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A generalization of a well known method of taking into account final-state interactions has been used 
to discuss the production of charged particles with interaction in the final state with the time-dependent 
field of a strong electromagnetic wave. It is shown that, in the threshold approximation, inclusion of 
this interaction determines the form of the photoproduction as a function of the field intensity. For the 
one-dimensional case in which there are no additional external fields in the final state, a nonsingular 
integral equation is obtained which can be solved by standard methods, and the limiting case of a weak 
magnetic field is discussed. Perturbation theory is developed for the more general case in which addi
tional external stationary fields, particularly a Coulomb field, are present. The results are compared 
with experimental curves for photoemission from metal surfaces and with earlier calculations. 

1. INTRODUCTION 

IN recent years a number of papers have been pub
lished on the theory of electron emission in the field 
of a monochromatic high-intensity electromagnetic 
wave.£ 1 -41 However, in view of the complex nature of 
the phenomenon considered, the theory developed up to 
the present time cannot be considered exhaustive; fur
thermore, the theory does not explain even a number of 
qualitative effects relating the dependent of the photo
production cross sections and photocurrents on the in
tensity of the radiation. £51 In the present article we 
will discuss the question of how to take into account 
the interaction with the electromagnetic field in the fi
nal state. This will be done by generalizing the corre
sponding quantum-mechanical theory developed for de
scription of interactions in the final state which are not 
time dependent. l 61 Systematic inclusion of the interac
tion in the final state is only one of the additional effects 
arising in particle production in the transition from a 
weak external electromagnetic field, i.e., a field in 
which the particles can be considered free in the final 
state, to a field in which it is necessary to take into ac
count the final-state interaction. However, in those 
cases in which use of the threshold approximation is 
justified and resonance phenomena are unimportant, the 
effect of the emitted electron's interaction with the 
final-state field can turn out to be decisive (if, of course, 
we exclude such effects as incoherence, macroscopic 
heating, and so forth}. 

In the case of a weak field the threshold approxima
tion has turned out to be particularly effective in dis
cussing the one-dimensional problem of electron photo
emission in the visible and ultraviolet parts of the spec
truro at metal-vacuum and metal-dielectric bounda
ries.£71 In this connection, all of the discussion will be 
carried on for the one-dimensional problem of photo
emission from a metal surface under the influence of 
laser radiation, with attentional also to the fact that this 
phenomenon has been studied experimentally by anum-

ber of workers.£ 8 - 101 At the same time, the analysis of 
the one-dimensional electron-production problem made 
in this work permits explanation of a number of basic 
features of the problem being considered and can be gen
eralized to the three-dimensional case, and also to the 
case of production of other charged particles. 

The discussion will begin in Section 2 with an illus
trative formulation of the problem for a model example. 
Then in Section 3 we will develop the general theory of 
threshold production in the field of a strong electromag
netic wave with detailed consideration of the case in 
which other, time-independent, external fields are ab
sent in the final state. This limiting case of the theory 
can be applied directly to description of photoemission 
at the boundary between a metal and a polar medium or 
between a metal and a dielectric with a rather high di
electric permittivity. In Section 4 we develop the per
turbation theory for the case corresponding to presence 
in the final state of additional external fields and, in 
particular, the Coulomb field. Finally, in Section 5 we 
formulate the principal results and compare them with 
results of earlier work. 

2. FORMULATION OF THE PROBLEM 

In order to explain the general approach adopted in 
this work we will consider first the scheme for solving 
the model problem of photoemission of electrons with 
initial energy E0 from a semi-infinite potential well 
given by the potential U(x) = - U0 for x s - o (U0 > 0, 
o > 0); U(x) = 0 for x >- o, where - o is the location 
of the arbitrary boundary of the metal (see Fig. 1). Just 
this model is usually used £4 , 5 1 in discussing photoemis
sian from a metal (we note that in the case of production 
of particles in a weak field with energy near threshold 
the results for a potential U(x) of the form indicated 
and potentials with smeared edges should agreel7 1). 

Before the external electromagnetic field is turned on, 
the wave function of the initial electron with E0 < 0, 
which has the form zp 0 (x, t) = z/! 0 exp {-iE0t/li}, is lo
calized in the region x < -o, not taking into account 
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FIG. I. Shape of the model 
potential U(x). 

the tail which is exponentially drawn out with increasing 
x. By appropriately using l'i "'ti I { m I E0 I , we can neg
lect the contribution from the region x > 0 in the inte
grals which follow, which contain in the integrand the 
source wave function 1/J 0 (x, t). 

We will represent the interaction with the external 
electromagnetic field1 > in the form U0(x) sin wt, 
where U0(x) is broken down formally into two terms, 
the latter of which produces the interaction in the final 
state, which is not ordinarily taken into account in con
sideration of photoproduction in perturbation theory 
terms of lowest order in the applied field. Specifically, 
everywhere setting e = m = ti = 1, we will write 

Ug(x) =Ur(x)e(-x) +8xe(x) , (1) 

Where, by definition, 8(x) = 0 for X< 0 and 8 (X) = 1 
for x ::::0. Here 8 is the amplitude of the electric field 
of the wave. We will not choose a specific form for 
u0 (x), which is determined by the complex interaction 
of the field with the electrons and the medium, but will 
only choose a calibration in such a way that U0(0) = 0; 
in addition, evidently, U 0 (x) <:/.) o. The notation of the 
second term in (1) corresponds to use of the dipole ap
proximation, which is well satisfied for the wavelengths 
discussed (lasers). 

In the case of a weak field, when the contribution of 
the second term in (1), generally speaking, is discarded, 
the electron wave function, after adiabatically turning 
on the interaction with the electromagnetic field outside 
the production region for x > 0, is represented in the 
form 

+.E M.(0)exp{- i(E, + nw)t + ixl'2(E, + nw)+ ie}, (2) 

(E- +0), where Mn(0) is the sum of the perturbation 
theory matrix elements of the direct and multistage 
transitions to the state with energy E 0 + nw ,2 > and w is 
the frequency of the electric field of the wave. Here 

Mn(o) = o" .l:am(n, w)o'm, 
m=O 

where the coefficients am(n, w) do not depend explicitly 
on 0. As follows from simple estimates, and also from 
model calculations [ 11 J for w ~ U0 , for not too great dis
distance from the threshold 

(3) 

where t. = 0 2/4w 2 is the average kinetic energy of the 
pulsations of a classical electron in the external mag-

!)In the case being discussed of a large number of photons, the ex
ternal electromagnetic field can be considered classical. 

2>we recall that on the physical sheet iy2E + iE = iyi2Ffor E > 0 
and iy2E + iE = -y'2]Eifor E < 0, where in both cases the arithmetic 
value of the root appears ont he right. 

netic field. The ratio of two successive terms in the 
sum for the quantity Mn(0) also has order t./U0 • In 
most physically realized situations t. does not exceed 
0.1 eV (the value achievable if the energy of the quanta 
is of the order 1 eV for a field intensity ~· "' 107 V /em), 
while a reasonable depth of the model well is of the or
der 10 eV; accordingly, in constructing the current from 
1f! 0 (E 0 , x, t) in Eq. (2) we can limit ourselves to one 
term with n =no. where no is the first value of n, be
ginning with which E0 + nw > 0, and also it is not neces
sary to take into account corrections associated with 
am for m>O. 

In particular, without inclusion of these corrections, 

1 f - (4) M.(f£) = W [ljl+; 1jJ I __.t ljl-(Eo+w, x)U~(x) 1j1 0 (x)dx, 

where W[ zp +, zp -] is the Wronskian of the solutions zp + 

and zp -. The general form of the function zp -(E0 + w, x)
the solution of the stationary Schrodinger equation with
out the electromagnetic field with energy E0 + w -is de
termined by its behavior outside the region of action of 
the second term of the potential (1) for x < 0. 

In the case being considered of the problem of the 
photoeffect from a metal, the function zp -(x) should con
tain as x- - oo only waves traveling from the region of 
production (for production in a spherically symmetric 
atom the analog of zp -(x) is a regular radial function). 
The solution zp + (E0 + w, x), which enters into the Wron
skian, satisfies the same equation as zp -(x) and con
tains only waves traveling from the metal, normalized 
according to Eq. (2), for x- oo. In the threshold ap
proximation in the absence of external fields for x > 0 
the matrix elements Mn(0) can be considered as con
stants [ 7 • 12 J which do not depend on energy. Use of the 
threshold approximation is justified if the following in
equalities are satisfied: 

E, + nw < U(x) for x < -6, 
I dIn ljl+ / dx I x~oli < 1. 

In the simplest interpretation of the threshold approxi
mation,l7, 12 l it follows from the first inequality that 
since for x < -l'i the quantity E0 + nw enters into the 
equation for the functions zp± only in a sum with the 
much larger quantity U(x), then zp ± for x < -l'i depends 
on changes of E0 + nw which are small in comparison 
with U(x) ~ U0 only through the boundary condition for 
x = 0, and the second inequality permits us to justify 
the connection with a skip across the interval [ -l'i, 0], 
independent of details of the variation of the potential in 
this interval. 

Further inclusion of the external fields, which we 
call inclusion of the final-state interaction, consists [ 12 J 

in essence simply of replacing in the second term of 
Eq. (2) of the functions exp { ix[ 2(E 0 + nw) + iE )11 2} by 
the corresponding Jost functions[l 3 J in the external sta
tionary field being discussed. The suggested generali
zation of this approach to the case of a periodically 
time -dependent external field is the replacement in 
Eq. (2) of the time-dependent functions 

exp {-i(E, + nw)t + ix[2(E, + nw) + ie]'b} 

by the functions F(E0 + nw, x, t ), which for x > 0 satis
fy the equation 
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a 1 a' (i-+--- f5xsinffit )F(Eo + nffi,x,t) = 0, (5) 
at 2 ox' 

contain for x - oo in the current averaged over the 
period of the variable field 2JT/w only waves leaving the 
metal surface or attenuated waves, and for x = 0 are 
equal to exp {-i(E0 + nw)t}. Here the value of 
1/J -(E0 + nw, x) for x < 0 does not change. In a strong 
field the current averaged over the period, constructed 
from F(E0 + nw, x, t), depends on the amplitude and 
frequency of the electromagnetic field, the origin of this 
dependence also being in this case the inclusion of the 
effect of the final-state interaction. As a result, if in 
the sum in Eq. (2) we leave only one term, then the cur
rent Jn averaged over the period of the field is 

• _ (J)IM("')!,"J'" i [F( )aF•(E,+mo,x,t) l•-- • "' - Eo+ nffi, x, t ----'--:--
2n -•!• 2 ox 

-F'(E,+nffi,x,t) oF(Eo+nffi,x,t) ]at (6) 
ox 

the value of the integral in Eq. (6) depending on the ex
ternal field intensity f5. 

We will point out that it is sufficient to determine the 
function F(E, x, t) with accuracy to the constant term, 
since a compensating constant appears in the matrix 
element from the conditions of normalization of the 
Green's function. For the normalization of F chosen 
here by providing a boundary condition at x = 0, the 
quantity independent of energy in the threshold approxi
mation is the matrix element Mn and not its product 
with the value of the Jost function at zero as is obtained 
for the standard definition.£131 We note further that this 
conclusion of the possibility of replacement of the final
state functions in Eq. (2) by F can be obtained also in 
terms of formal scattering theory in exactly the same 
way as is done in considering the final-state interaction 
with decomposition of the potential Uf5 into parts, one 
of which acts in the region of the potential, and the other 
outside it. 

If the problem of finding F(E, x, t) is, in essence, 
without a model, then determination of Mn requires 
that the detailed structure of the source be given. How
ever, in many cases and, in particular, in emission 
from a metal, the matrix elements Mn, as in the case 
of a weak field, can be assumed in the threshold approx
imation3> to be constants proportional to f5n. Thus, 
with an accuracy to the set of constant terms (the same 
as in the case of the weak field) the additional depend
ence of the current on the field and its energy depend
ence are given by the form of the functions F(E, x, t). 

3. PRODUCTION OF PARTICLES IN THE ABSENCE 
OF STATIONARY LONG-RANGE INTERACTIONS 

Before we turn to determination of the universal de
pendence of the emission current on the external field, 
due to the final-state interaction, let us generalize the 
preceding discussion. In Sec. 2 we assumed that the 
electrons produced in the emission (which are going 
away to +oo) actually exist in the metal as true parti
cles moving in some potential well. In reality these 
model assumptions turn out to be not absolutely neces-

3> If separated levels are present in the spectrum >¥ 0 (x), the latter 
can be taken into account by the customary means for threshold theory. 

sary-in practice it is required only that there exist an 
electronic wave function which is a certain function of 
time only at the boundary of the production region 
1/J (E0 , 0, t) and for x > +0; here E0 can be considered 
simply a parameter which gives the boundary condition. 
Then for x > 0 the function 1/J (E0 , x, t), if we can neg
lect the effect on the source of the field acting in the 
final state/> is a functional of 1/J (E0 , 0, t) of the form . 

'¢(E,,x,t)= J K(x,t;O,t')'¢o(E,,O,t')dt' (7) 

where K(x, t; 0, t') satisfies for x > 0 the equation 

a 1 a• 
[ i-+---:>- f5xsin ffit] K(x.t; 0, t') = 0 (8) fit .. ? 001; 

and the condition K(O, t; 0, t~ = o(t- t'), and also the 
nonrelativistic causality condition5 > 

6'¢(Eo, x, t)/61Jl,(E,, 0, t')= 0 fort< t', 

from which 
K(x, t; 0, t')= 0 for t < t'. (9) 

If 1/J (E0 , 0, t) can be represented in the form of the 
series (2), then we reach a conclusion similar to that 
obtained at the end of the preceding section, that in or
der to take into account the final-state interaction it is 
necessary to define functions 

~ J K(x, t; 0, t')exp {- i(E, + nffi)t'} dt', n = 0, 1, ... , (10) 

which, as follows from the property of K(x, t; 0, t'), are 
identical to the functions F(E0 + nw, x, t) introduced 
above. From Eq. (10) it also follows that the product 

F(E, + nffi, x, t)exp{i(E, + nw)t} 

is a finite analytical function of E in the complex half
plane Im E > O, since, in view of Eqs. (9) and (10}, this 
product contains in its Fourier integral expansion only 
damped exponentials for Im E > 0. 

Following the work of Keldysh, [ 11 we will now use 
the fact that a well known [14• 15 l set of solutions exist 
for Eq. (8), which can be written in the form 

{ }'8<:\ (w- L\) 
ljl.(w, x, t) = exp - iwt· + t (J) sin ffit 

L\ . - } - t-sin2ffit + tx(l'2(w- L\ )- 2}' L\ cos ffit) , 2(J) (11) 

where w is a parameter which takes on any complex 
values. The real part of w we will designate, like the 
energy, by the letter E. Accordingly, 

K(x, t; 0, t') = ;n 7' g(E')Ijl,(E', x, t)ljl,(E', 0,- t')dE', (12) 
-oa+is 

where g(E'} is a weighting function which does not have 
singularities on the physical sheet for Im w > 0 and 
which is determined from the condition that K(x, t; 0, t') 
approach o(t- t') at x = 0. In the limit of a weak field, 
in the absence of constant external fields, g(E') = 1. 

4)The effect on the source, obviously, is negligible if the inequality 
e&ll ~ U0 is satisfied. 

5lThe relativistic generalization of this condition is obvious: the 
functional derivatives must vanish for space-time points sepacated by a 
space-like interval. 
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For IE' I - oo the value of g(E') in the general case 
must approach unity, since for I w I - oo the function 
</Jv(w, x, t) ceases to depend on the field. 

The choice of integration contour in Eq. (12) corre
sponds to preservation only of waves leaving the metal 
and waves which are damped, and at the same time as
sures that K(x, t; 0, t') goes to zero for t < t', since 
then it is possible to close the integration contour by an 
infinite semicircle in the half-plane Im w > 0. Corre
spondingly, from the requirement that K(x, t; 0, t') van
ish for t < t', and taking into account the notation of 
Eq. (12), the form of the functions (11), and the limita
tion mentioned above on the rise of the function g(w), 
we can obtain the result that g(w) does not have a sin
gularity for Im w > 0 and that K(x, t; 0, t') can contain 
only departing and attenuated waves. Combining Eqs. 
(10) and (12), we see that the desired functions F(E, x, t) 
are given for x > 0 by the integral 

ao ao+il 

F(E,x,t)= fK(x,t;O,t')e-'E''dt'= f g(E,E').p.(E',x,t')dE'. (13) 
-coo+ie 

Here the function 

g(E, E') = g(E') f .p.(E', 0,- t')e-'"' dt' (14) 

is given by the boundary condition at x = 0. Since, ac
cording to Eq. (11), the function </Jv(E', O, -t'), after 
separation of the factor exp iE't', becomes a periodic 
function of time, the function g(E, E') for real E and 
E' must have the form 6 > 

~ 

g(E,E')= ~ B,(E)Il(E+kw-E'}, (15) 
ll=-oo 

from which we obtain 

F(E,x,t)= ~B,(E).p.(E+kw,x,t). (16) 

Setting x = 0 in Eq. (16) and multiplying the right 
and left sides by </Jv(E + nw, 0, -t), we obtain, after 
averaging over t in the interval [- rr/w, rr/w], the basic 
equation of Ref. 16: 

B.(E)=__!_f" d<pexp{irnp+2p.i l't. +i~sin2<p} 
2n_. w 2w 

-~'Bl (4l'L'i(k-n)) 
"-.J. h 11.-n PR. + Pn 7 

h 

(17) 

where Pn = ..f2 (E + nw ·- ~)112, and the prime on the 
summation sign indicates that terms with k = n should 
be omitted in it. 

In view of the properties of Bessel functions with in
tegral index, 

l,(qz) = L,(-qz), 

l.(qz)~ 1 exp{q(i+ln~)} 
l'2nq 2 

(18) 

(q-<{1, lzl<1). 
Further, keeping in mind that with increasing k the 
quantity 4..fi; /(Pk + Pn)- 0, we find, with inclusion of 

6lEquation ( 15) follows also directly from the condition of invari
ance of Kin Eq. (13) relative to the shift t-+ t + 21rn/w, where n is an 
integer. [ 16 ] 

(18), that the kernel of Eq. (17)-which is of the so
called kernel type[l7 l-is completely continuous. Ac
cordingly, Eq. (17) uniquely defines Bn for any values 
of the parameters. In particular, as follows from (18), 
for the condition ,J ~/w << 1 Eq. (17) can be solved by 
successive iterations, beginning with n = 0, since in 
this case the corresponding kernel is majorized by a 
"good" difference kernel. 

Concerning ourselves only with the n-th term in the 
sum of the form of (2), we find that the emission cur
rent averaged over the period of the field is 

~ 

J.=IM.J' ~p,JB,(E,+nw)J', (19) 
11=11-o 

where ko is the minimal integer for which pk_ 
= 2[ e0 + w(k + n)- ~] > 0. In the case of greatest prac
tical interest ,J ~/w << 1, the terms in the series of 
Eqs. (17) and (19), as can be seen from (18), decrease 
rapidly, so that in (19) we can limit ourselves to the 
first term with k = ko, and in the sum occurring in so
lution of (17) by iterations, we can limit ourselves to 
the interval 0 s k s ko- 1, which transforms (17) to a 
simple recurrence relation. In particular, for ..Jt;fW 
<< 1, we obtain B0 = 1, B1 =J2IE0 1~/w. 

As follows from the equations presented, the inter
action of an emitted electron with the field outside the 
metal leads first of all to an effective increase of the 
threshold for photoemission by an amount ~. Further, 
the equations obtained permit rigorous relations to be 
found between the components of the photocurrent, 
which are proportional to different powers of the light 
intensity J <%> ~·-2 • Here the limitation to only n-photon] 
transitions inside and at the surface of metal in con
struction of j corresponds to the assumption that the 
contribution to the current of all remaining transitions 
in the region x < 0 is relatively small. If it is neces
sary to take into account the additional components in 
the current corresponding to excitation of electrons by 
absorption of a different number of photons inside the 
metal, it is sufficient to consider the superposition of 
solutions of the type indicated, joined at the boundary 
with Mn exp {- i(E0 + nw )t} for different values of n 
with appropriate obvious modification of Eq. (19). It 
should be noted that here, for example, the possibility 
arises of destructive interference. Analysis of the de
pendence of photocurrent on intensity, which, as follows 
from the foregoing, can have an extremely complex na
ture, especially for multiphoton transitions, should per
mit, in discussion of specific experiments, important 
information to be obtained on the behavior of the normal 
component of the electric vector of the electromagnetic 
wave at the metal boundary. 

Up to the present time, experiments on production in 
a strong field at the boundary between a metal and a po
lar medium, where the equations presented are applica
ble, have been carried out£ 103 only for values of .('iJW 
<< 1 with a sensitivity which does not permit the effects 
discussed to be observed. Appearance of distinct quali
tative features in the functional dependence of photocur
rent on light intensity, with deviation from simple power 
laws, should occur, and in particular when the parameter 
..Jt;fW becomes comparable with unity. 
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4. PERTURBATION THEORY IN THE PRESENCE OF 
ADDITIONAL, TIME-INDEPENDENT FINAL-STATE 
INTERACTIONS 

In the preceding discussion it has been assumed that 
outside the production region no external fields are act
ing except the field of the electromagnetic wave. One is 
frequently interested in the more general case in which 
outside the production region for x > 0 there is an addi
tional, time-independent potential V(x), which decreases 
as x- oo, A particularly important example of this 
type is the long-range Coulomb potential V a(x) = -a/x, 
which corresponds in photoemission into a vacuum to 
action of image forces, and in photoproduction in atoms 
to the field of the parent ion at large distances. In this 
connection it should be recalled that the long-range Cou
lomb forces in the case of a weak field qualitatively 
change the behavior of the photoproduction cross sec
tion. [7 • 18 l 

In the presence of external fields, the general course 
of the discussion presented above does not change; only 
the principal equation (8) for K(x, t; 0, t') is replaced 
for x > 0 by the equation 

[ 
0 1 o' 

iat+2 ox'- V(x)-S"xsinwt ]K(x,t;O,t')= 0. (20} 

Here the construction of the current in the form of 
Eq. (19) is hindered by the absence in the general case 
of a set of solutions similar to the set of wave functions 
(11). However, in the parameter ranges of greatest in
terest for description of experiments with use of lasers, 
the electromagnetic field in Eq. (20) can be considered 
as a perturbation and we look for a function F(E, x, t), 
connected with the new expression for K(x, t; 0, t') by 
Eq. (13), immediately in the form of a series in the pa
rameter ..j t./w, where t. can as before be interpreted 
as the electron energy shift (renormalization), averaged 
over the period, in the field of the electromagnetic wave 
as x- oo. 

We will discuss briefly the method for construction 
of this series for the function F(E, x, t). For reasons 
similar to those used in the preceding section after 
Eq. (14), the function F(E, x, t) can be represented in 
the form of a series: 

F(E, x, t) = e-'E' l:F,(E, :r)e-""'. (21) 

Here the function Fk(E, x), as a consequence of Eq. (20}, 
satisfies the infinite system of coupled equations 

[ 1 o' f!x -z ox'+ V(x)-(E + kw)] F, = -2i(F>+, --F,_,), (22) 

where k takes on all integral values, and for x = 0 with 
an accuracy to an arbitrary phase shift, 

F,(E, x)= o •. o. (23) 

We will then introduce into the discussion the Jost 
solutions (13), f(±p, x), which satisfy the equation 

[ 1 a' ] __ 
-z"Dz'+V(x)-E f(±p,x)=O, p=q'2E+ie~ (24} 

These solutions are chosen from the definition of 
f( ±p, x) such that for x- oo the function f( ±p, x) 
= exp ±ipx. Here[ 13 l 

W[f(p, x)f(- p,x)] == of(op, x) j(- p, x)- f(p,x) of(- p, x) = 2ip 
X OX 

[/(±p, x)]• = f(~p. x) for E > 0, 
[/(±p, x)]• = f(±p, x) for E < 0. (25} 

If we take into account Eqs. (24) and (25), we can 
write for Fk(E, x) instead of (22} the system of inte
gral equations 

F(Ex)= 6 /([2(E-L\)+ie]Y.,x) 
• ' '·' f([2(E- L\)+ ie]Y.) (26) 

+ l:J .it..,(x,x')F,(x')d3:'. 
•• 0 

Here f(( 2(E- t.) + iE] 1 / 2 ) = f((2(E- t.) + iE ]11 2 , xJx =O 
is the Jost function, Jrkk,(x, x') is the complete kernel 
of the system of integral equations, determined, as fol
lows from Eq. (22), by the relation 

.it..-(x, x') == G(E + kw- L\, x, x') [ ~: (6,_,_,,- 6,+1.,.) + L\11..-], 

where G(E, x, x') is a Green's function in the half
space x > 0. The function G satisfies for x > 0 the 
equation 

1 o' ( -2--a;,+ V(x)-E) G(E,x,x') = 6(x- x') (27} 

and for x > x' contains only waves leaving the metal 
surface or damped waves, and approaches zero for 
x = 0, x' > 0. The function G(E, x, x') is expressed 
explicitly through solution of Eq. (24). Specifically, in
troducing the discontinuous solution of Eq. (24) cp(p, x) 
(which is a linear combination of f(p, x) and f(-p, x)) 
such that cp(p, x)Jx = o = 0, ocp/oxJx = o = 1 are satis
fied, we can write7> 

2 
G(E,x, x') = [f(p, x)qJ(p, x')e(x- x') 

f(i2E + ie) 

+ f(p, x')qJ(p, x)e(x'- x) ]. 
(28} 

Introduction into (27) of the shift t., which is simply 
an energy renormalization, can be motivated here by 
the need of reducing the kernek .itkk' to a nonsingular 
form, which is achieved by choice of t. such that the 
components of terms diagonal in kk' which lead to a 
singularity, arising in taking the trace of an iteration 
of the kernel, are compensated by the term containing 
t. in the preceding iteration. Accordingly, the quantity 
t. should be of the second order in the field. 

The current averaged over the period, constructed 
from the functions F(E, x, t), as a consequence of (21) 
and (23} and of the condition for conservation of the cur
rent averaged over the period, which follows from (20), 
is 

:--(E) ~ i [ oF.. oF, ] i [ oF0 oF, ] 
I = 4-lz F,---F·-- =- F,---Fo- (29} 

• ox ox 2 ax ox .~o 

Using Eqs. (26) and (28), and taking into account (26) 
and (29), we obtain 

-:--p;-_ [ i2(E- L\) ] 
I()- /([2(E-L\)+ie]'k)e(E-L\)+Im.IY'(E) , (30) 

7>In the simplest case V(x) = 0 we have 'I'(P, x) = p- 1 sin px. 
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where 
(31) 

.lf'(E)- 2 J~ d '{ /([2(E-t.)+ie]Y•,x') [ f!!x' ]} 
- o x /([2(E- t.)+ ie]'h) -zt(F_,- F,)+ t.Fo 

Limiting ourselves to the first iterative approximation 
for F0 and F ±l in (26), we find approximately by 
means of (28) 

A"(E) = 2 J~ dx' dx"{/([2(E- t.)+ ieJ'f',x') 
0 • /([2(E-i'.)+ie]"') 

8 2x'x" x(-4-[G(E- w- t.;x',x")- G(E + w- t.;x',x")]+ t.) 

,f([2(E-t.)+ie]'",x")} (32) 
/([2(E-A)+ie]''•) . 

We cannot analyze in detail here the singularities in 
expressions (30)-(32) for E- A< 0 in those cases 
when the Jost function f occurring in the denominator 
approaches zero and resonance effects arise. [13 l In 
these cases the simple use of the perturbation theory 
set forth is not justified, and the necessary corrections 
lead to appearance of a width in the resonance. The 
physical interpretation of this phenomenon is evident: 
if f(p) = O, then states exist in the external field with 
negative energy, a substantial part of which are located 
in the region x > 0 and therefore are easily "cap
tured" by the electromagnetic field. The nature of the 
expression for Im .H' is determined by the behavior of 
the integrands in the vicinity of zero and also depends 
substantially on the form of the potential V(x) entering 
into Eq. (20). 

In the case of rapidly falling potentials, Im .If' 
~ ,fiJW and the results agree with those found in Sec. 3. 
In the case of a Coulomb potential8 > Va(x) = -a/x, the 
situation changes. In view of the singularities in behav
ior of the functions f( ±p, x) in the vicinity of zero, 
which are expressed for this potential in terms of the 
Whittaker function, l 18 l the value of Im .H' turns out, as 
estimates show, to be greater in order of magnitude by 
(me2/fi3w)312 times than for Va(x) = 0. The long-range 
Coulomb field generally has the property of "amplify
ing" the perturbation action, which appears also in the 
case being discussed. In addition, it is important that 
for the case of a Coulomb field the function f( v'2E + i€) 
has in the vicinity of E = 0 for E < 0 an infinite num
ber of zeros (a cluster point), as the result of which a 
substantial additional contribution to the total current 
should occur. 

On the basis of the above, evaluation of (32) in order 
of magnitude gives 

e'mlf--1'. 
.lf'(E)~-v-

wli' wli • 

from which it follows that the effect of the interaction 
of the electron in the final state with a variable field 
with the presence also of the Coulomb interaction can 
become appreciable already at a field strength 8 
~ 105 V /em. We note that the change in the nature of 
the dependence of the current on the external field in-

8lit must be kept in mind that the potential Va(x) always has a 
finite source region, and Ya(x) = -a/x only for x larger than some 
finite dimension of order 5. 

FIG. 2. Photoemission current I as a 
function of the intensity of a ruby laser 
with hw = 1.78 eV for different metals 
(according to the data of Farkas eta!. 
[ 9 ] ): 0-Au, A-Ag, e-Ni. For J < J* 
we have I= J3, and for J > J* the nature 
of the deviation is given by Eq. (30). 

I, arbitrary units 

fD 

-1J 1 11 61 ff/1 !P/J !ZJ 
J,MW/cm' 

tensity, which has been observed experimentally and 
which is the same for different metals, can be explained 
on the basis of the reasoning given above. In Fig. 2 we 
have shown the experimentally measured behavior of 
the photoemission current I from different metals in 
in vacuum as a function of the energy J of the incident 
light flux. It is evident from the figure that for an in
tensity J ~ J* a noticeable change in the dependence of 
I on J occurs. 

5. CONCLUSION 

The general scheme of the discussion given above 
reduces to the following: the matrix element and the in
teraction in the final state with the time-dependent field 
of an electromagnetic wave are discussed individually. 
Here a qualitative difference arises in comparison with 
the case of an interaction in the final state which is in
dependent of time. In the latter case the asymptotic 
wave functions of the final state are uniquely deter
mined from the conditions of energy conservation and 
the choice of only diverging waves. In the field of the 
electromagnetic wave the. condition of energy conserva
tion is replaced by the condition of joining with the time
dependent source function at the production boundary. 
As a result we obtain asymptotically in the final state, 
for example in the situation described in Sec. 3, a whole 
packet of wave functions of the form (11) with coeffi
cients determined by Eq. (17). The limitation to only 
one such function [ 2• 3 l corresponds, generally speaking, 
to the unjustified retention, for example in the right
hand part of Eq. (17), of only the first term with the 
source. Keeping this single term is particularly inade
quate in the approach to the limit w- 0, when there
maining terms in (17) begin to play such an important 
role. In general the iterations of Eq. (17), as in the 
more general method of perturbation theory developed 
in Sec. 4, are an expansion in a series in the parameter 
..;t;JW, so that the obtaining in the limit w- 0 of a final
state interaction with a constant field, i.e., of definite 
combinations of Airy functions, is mathematically far 
from trivial and requires a rearrangement with regu
larization of the corresponding series. 

Another difference in the approach presented is that 
here it is most convenient to study the analog of the 
threshold approximation, and not the Born approxima
tion, of the problem of production in a weak field, 
which for the parameters which are actually achieved 
experimentally, apparently has greater interest. 
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The discussion which we have given shows that the 
formula for the theory of production in a weak field is 
valid for the conditions that ..ftJW < 1 and the final en
ergy E0 + nw turns out to be greater than A. In most 
cases which have been realized up to the present time, 
both of these conditions have been satisfied. At the same 
time, the second condition is always violated directly at 
threshold. For this reason, for example, in the case of 
presence of an additional Coulomb field, the current cor
responding to absorption of a definite number of photons 
exactly at the threshold does not go to zero with a step, 
but only decreases rapidly. We will also point out that 
fulfillment of the second of the conditions mentioned is 
brought about not only by the value of the field intensity
its violation can be detected already with the compara
tively low intensity and high accuracy of near-threshold 
measurements. 

We note in conclusion that the one-dimensional dis
cussion can be extended to description of charged-par
ticle production in a spherically symmetric potential. 
Here it is necessary to make only one remark. In the 
present work in all of the equations we have selected 
the Coulomb gauge, which permits direct expression of 
the interaction in terms of the intensity of the electric 
field. This fact is important since, in spite of the fact 
that the complete series of perturbation theory are 
gauge-invariant, the individual terms of these series, 
beginning with the second, do not possess this property. 
The situation with the gauge is complicated in particu
lar because of the use of approximate wave functions. 
All of this leads, as has been shown, for example, by 
Nikishov and Ritus,£ 21 to the paradoxical possibility of 
obtaining results which depend substantially on the 
gauge. In our opinion, the optimal procedure is descrip
tion of the interaction with the electromagnetic field in 
a formalism which does not depend on the gauge, where 
the potentials are replaced by integrals over the tra
jectory, involving the field intensities F J..LV· £19 ' 20 1 While 
in the one-dimensional case this formalism leads to use 
of the Coulomb gauge, in the three-dimensional case we 
obtain somewhat more complicated but completely de
fined expressions which are given in the references 
cited. 
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