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The possibility of locally reducing the ordering parameter f in superconductors by means of irradi­
ation and of creating in this way a controllable Josephson element is studied theoretically. One­
dimensional equations describing the system are derived on the basis of the familiar time equations 
for f. The critical current Ic is calculated for various values of the wave intensity and size of the 
region of action of the wave. The calculation is also applicable to S-N-S and S-s' -S systems near 
the S and N (or S') transition temperatures. It is shown that the de Gennes method for determining 
Ic is not always correct. 

1. INTRODUCTION 

IN the last few years, time-dependent generalizations 
of the Ginzburg-Landau equations[l-4 1 could be obtained 
for a number of cases. These equations make it possi­
ble, for example, to investigate the question of the non­
linear interaction of radiation with a superconductor, 
and particularly to solve the problem of the destruc­
tion of superconductivity by a microwaveC 2 • 3 • 5• 6 l, In the 
present paper, the possibility of a local decrease (over 
distances L on the order of the coherence length ~) 
of the ordering parameter 6. in superconducting films 
with the aid of irradiation is considered theoretically, 
and the critical Josephson current Ic in such a system 
is calculated. The study of such a system is appar­
ently of interest, since its experimental realization 
yields a Josephson junction with parameters that can 
be continuously varied by adjusting the wave intensity 
A (for example, Ic = Ic(A)). In addition, the Josephson 
Effect in such a system is described by relatively 
simple one-dimensional equations. With the aid of 
these equations it is possible, in principle, to follow 
(if we are interested, for example, in the change of the 
form of the current-voltage characteristic I( V)), the 
transition from strong coupling (the change of 6. under 
the influence of the irradiation A is small: 6.(A) 
>;;; 6.(0)) to a weak coupling of the superconductors 
(6.(A) « 6.(0)), and also the transition from the 
Josephson case of weak coupling ( L >;;; 0 to the case 
of vanishingly weak coupling (L » 0. 

2. THE SYSTEM UNDER CONSIDERATION 

A possible experimental realization of the system 
under consideration is shown in Fig. 1. The system 
consists of a metallic (normal or superconducting) 
screen, in which a narrow slit of width 2L is cut 
(L >;;; ~ >;;; 1 J.J.); at a distance di from the screen is 
placed a super conducting film, separated from the 
screen by a insulator layer (for example, an oxide 
film). The requirement concerning the thickness of 
the superconductor de will be formulated below. We 
note at present that since the length of the incident 
microwave is A » L, the field of the wave will act on 
the superconductor in a band of width ~ L, if di and 
the thickness of the screen do not exceed 2L. This 
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requirement follows from the fact that the field of the 
incident wave is concentrated near the aperture at a 
distance no larger than L from the aperture [7 1, On the 
other hand, if A « L (the visible band), then the thick­
ness of the screen and the distance di can be arbi­
trary. 

3. FUNDAMENTAL EQUATIONS 

We start from the Gor'kov-Eliashberg equationC2l, 
obtained for gapless superconductors with large con­
centration of paramagnetic impurities ( TsTc « 1, Ts 
is the free path relative to spin flip). In this case at 
sufficiently low frequencies ( w $ Ts I 6. I 2 ) the changes 
of 6. with time are described by an equation of the dif­
fusion type. In other cases (low concentration of the 
paramagnetic impurities, strong magnetic fields), the 
situation turns out to be more complicated[3• 4l, 

We shall, however, use the equations obtained inC 2l, 
since it is desirable to have simpler equations for a 
qualitative explanation of the changes (for example, the 
form of I( V)) occurring on going from weak to strong 
coupling. In addition, we confine ourselves to an in­
vestigation of the stationary Josephson effect, and the 
equations that describe this effect will have the same 
form in all the investigated cases[l-4 • 81, 

The Gor'kov-Eliashberg equations in dimensionless 
variables are of the form 

12i + f(f' -1) - £'\/'f + v'f ;= 0, 
12/'(x +<D) + £ div(vf') = 0, 

.SL' rotrotv = -v- £\/(X+ <D)- /'v. 

(1) 

Here f = I 6./ A0 I is the dimensionless amplitude of the 
ordering parameter, 6. 0 = JTv'2(T~- T 2 ) is the equili­
brium value o~ the ordering parameter, x is the phase 
of 6., 6. = 6. 0e 1X, ~ = v'12Dt0 is the coherence length, 
D isthediffusioncoefficient, t0 =(2rs6.~r\ v= A/A0 

- ~vx, A0 = cfi/2e~, and oL = 4no/c 2 t 0 • The time is 
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measured in units of t 0, the current in units of 10 

= aA0 /ct0 , and the potential in units of <1> 0 = li/2et0 • 

The last two equations of the system (1) describe 
the penetration of the field into the superconductor. At 
a sufficiently high frequency of the wave ( w » 1, 
w-dimensionless frequency of the field), the last equa­
tion of (1) describes the normal skin effect, and to find 
the v( r, t) dependence it is necessary to solve this 
equation with the boundary conditions for the system 
in question. Owing to the complicated geometry of the 
system, the distribution of the alternating field will 
also be complicated. However, the exact distribution 
of v( r, t) is of no interest to us, and we approximate 
the dependence v(r, t) by assuming that 

v(r, t) = { v~(t), lxl < L. 
0 , lxi>L 

The independence of v~ of y denotes that de «: dsk, 
where dsk is the skin length in the superconductor. 

(2) 

Let us estimate now what should be the character­
istic amplitude of the field E for an appreciable de­
crease of f and how the field in the superconductor is 
connected with the field of the incident wave. If 
L » Osk, then the change of the field along the super­
conductor over the skin length will be small. There­
fore the problem of the penetration of the field becomes 
planar, and to estimate the characteristic E we can 
use the well-known results (see[ 2 • 6 l). The characteris­
tic field will be the smallest if[eJ 

In this case the wave passes through the film, and the 
critical field is Ec ~ liw/ e~ (for such a field, v ~ ~ 1, 
see (1 )). If (I) is not satisfied, then the wave experi­
ences strong reflection from the film. Therefore the 
field on the surface of the superconductor decreases 

(I) 

(by a factor dcc/o 2w) and accordingly the power neces­
sary for the destruction of the superconductivity in­
creases. Let us present also an estimate for the con­
nection between the field E in the superconductor and 
the incident field Einc· This is easiest to do by assum­
ing that (I) is satisfied. Then the film disturbs the 
field of the incident wave very little, and the field re­
mains practically the same as in the absence of the 
superconducting film. In the case of a-polarization 
(Einc 11 z) we have E/Einc ~ Lw/c[7 J. In the case of 
p-polarization ( E 1 z) we have E/Einc ~ ( c/Lw) 
X [ln ( c/Lw W1 [ 71. It is clear that the p-polarization is 
preferable, for in this case it is easy to make the field 
E in the superconductor strong. In addition, in the 
case of p-polarization the magnetic field of the wave 
is parallel to the plane of the film and no eddies can 
be formed. 

Summarizing, we can state that it is more conven­
ient to use a screen with large conductivity (then the 
skin layer in it will be thin and consequently it is pos­
sible to use a screen of small thickness) and a super­
conductor with low conductivity (to alternating current). 
The latter means that the superconductor will be more 
transparent for the field, and the intensity of the 
characteristic field Ec will be sufficiently small. 

Thus, let us consider a superconductor of small 
thickness (the condition de « { lisk, ~}) is satisfied) 
into which a field (2) penetrates locally. For frequen-

cies w larger than the reciprocal relaxation time t(/ 
of the ordering parameter, the penetration of the field 
is determined in this case by the skin effect, and the 
oscillating part of f will be small ( L ~ v~/ w )[ 21. 
Assuming further that w is much larger than the fre­
quency of the Josephson oscillations, and averaging 
the first two equations of the system (1) over the 
period of the wave, we obtain 

12i+/(f-1) + (v.'+v'(x))f-~' a'f/ax'=O, 

iJ 
12f(x +<D)+ sa;-(v,f') = 0. 

Here f = ( f + f~ ) , the angle brackets denote the 
averaging over the period of the wave, and v2(x) 
= (v~(x, t)). We have separated in explicit form the 
velocity vT, which corresponds to the transport cur­
r.ent. Terms of the type ( f~) have been omitted be­
cause they are small. The field corresponding to the 
Josephson oscillations is assumed to be quasistation­
ary and described by a potential <I>. Equations (3), in 
which 

v'(x)= { v~'lxl < L 
0, lxi>-L' 

describe the system under consideration. 

4. CALCULATION OF THE CRITICAL CURRENT 

(3) 

(4) 

Let us analyze the stationary effect, i.e., f = x = <I> 
= 0. We then obtain from the second equation of (3) 
VTf2 = j = const. Substituting this value of vT in the 
first equation of (3 ), we obtain l) 

!" + f( 1 - v' (x)) - j' I!'-!'= 0, (5) 

where the prime denotes differentiation with respect to 
the dimensionless coordinate !; = x/~. The boundary 
conditions for Eq. (5) consist of homogeneity of f far 
from !; = 0, i.e., as follows from the equation itself, 

r:~ = 1- ;•tt~~· (6) 

In Eq. (6) it is necessary to choose the larger root; the 
smaller root corresponds to a metastable state of the 
superconducting film with the current. In addition, we 
shall find it necessary to have the matching conditions 
at I xI = L (i.e., !; = l, where l = L/ 0. They are ob­
tained from Eq. (5) itself by integrating over an in­
finitesimally thin layer ( Lo, l.o) and consist in the 
requirement of continuity of f and f': 

[f) 1~1=1 = 0, [f) 1~1=1 = 0, (7) 
where 

[fh=z=/(l+O) -f(l-0). 

We note that Eq. (5) also describes the structures 
S - s' - S at ( 1 - v2 ) > 0 or S - N - S at ( 1 - v)2 

< 0 near T ~ Ts ~ Ts' or T ~ Ts ~ TN ( Ts, Ts', 
and TN are respectively the critical temperatures of 
the superconductors S and s', and also of the normal 
metal N). If it is assumed that the metals S, s', and 
N differ only in their critical temperatures, then the 
matching conditions (7) remain valid also[9 l, and the 
coefficient of the second term in (5) is equal to 1 - v2 

= (T - Ts')/(T- Ts) (S- S' - S structure) or 1 - v2 

= (T- TN)/(T- Ts) (S- N- S structure); all the 

!)Note added in proof (22 February 1971 ). An equation similar to 
(5) was investigated in the recently published paper [ 13). 
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measurement units defined in (1) pertain to the super­
conductor S. With these stipulations, the results ob­
tained below pertain to both the s - s' - s and 
S - N - S structures. 

Let us integrate (5) once in each of the regions 
(I ' I > l) and (I ' I < l): 

f'' + u (f) = Uo, I~ I > l 

f'' + W(f) = W 0, !~! < l. 
Here 

U(f) = !'- 'M' + i'l /', 
W(f) = /'(1- v') - 'fd' + i'l f, 

(8) 

(9) 

Uo = U(f00 ), and f00 is determined by Eq. (6), i.e., the 
constant U0 is chosen such as to satisfy the boundary 
conditions (6); W0 = W(f(O)), since by virtue of the 
symmetry of the solution f( {;) we have at {; = 0 the 
quantity f' = ..JW0 - W(f(O)) = 0. 

Using Eqs. (8), we can find the critical current jc 
as a function of the field of the wave v and the width 
of the gap in the screen l. To this end, let us consider 
Eqs. (8) with {; = l and subtract one from the other. 
Taking into account the explicit form of U and W, and 
also the matching condition (7), we obtain 

v'f'(l) = Uo- Wo. (10) 

This equation contains the unknowns f(l ) and f( 0) 
(since W0 = W(f(O))). A second equation for these un­
knowns is obtained by using the equality 

I 1(1) df 
l = s d~ ~ s -, . (11) 

0 1(0) f 
The equality (11) can be rewritten by substituting f' 
from the second equation of the system (8) and using 
the explicit form of W(f) (9). Then 

t, 

l,= s df = 
1, l'Wo- W(f). 

=V--2 -F{arcsinVg,-go y.g,-g,} (12) 
go-g, g,- g, go-g, 

for go> gl > g2. Here g = f2; g0 , g1, and g2 are the 
roots of the equation g[W( ,fg)- W0 ] = 0, g0 = e(o), 
and F is an elliptic integral of the first kind [wJ. 

Equations (10) and (12) are algebraic equations with 
respect to f0 and fz = f(l ). Finding the solutions of 
these equations we can, in principle, determine the 
critical current jc, which is the maximum value of j 
at which the solutions (10) and (12) exist. Such a prob­
lem can be solved for arbitrary values of l and v 
only numerically. We shall therefore consider analytic­
ally only the most interesting particular cases and 
analyze the solutions qualitatively. We note that for a 
qualitative analysis of the solutions (8) it is convenient 
to consider the phase plane (f, f') (see Fig. 2a). The 
solution of equations (8) is mapped (for v2 < 1) by the 
phase trajectory DABC, with the trajectory ADC, de­
fined by the first equation of (8) and passing through 
the saddle point" D representing the solution at I ' I 
> l, while the trajectory ABC, defined by the second 
equation of (8), represents the solution at 1 '1 < l. The 
condition (10) denotes that at f = f1 the trajectories 
intersect. On the other hand, the condition (11) con-

p' a b 

0 

l -

< 
FIG. 2. Phase trajectories on the (f, f') plane and the corresponding 

dependence of the solutions f of the system (8) on the coordinate r for 
two values of the current: j 1 (a) and j 2 > j 1 (b). 

nects the "length" of the trajectory AB with the 
dimension l. 

In order to understand the conditions that must be 
imposed on v2 and l in order to obtain an analytic solu­
tion, let us consider first the case when there is no 
current. Then we can obtain from (10) and (12) the 
dependence of f 0 on v2 at different l. In the absence 
of current (j = O) and {; =±co we get f 00 = 1 (see (6)), 
and therefore U0 = 7'2 (see (9) and the definition of U0 ). 

Using this value and the explicit form of W(f0 ) (9), we 
rewrite (10) in the form 

v' (g, I g,- 1) = 112g0 - 1 + 'l2g,. (13) 

We are interested in the case when the irradiation 
decreases f0 strongly and there is actually a weak 
coupling, i.e., g0 = f~ ~ 1. Then in the right-hand side 
of (13) we can neglect the last two terms: 

v'(g, I go -1) = 1l2g,. (13') 

We turn now to Eq. (12). In the absence of current we 
obtain gl = O, g2 = -[g0 + 2(v2 - 1)]. 

Let us consider the asymptotic form of F in (12) in 
different cases. Let 

lg,l~go, g.( (go-g,)~min {1, lyg,-g,}. (14) 

Under these conditions the elliptic integral in (12) re­
duces to the hyperbolic arc cosine of gz / g0 [lOJ. We 
then obtain from (12) 

g,l go =ch'(ll'li- v'!). 

Substituting this ratio in (13' ), we obtain the depend­
ence of f 0 on the intensity of irradiation 

Using the obtained expressions (15) and (16), we can 
easily verify that conditions (14) are satisfied if 

(15) 

(16) 

l ~ 11 v' ~ 1. (1 7) 

Then (15) and (16) can be approximately rewritten in 
the form 

j(0)=112vsh(vl), t.ff,=ch(vl). (18) 
It follows therefore that in the case of a broad gap 
( l >> 1) f 0 is exponentially small and decreases with 
increasing l like e-vl, if the field of the wave greatly 
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exceeds the characteristic value Ec ( v » 1 ). For a 
narrow gap, however, (l « 1/v) we have f0 ~ l/lv2 • 

In the other limiting case 

(19) 

we obtain from (12) 

f, = z-1K(1 IP->. 
where K is the complete elliptic integral of the first 
kind. The value fz = ..fgz is obtained from (13'): 

f, = 1 I v}'f."" 

The conditions (19), and also the condition for the 
smallness of f0 , are satisfied if 

1~1~1ll'l1-v'l. 

(20) 

It is then seen from (20) that on the edge of the slit of 
the screen fz = 1//2, and at the center at 1; = 0 it de­
creases with increasing l in accordance with a power 
law. 

It can also be shown that when 1 « 1/ .f1::V2 « l 
we have 

i.e., the dependence of f0(v) is the same, with expo­
nential accuracy, as in the case of an infinitely broad 
slit. 

It follows thus from the presented expressions that 
if the dimension of the gap in the screen is smaller 
than ~ (i.e., l < 1), then to obtain an appreciable de­
crease of f it is necessary to have fields that greatly 
exceed the characteristic field Ec = tiw/ e~. For a 
broad slit ( l » 1 ), f0 decreases significantly at 
v l'::j 1, i.e., at E l'::j Ec. 

Let us consider now the situation when a current j 
flows through the film. We analyze first the case of 
large v, when in the absence of current the expres­
sions (18) are valid and f0 « 1. So long as f0 is small, 
the critical current is also small (this is confirmed by 
the final result). In this case we can obtain for the 
roots gi in (12) approximately g1 = -j 2/v2 g0 , g 2 

= -2v2 • In a limit analogous to (14), i.e., when the 
second argument in F is close to unity, we obtain in 
analogy with the current-free case 

g, I g, = ch'(lv) + (j' I v'g,')sh'(lv). (21) 

Equation (10) at small f0 takes the form (compare with 
(13')) 

v'(g, I g, -1) = 1 I 2g,- j' I g,'. (22) 

Substituting the expression (21) in (22), we obtain 

fo' = fc'[1 ± }'1- i' I i.']. (23) 
Here 

fc= [2vsh (lv)]- 1, ic=/cl2ch (lv) = [2vsh (2/v)]- 1• 

Thus, one value of the current corresponds to two 
values of f0 , and consequently to two solutions f(x). 
One value decreases with increasing current from 
-./ 2fc to fc, and the second increases from zero to fc. 
The first solution, as will be shown below, corre­
sponds to a phase difference of zero for the ordering 
parameter (as j - 0), and the second to a phase dif-

ference 1r (as j- 0). A similar situation takes place 
in a point contact, when in the resistive state f(x, t) 
oscillates in time, varying between the minimal and 
maximal solutions which can be obtained by letting 
j - o[llJ. 

In dimensional form, the critical current is given by 

Ic =!,A, I 2A sh (2LA I sAo), (24) 

where IoAo ~ A~ t(/ ~ C4 ~ ( T s - T )2 (in accordance 
with the notation of (1)), i.e., the critical current de­
creases when T- Ts like (<lT?. A similar depend­
ence on T is given by (24) also for the system S - N 
- S, for in this case, as already indicated, v2 

=(TN- T)/(T - Ts) (when v » 1) and (24) can be 
rewritten in the form 

(Ts-T)'h (TN-T)"' Ic=I,. ~N=s --
2(·T-TN)'"sh(2L/sN) T-T. · 

In the case of a broad slit in the screen ( l » 1) we 
shall carry out an analysis of the solutions by consid­
ering the phase plane. When v2 < 1, the phase trajec­
tories have the forms shown in Figs. 2a and 2b, re­
spectively, for the two values of the current h < h 
and h l'::jjc· Indeed, when l » 1, Eq. (11) can be satis­
field only in the case when the trajectory passes near 
the singular saddle point E, since near E the trajec­
tories are determined by the expression 
f' = ± ,f ( f - fE )2 ± {3 2 • We see that there are two such 
trajectories: r 1 (the minus sign under the root in the 
expression for f') and r 2 (the plus sign). The solu­
tions f( x) corresponding to r 1 and r 2 when j < j c 
will be close to each other everywhere except in the 
segment 1 x 1 ;S; 1 (Fig. 2a). With increasing j, the loop 
on the phase trajectory becomes compressed and 
vanishes at j = j 0 , and the singular points 0 and E 
merge (Fig. 2b). This value of the current will be 
critical for l- ao, since when j > jo the second equa­
tion of (8) has no singular points. The current jo is 
determined from the equalities awjaf = a2 wjae = 0 
and is equal to the critical current for a homogeneous 
irradiated film 

2 
io = --:::=( 1- v')'1•. 

3l'3 

It is easy to obtain the correction for j 0 , connected 
with the finite dimension of the aperture in the screen 
l. To this end it is necessary to take into account the 
fact that when j > j 0 the two roots g 1 and g2 in (12) 
are imaginary. We present the result: 

ic = io + 1 I 1'(1- v2 ) •;,_ 

Let us calculate, finally, the connection between the 
current through a junction with a phase difference cp, 
and confine ourselves to the case of a narrow slit 
(l « 1). We have 

, dx , i 
<p= s-d~=s-d~. 

1 d~ 1 /' 

(25) 

Here the points 1 and 2 are located near ~ - - ao and 
1; - +ao, where f is practically independent of the co­
ordinates (j « 1). At these points we have from the 
second equation of the system (3) 

'Xu+ <D,,, = 0. 

Calculating the difference of these equations 
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<P=V, (26) 

we obtain a relation between the time variation of the 
phase difference cp and the potential difference V. In 
the considered case of small currents, Eq. (25) can be 
rewritten in the form 

cp""' 'sa~ (_j_- _j_) 
, I' I 00, 

~ '~ 
j j df j j df 

=Z ~ (7'-t:')r+zl(r--t:'h' 
(27) 

Using expressions (21) and (23), we can easily verify 
that at sufficiently small l (l v « 1) the contribution 
to cp ~ rr/2 from the first integral can be neglected, 
i.e., the phase difference on the slit of the screen it­
self (or on the N layer, if we speak of the S - N - S 
system) is negligibly small. Substituting in (27) f' 
from the first equation of (8 ), we obtain 

j = ic ~in cp, (28) 

where jc is defined in (23). Thus, in the case of a suf­
ficiently narrow slit we have a situation typical for a 
Josephson junction, when Eqs. (26) and (28) are valid. 
We note the following circumstance. Usually the 
S - N - S system is regarded on the basis of the 
de Gennes method[l2 l, according to which the current 
through the junction is connected with the phase differ­
ence on the N layer, and j c is expressed in terms of 
f(O). To find f(O), one neglects the dependence of this 
quantity on j, this being attributed to the smallness of 
j (in the dimensionless form j « 1). However, our 
analysis shows that this method is not always correct. 
We have found that cp in (28) is the change of the phase 
not ins ide the region of action of v, but outs ide it 
(i.e., outside the N layer), at a length on the order of 
1;. This is connected with the fact that the smallness of 
j compared with the critical current of the non­
irradiated film still does not mean that f( 0) is inde­
pendent of j, since f( 0) itself is small. 

In conclusion, we note that to observe the effect, the 

condition de « lisk is not significant. In fact, when 
lisk « 1;, the change of f under the influence of the 
light occurs over a length 1;, in spite of the fact that 
the wave penetrates only in the near-surface region. 
Therefore f will decrease upon irradiation, remaining 
constant over the thickness of the film when de« 1;[ 31 • 

To ascertain the form of the current-voltage char­
acteristic it is necessary to solve the time-dependent 
equations (3 ). 
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