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By using the assumptions of scaling theory for second-order phase transitions a method is developed 
for calculating the shift in the critical temperature in the system due to a superposition of small per­
turbations. The dependence (on the magnitude of the small perturbation) of the coefficients of the 
power functions in the specific heat, the magnetic moment and the susceptibility is estimated. Two 
examples are considered. In the first, the unperturbed system is an Ising model of arbitrary dimen­
sions with nearest-neighbor interaction between the spins. The perturbation is the interaction along 
the diagonals (E is the magnitude of this interaction). The temperature shift is proportional to E. In 
the second example an arbitrary number of planes of spins arranged on top of each other are consid­
ered. The perturbation is the small interaction (~E) between the planes. The temperature shift is 
proportional to E4 / 7 • 

1. INTRODUCTION 

WIDOM,[ 1 J Patashinskii and Pokrovskii[ 2 l and Kada­
noff[ 3 l have developed a theory of second-order phase 
transitions based on dimensional estimates. This theory 
leads to the result tha:t all the critical indices can be 
expressed in terms of two independent parameters. In 
this paper this method is used to solve a particular 
group of problems. 

For definiteness, we consider the Ising model, in 
which the energy E of the system consists of two parts 

E=E.+E., (1) 
where 

J is the exchange energy, ai = ±1 is the spin variable, 
and i is the label of the lattice site at which the given 
spin is positioned; 

E, =- e _Ecr,,cr,, ... cr,n=- e _EE; (n = 1.2, ... ), 

·····•· 
E 1 is the perturbation applied to the system, E is a 
small parameter (E << J), Ej = ai1 , ••• ain' and the in­
dex j includes the totality of coordinates i1, ••• , in. 
The summation in E1 is carried out according to given 
rules. For the characteristic distances between the 
spins appearing in E1 we take the interatomic spacings. 

The difficulty of constructing the perturbation theory 
is due to the fact that the partition function in the zeroth 
approximation in E at the transition point T0 of the un­
perturbed system is not analytic, and so the expansion 
of the partition function Z in a Taylor series is per­
formed not in the parameter E but in the parameter 
E/T; (r0 = (T- T0 )/T0 , Tis the temperature of the sys­
tem, and c is a constant). Summing all the terms of the 
series leads to the result that Z can be expressed in 
terms of an unknown function of one parameter ~ 
= E/r;, and this makes it possible to obtain certain 
qualitative relations between the parameters of the 
theory. 
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The perturbation E 1 can lead to two different cases: 
1) the phase transition in the system disappears (an ex­
ample is the application of an external magnetic field to 
a ferromagnet), 2) the phase transition does not disap­
pear, but there is a shift in the critical point. In the pa­
per we examine in detail an example of the second case: 
an Ising model consisting of an arbitrary number of 
planes arranged on top of each other, with weak inter­
action between them. We succeed in finding the depend­
ence of the shift of the critical point on the parameter E 
of the interaction between the planes (.~T = E4 17). We 
also find the dependence on E of the specific heat, the 
magnetic moment and the susceptibility. 

2. GENERAL METHOD 

The partition function corresponding to the energy 
(1) has the form 

Z=,Eexp(-~)exp(e_EE;), (2) 
{a} j 

where T is the temperature of the system and e = E/T; 
the summation in (2) is performed over all spin configu­
rations. 

It is easy to verify the identity 

exp (BE;) == ch 8(1 + zE;), z = th 8, 

and using this we rewrite (2) in the form 

Z= chN'B· ,Ee-EofT JI (1 + zE;) 
1•1 i 

= chN'I9·Z,_E z• .E (E;,E;, ... E;_>. 
p=O j 

(3) 

(4) 

Here h is a constant depending on the rules for sum­
ming over i in E 1, N is the number of sites in the sys­
tem, Z0 =:0exp (-E0/T), 

is the correlator p of the energies (1 ), each of which is 
in the form of a product of n spins. The correlators of 
the unperturbed system appear in (4). 



EFFECT 0 F SMALL PERTURBATIONS ON THE SHIFT OF THE CRITICAL POINT 783 

By using the method proposed by Patashinskii and 
Pokrovskii, [2 J we introduce the irreducible correlators 
Q by the formulas 

Q(j) =(E;), Q(j,,j,) =(E;,Eh) -Q(j,)Q(j,), 
Q(j,, j,, j,) = (E1,E1,E1,)- Q(j,)Q(j,, j,)- (5) 

- Q,(j,)Q(j., j,)- Q(j,)Q(j,, j,)- Q(j.)Q(j,)Q(j,), ... 

The correlators Q go to zero if any distances be­
tween the spins appearing in Q are greater than the 
correlation range ~ r 0 of the unperturbed sytem. 

The inverse relations have the form 

(E;) = Q(j), (E1,E1,) = Q(j,, j,) + Q(j,)Q(j,), 
(E;,E~;,)=Q(j.,j,,j,) +Q(i,)Q(j,.j,) (6) 

+ Q(j,)Q(j, j,) + Q(j,)Q(j, j,) + Q(j,)Q(j,)Q(i,), ... 

Putting (6) into (4) and using a theorem from [4 l 

(Sec. 15) which enables us to express the free energy F 
in terms of the irreducible correlators only, we obtain 

F=F,+Fo+.E z•.E Q(j, ... ,j.), (7) 
p=1 i 

where Fr is the regular part of the free energy and F0 

is the free energy of the unperturbed system. 
We shall consider the case when the perturbation E 1 

leads to a shift in the critical temperature. In this case 
Ej consists of a product of an even number of spins. 

We shall estimate the correlators occurring in (7) by 
the method of scaling theory. [ 3 l The Kadanoff trans for­
mation from microscopic quantities to cell quantities 
(with cell dimensions L) has the form 

(8) 

where Yo and a are critical indices in the unperturbed 
system; the constant a depends on the number of spins 
and on the rules for the summation in E 1 and in every 
concrete case can be expressed in terms of the indices 
Xo and Yo· 

For the estimates we can assume that all distances 
between spins in the correlator are the same order: 
r ~ r 0 • Then 

Q.(r, To)= Q(it ... i.) ~ (E;, ... E; ) = L-••(Ei< ... E; ) 
p p 

= L-•·Qp(r/L,ToL••). 

The general solution satisfying this equation is 
Q ( .) •• ,., ( ''"' 

p r,"to =To Q. r"to ). (9) 

In the limiting case r T~IYo « 1 (or r « r 0 ) we have 

(10) 

Using the formula (10), we obtain a dimensional esti­
mate for rp: 

N rl.fllo -p(d.-a)/11~ 
~ "Co 'to , 

(11) 

where d is the dimensionality of the space. 
Putting (11) into (7), we rewrite the expression for 

the singular part F s of the free energy in the form 

F,=N,;g1""~b•( (d:a)fy,)P=N,;g1Y•j(£), (12) 
P=l To 

where the bp are constants and ~ = z/T ~d-a)/yo. 
At the phase transition point f(O has a singularity, 

i.e., there exists a point ~0 at which the function f(~) 
is nonanalytic. There are no parameters at our disposal 
from which it would be possible to construct small (or 
large) numbers, and therefore ~0 ~ 1. 

From (12) follows an equation for the transition tem­
perature Tc of the system under consideration: 

6o=z/T!:-a)/llo' "toc=(T,-To)/To. (13) 

From (13) we have the desired formula, determining the 
dependence of T c on z: 

T, =To 1+ -( ( z ) u,.i(d-a)) 

Go ' 
(14) 

i.e., the shift in the transition temperature on applica­
tion of the perturbation is proportional to 
E exp y0/(d- a). 

We shall examine the regions ~ << 1 (z << T~d- a)/Yo) 

and ~ >> 1 (z >> T~d- a)/y0 ). In the first region (z- 0), 
expression (12) for Fs must go over to Fs0 ~Njr~, the 
free energy of the unperturbed problem, i.e., f(~) 
- const as ~ - 0. In the second region (z 

>> T~d- a)/Yo, T 0 - 0), the singular part of the specific 
heat C has the behavior 

C ~ N,;~·· /.(G), ao = 2- d/yo. (15) 

In this region, the specific heat should not have a singu­
larity, i.e., C should not depend on T 0 , whence 

(16) 

By using formula (14) in the expression (12) for the 
free energy, it is easy to go over from the variable T0 

to the variable T = (T - T c )/T 0 : 

(17) 

here, f2 is a new unknown function of the parameter 1J 
= z/T exp (d ·- a)/y0 • 

We shall determine the dependence of E of the coef­
ficients of the power functions of T in the specific heat, 
the magnetic moment M and the susceptibility x . In 
the region T >> z exp y0/(d- a) (z - 0), these thermo­
dynamic variables must behave like the solutions of the 
unperturbed problem: 

In the region T << z exp y0/(d- a) let them be de­
scribed by the formulas 

(18) 

(19) 

(Between the exponents 0!, {3, and y there exists the 
usual scaling theory relation a + 2{3 + y = 2.) It is eas­
iest to find the exponents 0! 13 {3 1, and y 1 by "matching" 
the formulas (18) and (19) in the region T ~ E 

X exp y0/(d- a), whence we obtain the desired formulas 

(y- Yo) d ~ _ dy - yxo- dy0 + y0x 
a,= y(d-a) ' '- y(d-a) ' 

y, = yd-2xoy-dyo+2xyo. (20) 
y(d- a) 

Here Xo, Yo and x, y are the Kadanoff transformation 
exponents in the unperturbed and perturbed systems 
respectively. 

To conclude this section, we note one important fact. 
At the true transition point r 0 is finite, and in the ap-
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proximation (10) and (11), we have a system of finite 
non-interacting regions of dimensions "'r0 • In such a 
system, the phase transition is "blurred". Neverthe­
less, the use of the method presented above is justified, 
since the temperature interval of the "blurring" 7' is 
less than or of the order of the shift T oc in the transi­
tion temperature. In fact, the phase transition is 
"blurred" in the temperature region in which the true 
correlation range of the system rc "'1/(7' exp 1/y) be­
comes of the order of or greater than the dimensions of 

the non-interacting reo-ions r "' 1/Tl/yo > T -l/yo o· 0 o ~ oc • 
whence we obtain a limit for the blurring temperature 

7' ~ T6{Yo. It is easy to show that if the specific heat 
index a does not decrease as a result of applying the 
perturbation, then y/y0 2: 1, i.e., "i:: Toe· 

We shall examine the Ising model with nearest­
neighbor interaction in the zeroth approximation. As 
E 1 we introduce an Ising interaction along the diagonals. 
Then E 1 transforms in (8) as an energy, a = d- y0 , and 
from (14) we obtain Toe"' E:. In the two-dimensional Is­
ing model, this result is in agreement with the exact 
formulas obtained in [s l. 

3. AN ISING MODEL CONSISTING OF AN 
ARBITRARY NUMBER OF INTERACTING SPIN 
PLANES 

We shall consider a system consisting of two inter­
acting spin planes, one on top of the other. The energy 
of such a system has the form 

E = Eo- B L cr.ucr.,. 
... (21) 

Here E0 is the interaction energy of the spins within 
the Ising planes, E: is the interaction constant of the 
spins positioned in different planes, and the index i 
labels the planes. 

In this case the zeroth-approximation partition func­
tion breaks down into a product of partition functions 
referring to the first and second planes, and in formula 
(7) the spins belonging to different planes are averaged 
independently. Therefore, Ej transforms in the Kada­
noff transformations as the square of the magnetic mo­
ment, i.e., E 1 - L exp [ 2(Xa- d)] x E10 whence 
a = 2(d- Xa) = 1/ 4 • Putting this value of a into {14), we 
obtain the desired formula 

(22) 

This result can also be obtained directly from (7), 
taking account of the independent averaging of the spins 
in different planes and estimating Q from the formula 

~ Q (j, ... j,.) ~ ~(a;, .. . a;,.>' 

This estimate of the correlator and also the estimates 
(10) and (11) have been confirmed by exact calculations 
in the framework of the two-dimensional Ising model. [s 1 

Thus, the shift in the critical temperature is prop or­
tional to t:: 4 / 7 • 

We now consider an Ising lattice consisting of L in­
teracting planes. The energy of such a system has the 
form 

E =Eo- e .E OkimO'klm+h (23) 
k,l,m 

where the indices k and l characterize the position of 
the spins within the two-dimensional planes and the in­
dex m labels the planes. In this case, for not too large 
L the formula (22) is conserved, with ~0 depending on 
L. If, however, the number of planes is large enough, 
the corrections to the multiplicative estimates of the 
correlators can, being multiplied by L, become greater 
than the basic terms. In this case we cannot prove (22). 
To calculate the range of L in which expression (22) is 
applicable, we use the following method (pointed out by 
A. M. Polyakov). We calculate the quantity ilM/ilz as 
z - 0 from the formula 

_a_M..,..:(_:To"'--, z_=_O..:_) = - 8-( a .. , exp (e \"1 cr.,m<1>~mH)) I 
& & . ~ -

k,l,m 

(the symbol ( ) denotes averaging with weight 
exp (E0/T)). 

(24) 

Taking into account that averaging of spins belonging 
to different planes is independent, from (24) we obtain 

oM(to, z = 0) -'I 'I 'I 
f}z = xoMo + (L- 2)Mo' ~To 'to. + (L- 2)to • • (25) 

We obtain from (25) that M(z, T 0 ) as z - 0 has the 
form T~/a f(z/T6; 4 ) only in the case when the first term 
of the right-hand side of (25) is much greater than the 
second. By comparing them we find the region of appli­
cability of (22) in L: L- 2 << T;;1 • This condition must 
be fulfilled in the whole range of temperatures from T 0 

to Tc. 
Assuming that in the region T << t:: 4 / 7 the specific 

heat, magnetic moment and susceptibility are described 
by the equalities (19), by "matching" the formulas in 
the regions T << t:: 4 / 7 and T >> t:: 4 / 7 we obtain 

a,= '/,a, ~. = '/ .. - '/,~, y, = '/,y- 1. (26) 

The formulas obtained can be verified experimen­
tally in layer-structure films of the type CoC12 , FeBr 2 , 

Nii2 , etc. by changing E: by applying an external pres­
sure P to the samples and assuming that these sub­
stances can be described by the Ising model. (In the 
Heisenberg model, two dimensional structures do not 
have a phase transition.) It is natural to assume that at 
small pressures 

e=eo +BP, (27) 

where E: 0 is the value of the exchange integral at P = 0 
and B is a constant. Putting (27) into (22), we obtain 
the pressure dependence of the transition temperature. 
The formulas (22) and (26) can also be verified by direct 
computer calculations. 

The formulas (14) and (20), obtained for the Ising 
model, can easily be generalized to other systems. In 
fact, the free energy of any system can be expressed in 
terms of a sum of connected diagrams ([ 41 , Sec. 15); 
this is the generalization of formula (7). The n-th or­
der connected diagrams can be estimated from the for­
mula (11), and this leads to the expressions (14) and 
(20). 

In conclusion, the author thanks M. Sh. Giterman, 
A. I. Larkin, V. L. Pokrovskii and A.M. Polyakov for 
useful discussions. 
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