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The wavefunctions and electron excitation spectrum in the normal layers in a superconductor in the in­
termediate state are found taking account of the coherent phase difference between the superconducting 
regions, which compensates the increment in the vector potential of the magnetic field on passing 
through the normal layers. The quantum absorption coefficient for a longitudinal sound wave propagating 
along the normal layers perpendicular to the magnetic field is calculated. The absorption displays char­
acteristic oscillations due to magnetic quantization of the normal excitations. These oscillations are 
periodically modulated in frequency and amplitude. 

THE phase relations for the complex superconducting 
order parameter for electrons leads to a whole series 
of distinctive phenomena in superconductors: magnetic 
flux quantization, llJ Abrikosov's singular vortex lines 
in the mixed state,l 2 l and the Josephson effect.[ 3 J As 
was shown by one of the present authors,l 4 J the coher­
ent phase difference, established in the presence of a 
magnetic field, between two superconductors separated 
by a layer of normal metal leads to a special magnetic 
quantization of the electron excitations in the normal 
layer, with energies less than the magnitude of the en­
ergy gap in the superconductors. These excitations, 
according to Andreev,l 5 l do not penetrate into the su­
perconducting regions and are reflected from the bound­
ary interface, the electron undergoing a transition to a 
hole and vice versa. In the absence of a magnetic field 
this leads to quantization of the excitations l 5 J trapped 
in the normal metal layer. 

In a magnetic field the increment in the vector poten­
tial on passing through the normal layer (LiAy = HL, 
L is the thickness of the layer) must be compensated in 
the phase of the order parameter in such a way as to 
ensure that the superconducting current and the mag­
netic field are zero in the interior of the superconduct­
ing regions. Taking account of this phase difference in 
the wavefunctions being reflected from the boundaries 
of the normal excitations changes the pattern of the 
quantization and leads to the result that the difference 
between the energy levels is equal to eH/m (ti =' c = 1) 
even when the layer thickness is small compared with 
the radius of the electron orbit in the magnetic field 
(eHL/PF << 1, e is the electron charge and PF is the 
Fermi momentum), and Landau diamagnetic quantiza­
tion cannot occur. In essence this effect is close to the 
well-known Aharonov-Bohm effect,l 6 l in which a shift 
is observed in the interference pattern obtained from 
two coherent electron beams as the magnitude of the 
magnetic flux penetrating the space between the beams 
is changed. 11 

1lin [7] the Aharonov-Bohm effect is taken into account in a calcu­
lation of the scattering of electrons by Abrikosov's vortex lines. 
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The magnetic quantization being considered should 
lead to a whole series of singularities (of the de Haas­
van Alphen oscillations [s J type) in the different kinetic 
coefficients, and this enables us to investigate experi­
mentally both the phenomenon itself and the distinctive 
features of the energy spectrum of the electrons in the 
metal. From this point of view, the most convenient 
research tool is the quantum absorption of ultrasound, 
which penetrates easily into the interior of the metallic 
sample. The purpose of this paper is to calculate the 
absorption coefficient for ultrasound in a superconduc­
tor in the intermediate state, inasmuch as the interme­
diate state is the most natural realization of normal 
layers separated by superconducting regions. 

In a previous paper/ 4 J the magnetic quantization 
was examined in a basically qualitative way in the lim­
iting case eHL/PF - 0. To calculate the absorption of 
ultrasound in the intermediate state, we shall need elec­
tron wavefunctions and spectrum that are determined 
with greater exactness than in l 4 J. 

1. WAVEFUNCTIONS AND SPECTRUM 

In the notation of [ 4 l, the system of equations for the 
two-component wavefunction of the "electron-hole" pair 
excitation has the following appearance (the x-axis is 
directed along the normal to the layers, the y-axis along 
a layer and perpendicular to the magnetic field, and the 
z-axis along the magnetic field H, which is parallel to 
the interfaces of the layers; we consider one normal 
layer (O < x < L)): 

x<O: 

( f. (p., Pu• p,), L'i ) {IJl<(x, y, z)) = (ljJL(x, y, z) ) 
L'i, -f.(p., Pu• p,) \1Jl_1 (x, y, z) 8 ljJ_1 (x, y, z) ' 

0 <x <L: 

( f. (Px• Pu- $x;L, p,), 0 

0, -f. (p., Pu + $x/L, p, 
) ( ljJL(x, y, z) ) 

ljJ_.(x, y, z) 

= 8 (ljJ1 (x, y, z) ) , 
ljJ_1 (x, y, z) 

(1) 
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x>L: 

(~ (p.,, Pu- 11>, p,), Lle2i<I>u ) ("'' (x, y, z) ) 
Lle-•i<I>u, - ~ (p.,, Pu + 11>, Pz I!J_, (x, y, z) 

_ ('~'' (x, y, z)) 
- 8 1jl_1 (x, y, z) ' 

!l> = eHL, 
p,; 

!l=--, 
2m 

p= -tV, 

where ~ is the energy gap in the superconducting re­
gions. 

In view of the periodicity of the system (1) along the 
y-axis (y- y + 1r/<1> ), separating out the free motion 
along the z-axis we can represent the wavefunction in 
the form of an expansion 

ljl(x,y,z)= L,¢(x,v)exp[i(p,z+ky+2<Dvy)]. (2) 

after which, Eqs. (1) are rewritten as follows: 
x<O: 

(£ (Px• k + 2!l>v, p,)- 8, _ Ll ) ('ljl' (x, v)) = O, 
Ll, -~ (Pz• k + 2!l>v, p,)- 8 1jl_,(x, v) 

O<x<L: 

(£ (p.,, k + 2!l>v- <Dx!L, p,)- 8, 0 ) 

0, -6 (p.,, k + 2<Dv + <Dx/L, p,)- 8 

X ('ljl,(x, v)) = 0, (3) 
1jl_1(x, v) 

:c > L: 

(~ (Px• k + 2<Dv- !l>, p,)- e, Ll ) 

A, - £ (p.,, k + 2!l>v + !l>, p,)- e 

( 1jl,(x, v) ) _ 0 
X 1jl_1(x, v- 1) - · 

One of the basic inequalities to be used in the follow­
ing expresses the fact that in the intermediate state in a 
macroscopic sample L >> ~0 , where ~0 "' VF/ ~ is the 
coherence length in the superconductor. Here it is as­
sumed that the temperature T << ~ since it is in exact­
ly these conditions that excitations with energy E: > ~ 
are unimportant. Since the wavefunctions of excitations 
with energy E: < ~ fall away in the superconducting re­
gions in a length ~0 , the wavefunction in the normal lay­
er 0 < x < L plays the basic role. For this reason it is 
appropriate to exclude the regions x < 0 and x > L 
from the treatment by writing down effective boundary 
conditions for the wavefunction of the normal layer; 
these follow from the requirement that the wavefunction 
and its derivatives be continuous at the points x = 0 and 
x = L. With this aim, we shall consider the solution of 
Eq. (3) in the region x < 0: 

k + 2tllv~l'pp•- p,': 

k + 2!l>v < -yp,>- p,': 

( 1jl1 (x, v) ) ~ O; 
11>-•(x, v) 

( 'l'• (x,v)) = _L,A.(v) ( '~" )exp[(isp(v)+q(v))x], 
IJl-• (x, v) •~±• e 

p(v) ~ iP•'- p,'- (k + 2!l>v~) ~ ml' 1'.' _:_ e' I p(v), 
e'' = (e +lil'8'- e') I A. 

The characteristic phases associated with the motion 
of the "electron-hole" complex are of order mLE:/PF 

"' L/~0 >> 1,2> Therefore, in the expressions given, we 
can neglect the phase a, and in this case these expres­
sions yield the following simple conditions at the point 
·x = 0: 

IJ> 1 (0,v)= liJ-1 (0,v), 
cl d 

-lj),(O, v) = -d '1'-•(0,v). 
dx x 

(4) 

Analogous arguments show that the boundary condition 
at the point x = L has the form 

d d 
lj)1(L,v)=IJ>- 1 (L,v-1), dxlj),(L,v)=dxljl_,(L,v-1). (5) 

Because of the continuity of the function and its deriva­
tive, these boundary conditions (4) and (5) must be sat­
isfied by the normal-layer wavefunction, which, accord­
ing to (3), obeys the usual oscillator equations (0 < x 
< L): 

{px'- [p' + 2mae- (ki-f..! 2<Dv- a<Dx I L)']}~~J.(x, v) = 0, 

a= ±1, p =ip/- p,'. 
(6) 

A simple analysis of Eqs. (6) and the boundary condi­
tions (4) and (5) shows that the wavefunction in the nor­
mal layer for any x can be represented in the form 
(O <x < L) 

I!J,(x, v) = u(k + 2!l>v- !l>x I L), 1Jl-1 (x, v) = u(k + 2!l>v + !l>x I £){7) 

where the function u(O satisfies the equation 

{p,'- (LI!l>)'[p'- (-1)[<HJI.,l2me-£']}u(£) =0 (8) 

and the boundary conditions at the discontinuity points 

u(k + 2<Dv- 0) = u(k + 2<Dv + 0), 

d d 
-u(k + 2<Dv -0) = --u(k + 2<Dv +O), ds rl~ 

u(k + 2<Dv +<I>- 0) = u(k + 2<Dv +<I>+ 0), 

d d 
-u(k + 2<Dv +<I>- 0) =- -u(k + 2!l>v + !l> + 0). 
ds . d£ 

(9) 

Here [ x] denotes the whole-number part of x, so that 
the fractional part { x} = x- [ x] > 0. 

Further simplifications are based on the fact that in 
the intermediate state in the normal layer the field is 
equal to the critical field: H =He "'~v'mPF· Therefore, 
in Eqs. (6) and (8) the condition for quasi-classical be­
havior rH/XF "'PF/eH >> 1 (rH is the radius of an 
electron orbit in the magnetic field) must necessarily 
be fulfilled. Since in Eqs. (6) and (8) it is the motion of 
the excitations in the intervals ~x "' L and ~ ~ "' <I> 
that is important, the neighborhood of the turning points 
~ = ±p requires a special treatment. As can be seen 
from Eqs. (6), the quasi-classical approximation is in­
applicable in the interval ~x"' (L/pF<I>)113 in the neigh­
borhood of the turning points. This interval is small 
compared with L: 

( p~ct>)"' j L ~ [el'v.(p,£,)']-''• ~ ~ 10-• t « 1. 

Thus, the quasi-classical approximation is everywhere 

2lwe are considering energy values E which are not to small, since 
otherwise a model with a step-like change in the parameter ~(~(x) = 0 
for 0 < x < L; ~(x) =~for x < 0, x > L) is inapplicable and it is neces­
sary to take the detailed behaviour of the function ~(x) into account. 
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applicable in Eqs. (6) and (8). Further, for energies 
E < t::. we have mE << PF and, moreover, since we are 
interested in the case L/rH = <P/pF << 1, comparing 
the quantity mE "" rot::. with <PPF shows that the stronger 
inequality rnt::./<PpF"" (e..fVF PF~o)-1 ~0/L « 1 is ful­
filled. Therefore, all the subsequent expressions can 
be linearized in the energy E. 

With these remarks taken into account, the quasi­
classical solution of Eqs. (8) with the boundary condi­
tions (9) has, as is easily verified, the following form 
(p = v'pF-Pi): 

161 >"p: 
u(6) =0; 

161 <p: 
u(s) =A(p'-6')-'i•sinS(s); 

L i -- ·mLe ' dt 
S(s)= --J (-1)W-'l1"'ll'p'-t'dt+'-S -:===- (10) 

,p -• <I> -•l'P' -- t' 

The condition that the function u(~) be continuous at 
the turning point ~ = p gives sin S(p) = 0, S(p) '= 1rn, 
whence we obtain the spectrum of the allowed energy 
values: 

e=Qn + e0 (k,p,), Q=eH /m, n=O, ±1, ±2, ... 

1 p 
Bo(k,p,) = -s (-1)[(1-k)I"'Jyp'- t'dt. 

nm 
-p 

(11) 

The spectrum (11) has a band character and is periodic 
in the quasi-momentum k with period 2<P, in agreement 
with the initial periodicity in Eqs. (1). It must be borne 
in mind that the allowed values of the quantities n, pz, 
and k in formula (11) are limited by the condition -t::. 

<E < t::.. 
It is not difficult to find the normalization constant A 

in formula (10). Normalizing the wavefunction (2), (7), 
(10) to a finite volume, we have 

J dV(Ijl' (x, y, z), ljl' (x, y, z)) = L,L,{) .. ,I'J. ,•, • 

xE J dx[u(k + 2<I>v- <I>x!L)u'(k + z<I>v- <I>x/LJ+ 
' 0 

+ u(k+2<I>v+<I>x/L)u'(k+2<I>v+<I>x/L)] = : 6 ... 6. ,•,' J d:;u(\;)u'(i;). 

Omitting terms which oscillate over an electron wave­
length, we obtain 

J dV(Ijl'(x, y, z), ljl' (x, y, z)) 

A'V d11 [ s'' dt ] =-6wbp • • J--=-cos (n-n') -= ={j .. ,{j. • •linn•, 
21D ' ' -I l'1- 1!2 -1 l'1- t' ' ' 

whence follows 

A = y2<1> In V. (12) 

The physical picture contained in this calculation is 
simple. If we put the free motion along the z-axis out 
of consideration, the electron and hole move in the nor­
mal layer along the arcs of circles. On reflection of the 
excitation from the boundary, the large normal momen­
tum (of the order of the Fermi momentum PF) of the 
excitation is conserved and an inversion occurs in the 
isotopic space of the "electron-hole": an excitation of 
the opposite sign moves in the reverse direction.L 5 l 

Since the canonical momentum along the y-axis is not 
conserved owing to the coherent phase differenee of the 

order parameter (see Eqs. (1)), the center of the orbit 
undergoes a successive shift by ± 2L along the x-axis. 
At the same time, the ordinary momentum k + 2<Pv 
- <Px/L is conserved, but the velocity along the y-axis 
changes sign. The motion of the excitation as a whole 
can be turned around into the successive passage of an 
electron and a hole alternately along a complete arc of 
a circle (cf. the figure, where examples of the trajec­
tory of an excitation are shown). 

2. ABSORPTION OF ULTRASOUND 

The absorption of ultrasound by electrons in super­
conductors in the intermediate state was calculated in 
[ 9 1 without taking account of quantum effects. At low 
temperatures when only the absorption in the normal 
layer is important, measurement of the ultrasound ab­
sorption enables us to judge the magnitude of the struc­
ture parameters of the intermediate state. 

Turning to the calculation of the ultrasound absorp­
tion coefficient with allowance for the magnetic quanti­
zation, we note that for the results of the preceding sec­
tion to be applicable to the intermediate state it is nee­
essary that the length of the normal layers in the direc­
tion perpendicular to the magnetic field be great com­
pared with the radius of an electron orbit in the magnet­
ic field. Obviously, the electron mean free path must 
satisfy the same condition. On the other hand, as will 
be clear from the following, the characteristic sound 
wavelength must be small (qL >> 1, q is the wave­
vector of the sound wave). Therefore, the absorption is 
essentially quantum absorption, and we can make use 
of the simplest "j ellium" model [lo, 111 to calculate the 
absorption coefficient of a longitudinal sound wave. In 
this model, the interaction between the electron and 
ion "liquids" is described by the introduction of a 
self-consistent electric potential c:p and the interaction 
Hamiltonian for the electrons has the form 

d6,n, = J dV e'l'~" 
where ne is the electron density operator. Correspond­
ingly, the time-averaged energy losses are equal to 

Ji = J dVe'Jl(~,). 
Here the dot denotes time-differentiation and the angu­
lar brackets denote statistical averaging. Hence, using 
known methods (cf. [ 12 l ) and the formula for the aver­
age energy of the ion "liquid," 36 = J dV n iMUf (ni is 

the density of the ions, ne = Zni> M is the mass and ui 
the velocity of the ions: Mui = Ze vc:p; the sound veloc­
ity in the "jellium" model is given by s 2 = vyZm/3M), 
it is not difficult to obtain the electron-absorption coef­
ficient for a plane sound wave (cf. the analogous formu­
la in [13 1): 

nro mv/ E 2 ( e e' ) , r=--,--. IMw(q)l th--.th- ll(e-e -Ill). 
4 3n,V 2T 2T 

(13) 

"' 
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Here w and q are the frequency and wave-vector of 
the sound wave, and ,\ is a complete set of electron 
quantum numbers. The matrix element Mxx'(q) is 
given by the following formula: 

M,.,(q)= JaV(Ijl"(r, J.)a,e"''ljl(r,f.')), (14) 

where O"z is a Pauli matrix and 1/J(r, .\) is the two­
component wavefunction of the electron-hole excitation. 
In the normal state, the absorption given by formula 
(13) is equal to rn = 7TW 2/4vFJqJ,[lO,lll 

In order to exclude absorption in the superconducting 
regions and threshold effects associated with the differ­
ence between the levels (11), we shall consider tempera­
tures and frequencies satisfying the inequalities n<< T 
<<fl., w << fl.. Hence follows the inequality 

q ~ Vp - 1 Go So 
(i) ~ <Ds - --;-<YvF epFso)- L - 7; ~ 1. 

Then we consider the quantity 

(I) <D (I) L Vp 3 L (I) 
qL=------~ 10--

Q ms Q rn s rn Q '· 

where rH is the electron orbit radius in the magnetic 
field. It is found that, in most cases in the intermediate 
state, L/rH '""' 10-1 and for frequencies w that are not 
too small (compared with n), the relation qL >> 1 is 
valid. The above inequalities simplify the calculations 
of the matrix element {14) and the absorption coeffi­
cient {13). 

We shall consider the case of propagation of a wave­
over the normal layer along the y-axis perpendicular to 
the magnetic field (q · r = qy). Putting the expressions 
{2) and {7) for the wavefunction into formula {14) for the 
matrix element and proceeding in the same way as in 
the calculation of the normalization integral in Sec. 1, 
we obtain 

{15) 

J(q) = : J ds(-1)[(HV"'1u(£)u'(s- q). 

Hence, taking account of the explicit expressions {10) 
and {12) for the function u(~) (after discarding the 
terms oscillating over an electron wavelength), it fol­
lows, in view of the inequality q <<<I>, that 

1 (-1)W-'1'"'1 
l(q)=-J d£ cosx(£), 

n_P Yp'-6' 
{16) 

L' tdt mLw' dt 
x(S)= !!__J (-1)W-'11"'1--=+-J-=· 

<D -p YP'- t' <D -p yp'- t' 

In the latter expression the difference E - E' is re­
placed by w in accordance with formula {13). 

The phase x {~) in formula {16) is large and to cal­
culate the integral J{q) in {16) it is sufficient to find the 
stationary points x {~). There is only one such point, 
~0 ~ {-1) exp [k/<1>] mw/q <<<I>. (The extremities of 
the interval ~ = ±p give a small contribution to the in­
tegral J{q). In the neighborhood of the point ~0 

x(S)~x(0)-(-1)[''"'1 qL (£-so)'. 
2<Dp 

The subsequent calculation of the integral (16) is ele-

mentary and gives the following result: 

V2<D 
J(q) ~ -(-1)['1"'1 ---cosx(O). 

nJqJLp 
{17) 

Finally, we calculate the sum of the hyperbolic tan­
gents occurring in expression {13): 

·~(thQn+e~_(k,p,) -th Rn+eo(k,p,)-w). 
~ 2T 2T 

n 

-d < Rn+eo(k,p,)< h. 

In view of the inequalities n << T << t:., this sum can 
be replaced by the integral: 

1 +• ( X X - (0 ) 2oo 
-Jdx th--th-- =-
Q_oo 2T 2T Q . 

Putting this quantity and formulas {11), {15), and (17) 
into expression {13) for the absorption coefficient and 
discarding the oscillating term, we obtain 

r = r.ij dp, J ~Q~. o (Rn+ aeo(k,p,) q- co), 
n Yp/-p,' 2<1> ~ ok 

-Pp n 

{18) 

ih,(k,p,) = __ 1_f (-1)[(1->1/<l>] tdt 
{)k nm_, "fp'- t' 

In the latter expression for r, we can neglect the fre­
quency w in comparison with the second term in the 
argument of the a-function. Using Poisson's summation 
formula, we find the oscillating part of the absorption 
{18): 

Pp 

( r ) '\"1 1 J dp, J dk - = ~- . 2 2 --exp[inf(k,p,)], 
r. osc n yp,. - p, 2<D 

n*O -Pp {19) 

f(k, p,) = 2qL j (- 1) [('-'11'"1 t dt ' p = "fp.'- p,'. 
<D -p yp'-t' 

The phase f(k, Pz) is large and in the successive inte­
gration over k and pz in expression {19) it is again 
necessary to make use of the stationary-phase method. 
As is shown in the Appendix, within the limits of ape­
riod in k the only stationary points are k = 0 and 
k =<I>, while the function f{O, Pz) is stationary at the 
point Pz = 0. Taking account of this, it is not difficult 
to write the formal result of the integration and sum­
mation in formula {19): 

(-.!:_) =-2(-1)[Pp1"'1U(f(O,O)) (lo'f(O,~) o'f(O,O) 1)-'''(20) 
r. osc p.<D ap, iJk' 

where U(x) is a periodic function: 

) ~ sinnx 
U(x =- ~-n-, 0 < x< 2n, .,.. 

1 
U(x)=T(x-n). {21) 

The function f(O, 0) occurring in expression {20) and 
its derivatives are given, according to {19), by the fol­
lowing relations: 

[Ppl!l>] 

4qL '\"1 
f(O, 0) = --;J) ~ (- 1) •yp;- (<Dn)', 

n=-[Pyl~} 

[P F/¢1] 

iJ'f(O,O) = _ 4qL '\"1 (-1)" , 

iJp,' <D ~ YP.' -(tl>n)' 
?l=-(P.z.Jci>) 
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il'f(O, 0) 

ilk' 

4qL 

In view of the inequality <I><< PF• further simplifications 
are possible in these formulas, giving as a result 

f(O, 0) ~ - 2qL v 2~ TI ( ~), 

<D il'f(O, 0) ~ 2 Ll/ 2pF 11' (_!'.!__) 
PF a p,' q V <D <D , (22) 

<D' il'f(O,O) ~ _ 2 L 1/ 2p, 11" (!..!___) 
a~ q r <D <D . 

The function rr(x) and its derivatives are periodic in x 
and are determined by the following relations: 

00 d 
H(x)=J(-1)1'-•l ~. 

yt 

00 (- 1)" 
TI'(x) =- 2(-i)[x] .E -==-• {23} 

0 
. n~o yn + {i} 

TI"(x)=(-1)[•1~ ~t_. 
"'-l (n + {x} )'1• 
n=O 

Putting the relations (22) into formula (20}, we obtain 
the final result: 

(- 1)['n1LlU(2qy2r;J;TI(rniL)) 

JqJrny'2JI1'(rniL)TI"(rHIL) J 

U(x) = _ L sinnnx, O<x <2n, 

(24) 
1 

U(x) = -(x- n). 
2 .,., 

The ultrasound absorption oscillations described by 
formulas (23) and (24) are of a comparatively compli­
cated character. Since in the intermediate state the 
field in the normal layer is constant and the electron 
orbit radius rH = PF/eHc is fixed, the most convenient 
experimentally varying parameter is the thickness of 
the normal layer as a function of the external magnetic 
field. According to formulas (24) and (23}, on change of 
the thickness L, periodic "bursts" in the ultrasound 
absorption should be observed, with characteristic pe­
riod determined from the condition 

2qyz;:;;I jn' ( ? n r~~L = 2n, 

~L- q~H vr~. 

These oscillations are modulated in amplitude and 
frequency by the periodic function II(rH/L} (23} with 
significantly larger period: .6.L/L = L/rH; as can be 
seen from the formulas (23), the function II(x) contains 
root singularities, and this should lead, according to 
(24), to a sharp decrease in the amplitude of the oscil­
lations on increase of the frequency. Rough estimates 
show that the fundamental period, in the magnetic field, 
of the oscillations is about 1 Oe, whereas the modula­
tion period is of the order of 10-100 Oe. 

The physical meaning of the modulation period is 
clear. The periodicity of the function II(x) (23) is asso­
ciated with the commensurability or non-commensura­
bility of the layer thickness L and the radius of the 
electron orbit in a magnetic field. As regards the fun­
damental period of the oscillations, this is more simply 

interpreted if in formula (24) we consider the oscilla­
tions in the absorption as the wave-vector q is changed. 
From this point of view, we shall consider the trajec­
tories of the excitations in coordinate space (cf. the fig­
ure). From the calculation of the matrix element M;u,' 
(15), (16), it follows that an electron makes the princi­
pal contribution to the ultrasound absorption when it 
moves perpendicularly to the direction of propagation 
of the wave (i.e., at the ends of the trajectories depicted 
in the figure). This corresponds to a well-known fact; 
it is mainly the electrons in a narrow "band" (q • v "'0} 
at the Fermi surface which absorb. Resonance in the 
absorption sets in when (for longitudinal sound} a whole 
number of waves fits in between two points of efficient 
absorption of sound by the electron. For the trajectories 
drawn in the figure, this distance D(k, pz), as an ele­
mentary calculation shows, is equal to 

D(k,p,)= 2 L (-1)"[rH'(p,)-L'(n+ki<D)'J"•, 
n=-[N+] 

Or, alternatively, 

ydy YPp'-p,' Lp 
D(k ) J (-1)l•IL-M<OJ ·, rH(p,)= =-. 

'p, = '' '( ) 2 eH <D 
-'n(P,) prH p, - Y 

Comparing the latter expression with formula (19}, it 
is not difficult to see that the oscillating part of the ul­
trasound absorption (20} can be written in the form: 

(_.!:_) = _ (-1)l•F1"'lU(2qD(O,O)) (I. o'D(O,O) o'D(O,O) !)·-''• 
r. osc pF<DJqJ . ap,' ilk' (25) 

Thus, the period of the oscillations is determined by 
the extremal "orbit diameter" and the effect is in some 
sense analogous to the oscillations in the ultrasound ab­
sorption in normal metals in a magnetic field predicted 
by Pippard. [ 14 l However, in the given case, in contrast 
to the Pippard oscillations, according to formula (25} a 
doubling of the oscillation period occurs, due to the cor­
relation between the electron and hole. 

APPENDIX 

To prove the statements, made in the text of the ar­
ticle, concerning the function f(k, pz} (19), we repre­
sent it in the following form: 

f(k,p,) = 4qLh(p I fll, k I <1>), p = yp;- p,', 

where the function h(x, y) is defined by the formula 
(x+~] 

h(x,y)= L (-1)"Yx'-(n-y)', x>O. (A.1) 
n=-[x-11] 

Since h(x, y + 1) = -h(x, y) and h(x, -y) = h(x, y), it is 
sufficient to study the properties of h(x, y) as a function 
of y in the interval (O < y < %). Differentiating (A.1) 
with respect to y, we obtain 

( ) [x+y] 

ilk x,y = ~ (-1)• n- Y . (A.2) 
ay i..J yx'- (n- y)' 

n=-[x-11] 

We note that at the point y = 0 we have oh(x, y)/oy = 0. 
We consider first the case when the sum [ x + y] 

+ [ x- y] is odd. A simple regrouping of the terms in 
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formula (A.2) leads to the following result 
(L = t;;([x + y] + [x- y] -1)): 

(-1)lx-y] oh(x,y) = .t [ 2l-[x- y]- y 

ily 1 ~0 l'x'-(2l-[x-y]-y)' 

_ 2l+1-[x-y]-y ]<o. 
l'x'-(2l+1- [x-y]- y)' 

In the case when the sum [ x + y] + [ x- y] is even, the 
inequalities y < { x} and y < 1 - { x} must be fulfilled. 
In this case 

[x] 

oh(x,y).=_!_~ (-1)"[ n-y 
oy 2 ""-.! l'x'-(n-y)' 

n=-[x] 

[x) 

=--Y __ ~(-l)"[ n+y 
yx'-y' ""-.! l'x'-(n+y)' 

n=t 

If [ x ] is even, then 

n+y ] 
l'x'-(n+y)' 

(A.3) 

n-y ] 
l'x'-(n-y)' 

ilh(x,y) y ~~{[ 2l+y 2l-y ] 

---a;-==-l'x'-y'- .0:: l'x'-(2l+y)'- l'x'-(2l-y)' 

[ 2l- 1 + y 2l - 1 - y ] } < 0. 
l'x'-(2l-1+y)' l'x'-(2l-1-y)' 

For odd [ x], the expression (A.3) can be represented 
in another form: 

oh(x,y) =--y-
oy l'x'- y' 

V>{[x)-l) 2l + 1 + 2l + 1 - Y ] 

+ E {[ yx' -(2l + /+ y)' yx' -(2l + 1- y)' 
l=O 

[ 2l + y 2l - y 1} 0 
- l'x'-(2l+1+y)' l'x'-(21+1-y)' > · 

Thus, the derivative ah(x, y)/ay * 0 everywhere, apart 
from the point y = 0, in the region of regularity. 

The uniqueness of the stationary point Pz = 0 of the 
function f(O, Pz) is proved analogously. 

1 F. London, Superfluids, Vol. 1, Wiley, New York 
1950. 

2 A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 
(1957) (Sov. Phys.-JETP 5, 1174 (1957)]. 

3 B. D. Josephson, Phys. Lett. 1, 251 (1962). 
4 V. P. Galaiko, Zh. Eksp. Teor. Fiz. 57, 941 (1969) 

(Sov. Phys.-JETP 30, 514 (1970)]. 
5 A. F. Andreev, Zh. Eksp. Teor. Fiz. 49, 655 (1965) 

(Sov. Phys.-JETP 22, 455 (1966)]. 
6 Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 

(1959). 
7 R. M. Cleary, Phys. Rev. 175, 587 (1968). 
8 A. H. Kahn and H. P.R. Frederikse, in "Solid State 

Physics" (ed. F. Seitz and D. Turnbull, Academic 
Press, New York) 9, 257 (1959). 

9 A. F. Andreev, Zh. Eksp. Teor. Fiz. 53, 680 (1967) 
(Sov. Phys.-JETP 26, 428 (1968)]. 

10 J. Bardeen, Phys. Rev. 52, 688 (1937). 
11 D. Pines, Elementary Excitations in Solids, Benja­

min, Inc., New York, 1963 (Russ. Transl., Mir, 1965). 
12 A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyalo­

shinskii, Metody kvantovoi teorii polya v statistiches­
koi fizike (Quantum Field Theoretical Methods in Sta­
tistical Physics), Fizmatgiz, 1962 (English Transl., 
Pergamon Press, Oxford, 1965). 

13 A. H. Wilson, The Theory of Metals, Cambridge 
(1936) (Published in Russian as Kvantovaya Teoriya 
Metallov, Gostekhizdat, 1940). 

14 A. B. Pippard, Phil. Mag. 2, 1147 (1957). 

Translated by P. J. Shepherd 
162 


