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It is shown that the effect of saturation in the active medium of a solid-state laser does not lead to 
locking of axial modes. The conditions necessary for equidistance of the laser-generated frequencies 
are ascertained. 

INTRODUCTION 

A number of papers published in recent years[ 1- 61 
report observation of a fine temporal structure in the 
radiation of solid-state lasers in the regime of free 
(spike) generation. A similar structure is possessed, 
according to [7• 81, by giant pulses generated during ac­
tive Q switching. The cause of the rapid oscillations 
of the intensity was taken by the authors of the cited 
papers to be the locking of axial modes. 

Argumented objections against such an interpreta­
tion were advanced by Malyshev et al.[ 9 l, who noted 
significant shortcomings in the experi.mental procedure. 
A more careful experimental verification undertaken 
by them did not confirm the presence of the effect of 
locking of axial modes in ruby and neodymium-glass 
lasers. 

The assumed possibility of mode locking is based 
on the fact that saturation occurs in the active medium, 
with the result that the excited modes interact non­
linearly with one anotherll. A theoretical analysis 
should answer two questions: a) is such an interaction 
capable of ensuring equidistance of the generated fre­
quencies, and, if so, then b) to what phase relations 
between the modes does it lead? 

The indicated questions were discussed in[ 2• 3• 11- 131. 
The analysis was based on the maximum emission 
principle formulated by Statz and Tangl2l, and it was 
concluded that mode locking is possible in principle. 
The Statz and Tang hypothesis reduces to the fact that 
at given mode amplitudes the phase relations between 
them should correspond to the maximum power of the 
stimulated emission. The incorrectness of this hy­
pothesis was demonstrated in[ 141, but the question 
whether mode locking as a result of saturation of the 
active medium iE possible remained open. 

In the present paper we solve the problem by ana­
lyzing the self-consistent system of equations for a 
solid-state laser with homogeneously-broadened gain 
line without using any additional hypotheses. 

1. DERIVATION OF ABBREVIATED EQUATIONS 

As is well known, a quantum generator is described 
by a closed system of equations which includes the 
equations of the electromagnetic field and the equations 

l) As is well known, an analogous mechanism ensures mode locking 
when a medium possessing saturable absorption is present in the laser 
resonator [ 10). 
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for the components of the density matrix. When aver­
aged over the period of the oscillations 2n/ wo, these 
equations take the form[ 1s] 

de, [ 1 . ] . J dV. --+ - + t(w,.- w,) e.= ~w,d cp,a , 
dt 2T,, v, 

(1.1a) 

aa 1 id ' 
-+-a=--~ cp.e.N, at T, 21i l...l 

.l!.=t 
(1.1b) 

f)N N-N, idE • -+---=-- cp,(e.-a-e.a). 
f)t T,. 1i (1.1 c) 

k=i 

The symbols have the following meaning: ek( t)--field 
intensity of the mode with number k; a(t, z)-non­
diagonal element of the density matrix referred to a 
unit volume; N( t, z) = N2 - N1-density of the popula­
tion difference of the working levels; N0-equilibrium 
value of N in the absence of generation; <Pk(z)-eigen­
functions of the resonator normalized to its volume 
Vc; d-matrix element of dipole moment of the transi­
tion; w0-transition frequency; Wck--natural frequen­
cies of the resonator; Tck = Qk/ Wck-relaxation time 
of the radiation in the resonator; T .--relaxation time 
of the population difference; T2-reciprocal of the 
width of the spectral line of the working transition. All 
the fields are assumed to be polarized in the same 
plane. 

The frequencies of the axial modes of optical reso­
nators satisfy the condition 

jw,-wmjT,>1, (1.2) 

which makes it possible to average Eqs. (1.1) again, 
but now over the period of the beats between modes. 
Such a method was used by Ostrovskit[ 151 in the inves­
tigation of a two-mode quantum generator. 

We make the change of variable 

(1.3) 

and expand a in a series . 
a= Ea,(t, z)exp[-i(w,- w,)t]. (1.4) 

·-· 
If the generation frequency spectrum wk is equidis­
tant, the difference of the populations can be repre­
sented in the form of the series 

·-· 
N = N(t, z) + E N,(t, z)exp {illlwt} + N1*(t, z)exp {- illlwt}. (1.5) 

1=1 

Substituting (1.3)-(1.5) in (1.1b) and neglecting the 
derivative aak/at, we obtain after averaging 
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(1.6) 

Expressions for Nz can easily be found by substituting 
(1.3)-(1.6) in Eq. (1.1c). It is necessary to bear in 
mind here that N0 will not depend on the time I Nz/Nzl 
« ~w, and that for all the crystals and glasses used in 
lasers the following inequality holds true: 

/w. -Wm /T, > 1. (1.7) 

We present the approximate formula 
'd2T •-• 

N -N z 2 ~ ( • • 1- 2fi2l!:J.w .l..J 'Pm'Pm+l gm + gm+!) VmVm+!, (1.8) 
m=l 

the region of validity of which is limited not only by 
(1.2) and (1.7), but also by the condition I Nz/N I « 1. 
This condition, as seen from (1.8), is satisfied when 

(1.9) 

Estimates show that the inequality (1.9) is satisfied up 
to powers attained in giant pulses. In the same approx­
imation, the following equation is valid for N: 

oN N-N, d'T,~ 2 -+---= --- 'P•Iv•I'Reg,N ot T, li' . 
A 

(1.10) 

The equation for the complex amplitudes of the 
fields is obtained by substituting (1.3) and (1.4) in (1.1a) 
and then averaging: 

dv. [ 1 ] --+ --+ i( w,.- w.) v. = iwox.v •. 
dt 2T,. 

(1.11) 

The quantity 

x. = d J <p.cr,dVIv. 
v, (1.12) 

is the susceptibility of the active medium at the fre­
quency wk. 

It will be convenient in what follows, after introduc­
ing the mode phases Bk, 

v. = / v./ exp i6., 

to change over to real variables. Equation (1.1) then 
breaks up into two. The obtained closed system of 
laser equations will be written in dimensionless form 

~:=a-n r 1 + ~ (1- ~.2 )<p.2X•2 ]' (1.13a) 
• 

~(x.2)= -Gx.'(2Imx.+C.), 
dr: 
a e. 

""d; = -G2(~,.- ~.)+ G Rex •. 

(1.13b) 

(1.13c) 

The new variables and coefficients are connected with 
the old ones by the relations 

r:=t/ T,, x.= /v./d(T,T,) •t, I li, n ='w,T,T"a:'N I li, 

a=nN,/N, x.=(J),T"x•, G=T,IT", G,=T,IT,, 

c.= T,, IT,., ~. = T,(w,- w,), ~,. = T,(w,,- w,), tJ. = T,tJ.w. 

(1.14) 
The susceptibility Kk is made up of linear and non­
linear parts, the expressions for which are obtained 
from (1.6), (1.8), and (1.12): 

'XAL = 1/2n(kk) (1- ~.')(~A- i), (1.15) 

R NL 1 { ~k=l ~o-l Xk-!XmXm+! (k l k + l) 
ex~~. = -- - n - , , m, m · 

4G,tJ. lx, 
l=i m=l 

X n(k, k + l, m, m + l) [2 sin 8+ +(2~.- Llm+•+ tJ.;.)sin 8+) J. 
1 A-t o-1 (1 16) 

Im X NL _ {~ ~ XA-lXmXm+l • 
• --~ .l..J.l..J lx, n(k-l,k,m.m+l)· 

l:ooi m=-t 

•-A •-1 

X [2sin e_ +(2~. + ~m+l- ~m)cos B-l+ ~ ~ Xk+!XmXm+l. 
.l..J lx. 

1=1 m=i 

X n(k, k + l, m, m + l) [2sin 9+ -(M.- ~m+<+ ~m)cosil+] l· 
(1.17) 

To abbreviate the notation we introduce, in addition to 
(1.14), the symbols 

n(kk)= V,-• Jn<p,'dV, 
~vc 

n(k, k'. m, m') = V, -• J n<p•'P••'Pm'Pm• dV. 

v, (1.18) 

The quantity gk is expanded in powers of ~k: 

g.= 1 + i~.~ ~.2 - i~.'. 

with all terms included in K~, and only the first two 

terms in K rL. 

Although all the active media used in solid-state 
lasers, as already mentioned, have large relaxation 
times T 1 , it is of interest in principle to consider the 
case of inertialess active media, for which 

(1.19) 

The equations (1.13) remain valid in this case, too, but 
the nonlinear susceptibility is no longer described by 
formulas (1.16) and (1.17). Calculating Nz, we can 
disregard the derivative aN/at in (1.1c ), and obtain in 
place of (1.8) the expression 

(1.20) 

The condition for its validity, which follows from the 
condition I Nz /N I « 1, is 

sd'T,T,/vm"x/'~ li'. (1.21) 

Relation (1.20) leads to the following formulas for the 
components of the nonlinear susceptibility: 

f A-1 1-1 

RexNL~--{~ ~n(k-lk +Z)Xk-!XmXm+l. e A 2 ~£..J , ,m,m s1n _ 
1=1 m=i xli. 

•-k ,_, 

- ~&,n(k,k+l,m,m+l) X•+•x;:m+< sine+}• (1.22) 

1 1!.-1 •-1 

Imx NL ~- {~ ~ n(k -l k + l) x._,XmXm+! e • 2 .l..J .l..J • , m, m ,cos _ 
1=1 m=t x~~. 

•-A 1-l 

+ ~~n(k,k+l,m,m+l) XA+tXmXm+l COS8+}· (1.23) 
l:=:ot m=t X11. 

2. INERTIAL ACTIVE MEDIUM. CASE OF THREE 
MODES 

If the number of excited modes is equal to three, 
then the right-hand sides of Eqs. (1.13) depend on the 
single phase combination 
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e = e, - :w, + e, 
and relations (1.16) reduce to 

f { . f Rex,NL = 4G,~ n(1122)x,' + 2 n(1133)xa' 

z~,•x, } 
+n(f223)--[2cos a +(2~,-~~)srn·e] ' x, 

Re x16 L = 4;,~ {n(2233)x,'- n(H22)x,• + 2n(1223)x,x.~ sill 6}, 

(2.1) 
1 { . f Rex,NL =- 4G,~ n(2233)x,• + 2 n(H33)x,• 

z1•z, . } 
+n(f223)--[2cosO+(M,+ ~)sin9] . x, 

The equation for the determination of 9 is a linear 
combination of the equations (1.13c) 

d6/d"J: = -G,(~,,- 2h,, + ~,,)+ G Re(x,- 2x, + x.). (2.2) 

We note that by virtue of the equidistance of the fre­
quencies Wk the unknown quantities ~k have dropped 
out from the first term of the right hand side of (2.2). 

When d 8/ dr = 0, Eq. (2.2) determines the depend­
ence of e on the other variables and on the laser 
parameters. We shall not consider the problem in 
general form, but confine ourselves to the most inter­
esting particular case of modes with close amplitudes. 
Such an assumption makes it possible to put n( 1122) 
= n( 2233) and to neglect the difference of Xk in a 
number of terms. Substituting (2.1) in (2.2), we obtain, 
with allowance for the remarks already made, the 
equation 

G,(~"- 2~,, + ~,.)- G Re(x/- 2x,L + x,L) 

= __E_ {[2n(1122)- ~n(1133) ] (x,'- x,') 
4G,~ 2 (2.3) 

- 2n(1223) (x,'- x,')cos e -10n(1223)x'~sin a}· 
Equation (2.3) does not always have real solutions. 
There are certainly no such solutions if the inequality 

G,j~"-2~,,+!l.,,j~max{ GG jn{1223)jx', _q_j(x,'-x,')n(1223)1}· 
' ' G,~ . 

(2.4) 
which limits the permissible nonequidistance of the 
natural frequencies of the resonator, is not satisfied. 

For a numerical estimate it is necessary to know 
the order of magnitude of xk: and n( 1223). It follows 
from (1.13) that n <a and in the stationary regime xk: 
:5 a - 1. Specifying the characteristic values of the 
relaxation times T 1 = 10-3 sec, T2 = :10-12 sec, Tc 
= 10-8 sec ( G = lOS, G2 = 109 ), assuming the modes to 
be separated in frequency by ~w = 109 sec-1 (~ = 10-3 ) 

and with a certain margin assuming that In( 1223) I 
= a, x~ - x; ~ a - 1, we obtain from (2.4) the condi­
tion 

jru"- 2ru,,+ru,,j <;;;;; 10'a(a-1)Sec-1• 

The excess over the generation threshold a usually 
does not exceed several times ten, and consequently 
the requirements concerning the equidistance of the 
natural frequencies of the resonator are exceedingly 
stringent. Failure to meet them means that the 
generated frequencies will likewise be nonequidistant. 

The most noticeable deviations of the frequencies 
Wk from an equidistant distribution are caused by the 
same factors that lead to selection of axial modes. The 

end faces of the active element, which are parallel to 
the mirrors, the plane-parallel substrates of the 
mirrors, the plane-parallel plates or Fabry-Perot in­
terferometers in the space between the mirrors, all 
these transform the resonator into a system of 
coupled resonators. As a consequence, the frequencies 
of the axial modes turn out to be shifted by different 
and considerable distances from their unperturbed 
values[ 16 ' 17l. 

It is clear from the foregoing that the effect of mode 
locking can certainly not be observed in lasers unless 
great care is taken to eliminate all the factors that 
lead to mode selection. None of the experiments of 
this kind described in the literature satisfy this re­
quirement, with the exception of[9 l, 

If mode selection is completely eliminated, then the 
generation spectrum is equidistant and the question 
arises as to the phases of the excited modes. Since in 
this case Ck = 1, the following equation is deduced 
from (1.13b) for the stationary generation regime: 

Re x.L = ~.(1 + Imx.NL)/2. (2.5) 

In the specified approximation we have 

I NL _ n(1223) x,'x, . 
mx, - ------smO 

2G,~ x, ' 
I NL _ n(1223) x,'x, . 
mx, ------sma 

2G,!l. x, ' 
(2.6) 

and (2.3) reduces to 
[2n(1122) - 'f,n(1133)] (x,'- x,') 

= 2n (1223)[ (x,'- x,') cos e + 3x'~ sine]. (2. 7) 

When I xi - x; I » ~, the solution of (2. 7) is 

cos 9 = [2n(1122) - 1/2n(1133)] I 2n(1223), (2.8) 

and in the opposite case 

sine= 0. (2.9) 

Each of these solutions gives two possible values of e. 
In order to ascertain which of them is realized, it is 
necessary, generally speaking, to investigate the sys­
tem (1.13) for stability. However, definite information 
can also be obtained by a simpler method, by specifying 
a small deviation of the phase ~ = 8 - 0, and lineariz­
Eq. (2.2). In the case !xi- x;l »~,such an approach 
leads to the conclusion that the state with n( 1223) 
(xi - x; ) sin 0 > 0, is unstable, and in the case 
I xi - x; I « ~ the unstable state is the one for which 
n(1223)cos e < 0. 

Acting in accordance with the maximum emission 
principle, we should have calculated the radiation power 
averaged over the period of the oscillations 
W = - I;xk: 1m "k· The part of W that depends explicitly 

k 
on the phase, starting from (2.6), is equal to zero 21 • 

Only allowance for the small terms leads to expression 
W( 9)"' n(1223)x1 x~x3 cos 8. The quantity W( 9) 
reaches a maximum at e = 0 if n( 1223) > 0 and 
e = 1T if n( 1223) < 0. These values of 9 are solutions 
of (1.13c) only if the natural frequencies of the reso-

2) An expression W(O) =f. 0 is obtained in [ 2 ] with a similar approxi· 
mation; this is apparently due to an error in the calculations. 
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nator are equidistant and the amplitudes of the outer­
most modes are equal. In all other cases the maximum 
emission principle leads to an incorrect result. 

3. CASE OF LARGE NUMBER OF MODES 

The selecting factors are eliminated to the greatest 
degree when the resonator mirrors are coated directly 
on the end surfaces of the active element. This is the 
laser variant which we shall investigate below. To 
answer the question as to the stationary phases we 
shall, as in the preceding section, consider the system 
of equations 

(3.1) 

where Fk denotes the right-hand sides of (1.13c). 
Since the natural frequencies of the resonator are 
equidistant, and the contribution of the terms Re KL is 
small in accord with (2.5), Eqs. (3.1) reduce to k 

(3.2) 

The number of equations in (3.2) coincides with the 
number of phase combinations of the type Ilk - llk+l 
- lim + llm+l, and the latter must be found when the 
system is solved. When s >> 1, however, this pro­
cedure is quite laborious and is furthermore unneces­
sary. It is possible to verify that the values 
lll(k', m', l')j « 1 corresponding to the locked modes 
do not satisfy the equations by substituting these values 
directly in (3.2). From the symmetry of the problem 
follows equality of the amplitudes of the modes that 
are located at equal distances from the center of the 
gain line. As shown in[ 18l, the intensity of the mode 
depends on the detuning in accordance with a quadratic 
law. If now we turn to formulas (1.16), then we can 
see that, accurate to small terms of higher order the 
following relation holds for symmetrically arran~ed 
modes: 

Consequently, the values jll (k', m ', l') « 1 satisfy 
only those equations of (3.2) in which m = s - k - l + 1. 
!his proves the absence of the effect of mode locking 
m lasers with an inertial active medium. 

The situation is somewhat different if the active 
medium is inertial. Substituting in (3.2) the values of 
Re Kf:L, which are determined by formulas (1.22), we 

verify that ll+(k, m, l) = e_ (k, m, l) = 0 is one of the 
possible solutions of the system. The center of gravity 
of the problem now shifts to an investigation of the 
stability. Linearizing the phase equations (1.13c) rela­
tive to this stationary value of the phases, we obtain 
for small deviations "k = Bk - Bk the equation 

1 dft. NL 1 [~ z 
~~~ Imx. - 2 ~n(k-l,k-l,k,k)xk-1 

l=i 

·-· + En(k,k,k+l,k+l)x.~,]. (3.3) 
1=1 

We see from it that d"k/dT > 0, i.e., the regime of 
generation with locked modes is unstable. 

Stable mode locking can be obtained only by revers­
ing the sign of the difference of the populations of the 
medium in which the nonlinear interaction takes place. 
In practice it is necessary to this end to place in the 
resonato~, in addition to the amplifying element, also 
a saturatmg absorber[loJ. Since the interaction of the 
modes occurs not only in the absorber but also in the 
amplifying medium, and the latter prevents synchroni­
zation, the difference between the absorber level popu­
lations should exceed a certain finite value. 

In conclusion, we note that in cases when B± (k, m, 
l) = ?• 1T satisfy the quantum-generator equations, the 
max1mum emission principle leads to correct phase 
relations. In these cases this principle may turn out 
to be a convenient means of solving individual prob­
lems, for example determining the dependence of the 
the waveform of the emitted signal on the position of 
the cell with saturable absorber in the resonator[19l. 
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