperatures, the tempera
ture dependence of the thermal emf, generally speaking, 
differs from the dependence that obtains in the case of 

magnetic impurities. For s-d scattering by magnons, 
the sum ut( x) + u 1 ( x) is not an even function of x if 
T1 ;.e Tf. Consequently, in this case, s-d scattering by 
magnons alone can lead to a large thermal erne>. 

Furthermore, in conjunction with s-s scattering, 
s-d scattering by magnons as well as by phonons can 
play a role similar to magnetic impurities, which also 
leads to a large thermal emf with a temperature de
pendence different from the case of magnetic impuri
ties. 

2. COMPARISON WITH EXPERIMENT 

In the paper by Farrel and Greigr6 J (henceforth re
ferred to as FG), results are given of the measurement 
of the thermal emf of pure Ni and Ni containing vari
ous magnetic impurities in the temperature range from 
liquid helium temperature to 100°K. 

Let us now compare our results, obtained in[ 5J and 
in the preceding section of the present paper, with the 
experimental results of FG. 

In the first place, it cannot but be noticed that the 
magnitude of the thermal emf measured by FG, as
sumes, in agreement with the theory, large values at 
comparatively low temperatures. For example, in Ni 
with 1 at.% of Co, the thermal emf at 50°K is equal to 
16 J..L V/"K. The sign of the thermal emf in all the sam
ples with impurities coincides with the sign given by 
formula (8)3>. 

The theoretical temperature dependence of the 
thermal emf (see Figs. 1 and 2) is similar to the ex
perimental one, and in both cases the absolute value of 
the thermal emf, for not too large impurity concentra
tions, has a maximum in the considered temperature 
range; up to the peak, the thermal emf increases 
rapidly with temperature, while after the peak its rate 
of decrease depends on the impurity concentration-the 
higher the concentration the slower the rate of de
crease. At low temperatures the experimental thermal 
emf, like the theoretical one, decreases as impurity 
concentration increases while at high temperatures it 
increases with concentration, so that the curves a ( T) 
corresponding to different concentrations intersect. 

Thus, all the main features of the thermal emf 
which follow from the theory are in complete qualita
tive agreement with experiment. For quantitative com
parison of the results of the theory with experiment, it 
is necessary to know the parameters r, {3, y, and T0 • 

The values of r obtained by Farrel and Greig for 
the same samples for which they measured the thermal 

2> Attention was first called to this by Markov [ 10] . Markov took 
into consideration s-d as well as s-s scattering. However, he neglected 
the difference between electrons with spins t and t; in this approxi
mation, the contribution of s-s scattering by magnons to the thermal 
emf is only of the order of (k/e)(kT/EF ). Moreover, since T 1 t is then 
equal to T1 ~, s-d scattering gives a thermal emf of the same order. 
Markov obtained a large thermal emf in this situation because he calcu
lated the contribution to the thermal emf connected with only one 
group of carriers (tor,!-); he did not take into account the contribu
tion from the second group which is equal in magnitude but of oppo
site sign. 

3lThe designations t and t have in our work a meaning opposite to 
that in FG. 
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emf, are given in: 6• 111 • We use the quantities T0 , {3 and 
y as fitting parameters for the experimental a ( T) 
curve for the Ni + 5 at.% Fe sample which, in the FG 
experiments, had the highest residual resistance. This 
sample has been chosen by us for the following reasons. 
First, electron scattering by nonmagnetic impurities 
and into the d-band, which we did not consider, was 
least important for this sample. Secondly, scattering 
by magnons into the s-band can, for small Tt and Tl, 
be considered in a wide range of temperatures with the 
aid of perturbation theory. Since, as we have already 
noted, the expression (13) obtained by us in this limit
ing case for the thermal emf coincides with the result 
obtained by perturbation theory, the errors in the de
termination of T0 , {3 and y, connected with the approx
imate character of the method employed in this paper 
for the solution of the kinetic equation, are reduced. 

For the curve 1a in Fig. 3, {3 = 14, y = 0. The experi
mental points for the sample with 5 at.% of Fe lie on 
the theoretical curve for To = 25. The theoretical 
curve 1 constructed for {3 = 13, y = 0.12 shows the 
same good agreement with experiment. (The Debye 
temperature for Ni is TD = 410°K[ 121 .) The value T0 

= 25°K is close to the theoretical estimate which may 
be obtained by relating bop to the difference in the 
population of the sub-bands of the s-electrons with 
spins + and f. Such an estimate is the most reliable 
since no concrete model for the electron spectrum is 
involved in its derivation. We have 

T, = (6:rt')'1• n'n?' ( nt- n:) '. (24) 
9 2~t nt 

For Ni with 1J. = 0.8 x 10-26 g[ 13l, nt = 0.3 electron/atom, 
nt- n1 = 0.05 electron/atom18 l, we obtain To RJ 24 °K. 
We note that according to[ 14 l, To RJ 22-27°K for Fe. 

In order to determine {3 for the samples with 2 and 
0.5 at.% Fe impurities, which were investigated by FG, 
we shall assume {3 to be proportional to the residual 
resistance. Then, according to FG, we obtain for the 
sample with 2 at.% Fe the value {3 = 5.6 when y = 0; 
or {3 = 5.2 when y = 0.12, while for the sample with 0.5 
at.% Fe, {3 = 2.3 and {3 = 2.2 respectively. Like FG we 
suppose here that the parameter r is the same for all 
samples, although, judging by the experimental data of 
FG, r is apparently different in samples with different 
iron concentrations. 

In Fig. 3 the curves 2a and 3a were plotted with 
y = 0, {3 = 5.6, and {3 = 2.3 while for the curves 2 and 
3, y = 0.12, {3 = 5.2 and {3 = 2.2; the light and dark 
points are experimental points for T0 = 25°K. 

Figure 4 shows theoretical and experimental curves 
for a Ni sample with 0.3 at.% Cu. The parameter 
r = 3.68. The parameter {3 was found by recalculation 
from the residual resistance, {3 = 2.5. 

The theoretical curves are similar to but lie be
neath the experimental curves, i.e., the dependence of 
the thermal emf on the impurity concentration is 
weaker than that predicted by the theory. On the theo
retical curves, in contrast to the experimental ones, 
the thermal emf at the peak increases as the impurity 
concentration decreases. The same is true for Ni 
samples with other magnetic impurities investigated 
by FG. 

On the whole, considering the approximate charac-

./ 8 

-q 

-8 2 

- !2 

-!5. 

-ZOL~----------------~ 
"Y/'K 

FIG. 3 FIG. 4 

FIG. 3. Theoretical and experimental thermal emf as a function of 
(8) = T/T0 for Ni with Fe impurities, r = 7.35. The theoretical curves I, 
2 and 3 correspond to {3 = 13, 5.2 and 2.2 respectively and were con
structed for 'Y = 0.12; for the theoretical curves I a, 2a and 3a, {3 = 14, 5.6 and 
2.3 respectively, and 'Y = 0. The experimental curves for the samples Ni 
+ 5% Fe (x), Ni + 2% Fe (0) and Ni + 0.5% Fe (0) were plotted with T 0 

= 25°K. 
FIG. 4. Theoretical and experimental thermal emf as a function of 

(8) = T/T 0 for Ni + 0.3 at.% Cu. For the theoretical curve I, r = 3.68; 
{3 = 2.5 and 'Y = 0.12. The experimental curve 2 was plotted with T 0 = 
25°K. 

ter of the calculation and the unreliability of the 
parameters taken from experiment, we can regard the 
agreement of the theory with experiment as good. 

The good agreement of the theory with experiment, 
obtained in the present paper, serves as a conclusive 
confirmation of Fert's view[ 14J that the main contribu
tion to electron scattering with spin flip is made by 
magnons. 

Let us point out a number of causes to which may 
be due the disagreement of the theory with experiment. 

1. The kinetic equations were solved approximately. 
The largest error should be expected in the tempera
ture range in which the thermal emf is a maximum. 

2. The values for the parameter r taken from[u,sJ, 
were determined on the basis of a very crude theory of 
the electrical conductivity of ferromagnetic metals and, 
hence, are unreliable. Thus, for the alloys Ni-Fe and 
Ni-Co, according to[u,sJ, r = 7.35 and 13.2 respec
tively while according to[ 15l, r = 20 and 30. Moreover, 
we have already mentioned that under the conditions of 
the experiment of FG, the quantity r apparently de
creases with the concentration of magnetic impurities, 
which may be explained by, say, the presence of un
controllable impurities. If such a decrease of r is 
taken into account in the construction of the theoretical 
curves in Fig. 3, then the agreement between theory 
and experiment improves considerably. 

3. Formula (8) gives for pure Ni a vanishing thermal 
emf to within the small terms which were discarded in 
the kinetic equation. At the same time, the experimen
tal values for the thermal emf in pure Ni are only 
2-3 times smaller than in samples with Fe, Co, and 
Cu impurities. The relatively large thermal emf in 
pure Ni may be related to the scattering of electrons 
into the d-band by phonons or magnons discussed in 
the preceding section. This same mechanism may lead 
to a weaker-in comparison with (B)-dependence of the 
thermal emf on the concentration of the magnetic im
purities. 
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3. THERMAL CONDUCTIVITY 

To calculate the thermal conductivity, we must add 
a term proportional to VT to the right hand side of (2). 
Solving this system by the same method as was used 
in Sec. 1, we obtain for the thermal conductivity the 
following expression: 

x-• =~-1-{ 1 +_.!._ B(8) Tt +-rl +_.!._ Tt +-rl 
LT, k8 2 C(8) t, 2 t~ 

n' 'tt+-rl 
+ 3 [2t, + C(8) (-rt + -r,)]C(8) 

+_!_(Tt-Tl)' t,+D(8)t~ } 
4 . [t,Tt't• + 'f,t,t~('tt + 'tt)+ D(8)'tt'tlt~] 

{ 1 ea Tt-'tl }-' 
X . -k 2t,+C(8)(-rt+-r1) ' 

where Po is the residual resistance of the sample 
L = rr 2 k/ 3e is the Lorentz number, and 

(25) 

D (8 ) = 4n2K,(8) + K3 (8) = { 618 , 8~1 
BK. (8) l2+3;t-•~ (3)+2ln e, e "?>1. (26) 

The thermal emf o: ( 8) and the functions B( 8) and 
C(8) are given by the formulas (8) and (9). 

The first three terms in the numerator of the right 
hand side of formula (25) are thermal resistances due, 
respectively, to scattering by impurities only, by mag
nons only 4> and by phonons only. The rest of the terms 
as well as the denominator lead to deviations from 
Matthiessen's rule. 

Let us emphasize that Matthiessen's rule is also 
violated in the case when the impurities are nonmag
netic, i.e., T t = T 1 = T. In that case 

x-•-~-1-{1 B(8) ~ _2_ ~ 't } (27) 
- LT, k8 + C(8) t, +\ph+ 3 C(8) [t, + C(8)-r] . 

The deviation from Matthiessen's rule is due to the 
third term on the right hand side of this formula. 

The violation of Matthiessen's rule in Ni containing 
magnetic impurities was observed by Farrel and 
Greigr 17 l, who gave a formula for the deviation from 
Matthiessen's rule for thermal resistance in analogy 
with the deviation for electrical resistance, correspond
ing to the fourth term in the numerator of formula (25 ). 
This would have been correct if the collision integral 

4>Thermal conductivity due tos-s scattering of electrons by magnons 
have been calculated in [2 ·16]. 

for electrons with magnons could be represented in 
the form (ut - u1 )/tu. Such an approximation is satis
factory for the calculation of electrical conductivity 
when the dependence on x of Uf and u1 may be neglected, 
but it is not suitable for the calculation of the thermal 
emf and thermal conductivity. Therefore, according 
tor 17 l, the deviation from Matthiessen's rule for thermal 
conductivity is valid only in the case of magnetic impuri
ties, whereas in fact, as can be seen from (27), 
Matthiessen's rule is not fulfilled in the case of non
magnetic impurities as well. 

Comparison of the expression (25) with experiment 
is difficult since the electron part was not separated 
from the total experimental thermal conductivity in[ 171. 

The authors are grateful to V. P. Lazarenko for his 
help in the numerical computations. 
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