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The kinetics of mass transfer at constant pressure and temperature near the vaporization critical 
point of a mixture is studied on the basis of the diffusion of argon in a capillary tube filled with carbon 
dioxide and open at one end. The dependence of the diffusion coefficient on the density and the concen
tration was determined near the critical point of carbon dioxide at various temperatures. Transfer 
effects connected with the dependence of the density on the concentration are also investigated. 

1. FORMULATION OF PROBLEM 

NEAR the critical point of vaporization of a solvent, 
in the case of diffusion mixing of the components, mac
roscopic streams resulting from the significant depend
ence of the density on the concentration are observed.[1 l 

In this connection, there is a certain leeway in the 
choice of the diffusion coefficients. [2 J We shall there
fore determine first the diffusion coefficient and present 
the necessary relations for the description of our diffu
sion experiments. 

Let us consider the flux density Ji of the particles 
of the i-th component single-phase system at a constant 
temperature in the absence of external fields and chem
ical reactions: 

J, = nc,w, = -nD grad c, + nc,w, 

c, = n, In, i = 1, 2, 

(1) 

(2) 

(3) 

where D is the diffusion coefficient, ni the number of 
particles of the i-th component per unit volume, ni + n2 

= n the density, Wi the velocity of the i-th component, 
and w the numerical average velocity. 

The diffusion coefficient D defined in (1) character
izes the diffusion fluxes of the solvent and solute 
through a unit area moving with the numerical average 
velocity. 

The system under consideration is in mechanical 
equilibrium.[2J This means that we neglect the accel
eration of the fluxes, and also those terms of the equa
tion of motion which describe the viscous flow. Obvi
ously, in such a system the pressure drops are much 
smaller than the pressure itself, and if the mixing of 
the components occurs in a small volume, one can ex
pect p = cons t. Physically the condition of equilibrium 
denotes that the time of spreading of the pressure gra
dients in a system where there is no diffusion is much 
smaller than the time of establishment of these gradi
ents as a result of diffusion at w = 0. 

Since p = const and T = const, the density depends 
only on the concentration: 

n=f(c,). (4) 

We write down the continuity equation: 
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ac,n I ih + div nc,w, = 0, 

an I ih + div nw = 0. 
(5) 

Equations (1), (4), and (5) serve for the determination 
of five functions of the coordinates and the time: 

c,=c,(r;"t), w,=w,(r,>t), n=n(r,"t). (7) 

According to [2 J, the diffusion flux is given by the 
expression 

-nD grad c, = nc,(w,- w) = -L,(grad !l•) •· T· (8) 

Here JJ.i is the chemical potential of the i-th component 
and Li is a phenomenological coefficient. 

From ( 8) we obtain 

nD = (all, I ac,) •. TL,. (9) 

In the case of a weak solution (ci- 0) there follows 
from [ 3 •43 

1-1• = kT Inc,+ 1JJ,(p, T), 

D = b'kT, D = b,(1 .,.- c,)kT, 

(10) 

(11) 

where b* is the mobility of the molecules relative to 
the coordinate system moving with velocity w, and bi 
is the mobility of the molecules of the i -th component 
relative to a system of coordinates the velocity of which 
is Wj(j * i). Thus, in weak solutions 

L, = nb•c,,= nb,(1- c,)c,. (12) 
If bi does not depend on Ci, but depends only on the 

pressure and the temperature, then the diffusion coeffi
cient of the two-component system, just as in (s J, is 
equal to 

D = b,(1- c,)c,(a!-1./ ac,) •. T· (13) 
The experimental diffusion coefficient was calcu

lated from the experimentally determined functions c, 
w, and n. 

Let us write down the necessary relations for our 
experiments on diffusion in a capillary with one end 
closed. We assume that at the open end there is main
tained a constant concentration Coi• and in the capillary 
at the initial instant of time the components are uni
formly distributed with concentration c~i· From rela
tions (1)-(6) we obtain 

l;z=nc,w,.= -nD 1+- - -[ c, ( an ) ] ac, 
, n aci P,T ax 
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+ J nD ( .!2)' ( iJ'(f~n) ) dx. 
a: ax f}cj p,T 

(14) 

Here the x axis is directed along the capillary from its 
open end, and l is the length of the capillary. It follows 
from (14) that the flux of the i-th component in the capil
lary at c * 0 is not determined at all by the coefficient 
D alone, and depends significantly on the derivative 
(an/1lci)p, T and on the value of the integral. 

The flux of the component in the capillary can in
crease or decrease, depending on the sign of the con
centration gradient, since the integral is an even func
tion of this gradient, and the first term of Eq. (14) is an 
odd function. Obviously, at small drops, when ~Ci 
<< Ci(C0i- C~i << C0i), we can use for the determination 
of Ci = f(x, T) the equationL 5 J 

ac, I ih: = Da'c, I ax•. (15) 

In our case the solution of Eq. (15) is known:[ 6 J 

c.,-cc;=~~ 1 exp{-[n(2m+1)]'vr:} (16) 
c .. -cct n' m~(2m+1)' 2l ' 

where c~i is the average concentration established in 
the capillary after the lapse of a time T. 

When the diffusion occurs in a system that is close 
to the critical point of vaporization of the solvent, the 
diffusion coefficient is expressed, in accordance with 
[ 5 J, by the relation 

D=bkT~v'+a~T+(J3.-v)c (17) 
~v'+ a~T + ~c ' 

where v = (1/n), 0!, {3, and y are the corresponding 
limiting values of the ratios 

-2 (iJ'p I av iJT) cr I (iJ'p I av') CI; -2 (iJ'p I av iJc)cr I (iJ'p I av'lcr; 

2(ap I ac)cr' I kT(a'p I av')c, 

at the critical point of the solvent and ~T and ~v are 
the deviations of the temperature and of the specific 
volume from their critical values. Equation (17) is 
valid assuming that the free energy of the system can 
be expanded in powers of ~T and ~v near the critical 
point of the solvent. In Eq. (17) and in the sequel we 
omit the index i. It is understood that the flux density, 
the concentration, the chemical potential, and the mo
bility pertain to the dissolved substance (argon). 

In the present paper, with C02 -Ar as an example, 
we investigate the diffusion for the purpose of an exper
imental verification of certain consequences that follow 
from relations (14) and (17), and determine those con
centration, density, and temperature intervals in which 
these relations are valid. 

2. EXPERIMENT 

The carbon dioxide-argon system was chosen from 
considerations of convenience in the performance of the 
experiment, and the use of the capillary method [?J gave 
the most complete realization of the condition of me
chanical equilibrium at T = const. 

The diffusion cell (see Fig. 1) was a thick-walled 
capillary (2) of 1 mm diameter and length 75 mm, one 
end of which was inserted in the closed volume (8) of 
the bomb (1). The ends of the capillary were covered 
with internal (3) and external ( 4) valves. In the pres-

FIG. I. Measuring cell. !-high-pres
sure bomb, 2-capillary, 3-internal valve, 8 _ 

4-external valve, 5-silver end pieces, 6- :; 
socket of screw for connecting the cell with 7 ~ 

the inlet and filling systems, 7 -steel ball 
for mixing the gas mixture, 8-closed vol
ume of bomb, 9-external volume of 
bomb, 10-teflon packing gland. 

ence of a concentration drop, the diffusion from the 
capillary into the closed volume of the bomb was ini
tiated by opening the internal value (3), and was termi
nated by closing this valve. The construction of the 
bomb made it possible to perform experiments at pres
sures up to 100 atm. The heat released upon mixing of 
the gases in the capillary was diverted during the diffu
sion time by the metallic walls of the capillary, and the 
bomb itself was placed in a water thermostat whose 
temperature was maintained constant to± 0.005 °C. 

Since the ratio of the volume of the cavity of the bomb 
to the volume of the capillary was 3 x 103, the diffusion 
occurred under constant pressure at all possible concen
tration drops between the capillary and the bomb. For 
the same reason, during the process of diffusion, the 
concentration in the bomb remained almost unchanged 
and the weak mixing ensured satisfaction of the bound
ary condition c0 = const at the open end of the capillary. 

The capillary-method variant employed by us is de
scribed in greater detail in [aJ. 

The measurements were made near the critical 
point, but not too close to it, so that the conditions of 
mechanical equilibrium in the system, as shown by es
timates, were also satisfied. The component concentra
tions were determined with the aid of an MI-1305 mass 
spectrometer. The mass spectrometer was graduated 
against standard calibrated gas mixtures. [9 l 

To estimate the numerical average velocity w we 
measured the average density of the system in the cap
illary as a function of the diffusion time. The density 
was calculated from the pressure of gas let out from 
the capillary into a sufficiently large external vessel 
(of capacity 1 liter) and from the known volume of the 
capillary. The density of the gas mixture in the bomb 
was determined from the weight of the bomb, the inter
nal volume of which was known. 

Before the start of the experiment, the capillary was 
usually filled with pure carbon dioxide, the bomb with a 
miXture of carbon dioxide and argon. The diffusion cell 
was oriented in the thermostat in such a way as to ex
clude simple pouring of the denser gas out of the capil
lary at the start of the diffusion. Before the start of the 
experiment, the pressures in the bomb and in the capil
lary were equalized. 

To determine D = D(n, T, c) we investigated the de
pendence of the average concentration of the argon in 
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the capillary c~ on the time T at the different n, T, 
and c. Since after a sufficiently long diffusion time the 
concentration difference between the bomb and the capil
lary becomes small, the diffusion begins to proceed in 
accordance with Eq. (15). If it is recognized that in the 
course of time the influence of the initial distribution of 
the concentration on the function c0 = cf = f( T) becomes 
smaller and smaller, then at T-oo the following rela
tion holds true: 

c,- cZ = const·exp (- ..:::._D,) 
41' (18) 

The determination of the diffusion coefficient D was 
based on the angle of inclination of the experimental 
plot of ln (c0 - cf) against T at times when the relation. 
(18) was satisfied. 

In addition, experiments were also performed in 
which the concentrations of the argon c0 and c~ differed 
little at the very beginning, and the diffusion proceeded 
in accordance with Eq. (15) from the very start of the 
experiment. The first and second methods gave more 
nearly equal values for the diffusion coefficients. 

The error in the determination of the diffusion coef
ficient was approximately 5%.[ 8 J The measurement ac
curacy in our experiments was limited by the error with 
which the argon concentration was determined. The 
concentration was measured with a relative error of 1%. 
At large diffusion times or small concentration differ
ences, the error in the measurement of D increases, 
since it is necessary to measure a small difference 
(c0 - c~). A considerable increase of the concentration 
differences in order to increase the measurement ac
curacy of (c0 - cf) is impossible. The reason is that on 
approaching the critical point the integral term in (14) 
increases for a given concentration difference, and the 
diffusion can no longer be described by Eq. (15). We 
were therefore unable to approach close enough to the 
critical point to be able to measure correctly (within 
5%) an appreciable decrease (by whole orders of mag
nitude) of the diffusion coefficient D, although a sharp 
decrease of the flow of argon in the capillary could be 
easily observed. 

3, EXPERIMENTAL DATA AND THEm DISCUSSION 

The measured values of the diffusion coefficient D 
as functions of the density p, the temperature T, and 
the concentration c of the dissolved argon in carbon 
dioxide are shown in Figs. 2 and 3. For the purpose of 
comparison of the experimental data with relation (17), 
the ordinates in these figures represent the values of 
D/b0kT) = (Dp/D0 p0 ), and not the diffusion coefficients 
themselves. The quantity that we call the ideal mobility 
b0 is defined as the mobility of the argon atoms rela
tive to the molecules of carbon dioxide under conditions 
when the diffusion occurs in accordance with the theor,Y 
of rarefied gases, i.e., b0 ~ (1/p).[loJ For convenience 
in interpretation, we shall henceforth consider in these 
figures not n but the mass density of the system p. 
This substitution does not affect the character of the 
relations, for in our case the fraction of the argon is 
small and the mass of the atom of its basic isotope Ar40 

differs little from the mass of the molecule of the main 
isotopic combination of carbon dioxide C 1~~6 • It is un-

0.2 0.4 0.6 0.8 
p,g/cm 3 

FIG. 2. Plot of D/b0 kT against the density at T = 35°C for different 
argon concentrations; the solid lines represent interpolation curves. The 
experimental points correspond to the following argon concentrations: 
e-0.02%, X-0.1 %, 0-0.7%, D-7.0%, /::;-7.9%, \7-9.4%. 

_jJ_ 
b'kT 

f.D 

gL-~--~--~~--~6-

Co,mol.% 

FIG. 3 

P c/ Pb True diffusion coefficient 
J.D --------------D to: 

cm 2 /sec 

FIG. 4 

FIG. 3. Dependence of D/b0 kT on the argon concentration at 31.1 
and 35°C for p = 0.47 g/cm3• 

FIG. 4. Dependence of the density of the argon-carbon dioxide 
system in the capillary on the diffusion time for mixing of the gases, and 
the effective diffusion coefficient in the presence of hydrodynamic 
streams connected with the change of the density upon mixing of the 
components. T = 31.1 °C, c0 = 8.5%. •-Experimental values of the 
ratio of the density in the capillary p c and of the density in the born b 
Pb· 0-Values of the diffusion coefficient, formally calculated in ac
cordance with Eq. (16). 

derstood here that the diffusion coefficient and the rela
tions for the fluxes are determined as before in terms 
of the particle density n. 

The upper curve of Fig. 2, in accordance with 
Eq. (11), represents the density dependence of the ratio 
of the true and ideal mobilities b/b0 ) at 35°C, since 
these data were obtained at a sufficiently low argon 
concentration, when the system was a weak solution. 
The solid lines of Fig. 2 represent interpolation curves 
of the relation D = f( p) at 35 o C and at different concen
trations, with allowance for the experimental points of 
Figs. 2 and 3. 

It is seen from Figs. 2 and 3 that at small c, 6T, 
and t:;.v = (-t:.p/p~r) the experimental relations confirm 
the relation (17) (for pure carbon dioxide Tcr = 31.04°C, 
Per = 0.468 g/cm3 , and Per = 72.87 atm). 

Indeed, at t:;.T = const, c = const, and t:;.p- 0, it fol
lows from (17) that 
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_E_=ai\T+(~-y)c+ yc .:\p'. (19) 
b'kT ai\T+~c (ai\T+~c)p' 

The curves (19) represent a family of parabolas of 
second degree, which degenerate into a straight line as 
c - 0. The real curves differ from the curves (19) in 
the entire investigated density interval. However, at 
IApl < 0.1 g/cm3 and c < 1% mol. Ar, i.e., at small de
viations from the critical point of the solvent, the real 
curves correspond to the character of the curve (19). 

At Ap = 0, AT =canst, and low concentrations, it fol
lows from (17) that 

__E._= 1- _Y_c. 
b'kT ai\T (20) 

The real relations shown in Fig. 3 have a linear sec
tion corresponding to Eq. (20) at c < 1% mol. Ar, and 
the smaller AT the larger is the inclination of the lines 
to the c axis. The value of the limiting ratio D/b~T at 
Ap = 0, AT =canst and c- 0 differs little from unity. 
The reason is that the abscissas represent, as already 
mentioned, the ratio of the true and ideal mobilities, 
which do not differ in the theory of [s 1• 

The experimental dependence of the diffusion coeffi
cient on the temperature will not be presented here, 
since our data are incomplete. We only indicate that at 
Ap = Pm - Per• where Pm is the fixed density of the 
mixture and c = canst, we have 

D 
--=A+BL\T, 
b'kT 

(21) 

where A and B are certain constants. In the case of 
the C02 -Ar system we have A> 0 and B > O, and con
sequently D = 0 when AT > 0. This means that the crit
ical temperature of the C02-Ar system is lower than 
the critical temperature of pure carbon dioxide. 

Thus, the experimental data on at least the depend
ence of the diffusion coefficient on c and p confirm the 
relation (17) in the concentration interval 0 < c < 1%, 
the density interval 0.4 < p < 0.55 g/cm 3, and the tem
perature 31.1 < T < 35 o C, with an approximate error 
of 5%. 

Figure 4 shows the change of the average density of 
the gas in the capillary near the critical point upon mix
ing of the carbon dioxide and the argon in the capillary 
during the diffusion process. The same figure shows the 
accompanying change of the effective diffusion coeffi
cient, if the latter is calculated formally in accordance 
with (16). It is seen from Fig. 4 that at the start of the 
diffusion process the density of the argon flow in the 
capillary is quite low because of the strong general 
counterflow due to the decreased density upon mixing 
of the gases in the capillary in accordance with Eq. (14). 

Special experiments have shown that when the sign 
of the concentration difference between the mixtures in 
the capillary and the internal volume of the bomb is re
versed, the flow density of the argon in the capillary is 
strongly increased at the start of the experiment, owing 
to the integral term in (14), decreasing in the course of 
time to the value 

( c an ) Be 1.= -nD 1+-r--- -. 
n ac ax 

Of course, in these experiments, to avoid simple fill
ing with the denser gas, the capillary was oriented with 
the closed end upward. 

An appreciable decrease of the flow of the dissolved 
gas in the capillary as a result of (ClJ..L/Clc)p T- 0 and 
of the increase in the absolute magnitude of (Cln/Clc)p, T 
was first observed in [ 11• 12 1. However, a study of the 
diffusion of the isotopes Ar 36 and Ar40 near their criti
cal points l 13 1 revealed no noticeable deviation from the 
relation D- 1/p, i.e., from the result predicted by the 
theory of rarefied gases. The latter is probably due to 
the small difference between the critical parameters of 
the argon isotopes and consequently is connected with 
the fact that the experiments were performed sufficiently 
far from the critical points, where (Cln/Clc) = 0 and the 
solution can be regarded as weak: (Cl.J..L/Clc)p, T = (kT/c). 

In conclusion, we note that measurements of the dif
fusion coefficients as functions of p, T, and c can yield 
information on the behavior of the chemical potential of 
the components in the solution and concerning the sec
ond derivatives that enter in relation (17). Unfortunately, 
our data are insufficiently complete for reliable calcu
lation of these derivatives and insufficiently accurate to 
bring out the deviations from the classical theory of the 
critical point of Van der Waals and Landau, on which the 
relation (17) is based. 

We are grateful toM. A. Leontovich for interest in 
the work and to I. R. Krichevskli for a fruitful discus
sion. 
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