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A general equation is derived for the probability of multiphoton excitation of atoms as a function of 
the incident radiation intensity. It is shown that transparency of a resonantly absorbing medium may 
occur which is not due to saturation of the transition but to resonance detuning induced by the radia­
tion. The atomic parameters for two-, three-, and four-photon excitation of alkali metals and helium 
are evaluated by the quantum defect method. 

1. INTRODUCTION 

IN investigations of interactions between strong elec­
tromagnetic fields and atoms the possibility of multi­
photon resonmce at isolated intermediate atomic levels 
often plays an important role. Examples are resonant 
Ramm scattering, harmonic generation with the possi­
bility of resonance, multiphoton resonance in multipho­
ton ionization etc. It is important to understand how the 
probabilities of these processes depend on detuning, the 
widths of the resonance level and the laser line, and 
the radiation intensity. 

When fields act upon atoms, shifts and broadening of 
the resonance levels can significantly affect the way in 
which the probability of a particular process depends 
on the external field intensity. This is easily seen from 
the following simple considerations. In the general case 
resonance detuning ~ is a function of both the fre­
quency and intensity of the external field. By varying 
the frequency at a fixed intensity we obtain the well­
known dependence of the probability of the process on 
the external field frequency. However, at a fixed fre­
quency an increase of intensity is accompanied by a 
shift of the atomic level; this in turn chmges the de­
tuning md consequently makes the probability depend­
ent on the field intensity. It is easily seen that 

(1) 

is a necessary condition of this dependence; here 
~E(I) is the level shift as a function of the intensity, r 
and r f are the widths of the laser line and atomic 
level, respectively. The possible "trmsparency" of 
the absorbing medium is thus not associated with 
saturation of the resonant transition but with resonance 
detuning induced by the field. We shall now proceed 
with a more detailed study of this process in the multi­
photon excitation of atoms. 

2. FUNDAMENTAL EQUATIONS 

From general quantum mechanical considerations 
we obtain the following equation for the probability that 
an atom will be excited from level i to level f with the 
absorption of N quanta having the frequencies k 1, 

k2 , ••• , kN and polarizations ~,\ 1 , ~,\ 2 , ••• , ~AN 1,: 

1l Atomic units are used in the present work. 
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w~ = 2n(2na)' _E f ... f (k,(~~~:.:J' 11iN, (k)~<N>(k, t..)g(k)JNM'Q,, 

' 
where a = Y 137, 

l'jt,(k)= I~< I( £..J f r,e,,)GE,+h,+ ... +>N (r,, r,) .... 
II(1 ... N) 

' ' 2 GE,+A N (rN_., rN) (rNEA N) I i , 

L) denotes summation over all permutations of the 
numbers ( 1, 2, ... ), 

~(NJ(k, 1..) = Sp {p (0) a,;\ .. . a~,,Na,,,, ... a".v'N} 

(3) 

is the N-th order correlation function of the field, p(O) 
is the field density matrix at the initial moment, aiO._ 
and akA are the creation and annihilation operators of 
photons in a given mode, g(k) is the shape of the final 
atomic level (assuming that the initial level is much 
narrower thm the final level), and GE is the Green's 
function for an electron undergoing the trmsition (see 
below). 

We shall need to specify the form of the correlation 
func,tion ~ (N). For simplicity we assume that we have 
independent field modes, so that the density matrix em 
be factored [lJ: 

(4) 

where Pki.\i is the density matrix of the i-th mode. 
Equation (4) applies to thermal radiation, for example. 

When (4) is fulfilled the correlation function em be 
put into the form 

~(NJ(k,A) = (m(k,l..,)>•.,, ·<m(kNAN)), 

where ( m(k, ,\)) is the average number of photons 
having momentum k and polarization ~,\. 

When, furthermore, the spectral intensities are 
represented by 

k' 
1.,. = (2n)'f dQ.<m(k, t..)>, (5) 

Eq. (2) becomes 

w.~:=2,;(2na)H .EfJNkJ,,,, ... J,NNI'J>(N)(k)g(k), (6) 
' ' 

We shall assume hereinafter that all photons are 
polarized in the z direction; therefore the ,\ index will 
be omitted. 

For a qualitative analysis of (6) it will be assumed 
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that the spectral intensities Ik and the final state g(k) 
have Gaussian shapes with the half-widths rand rf: 

I= !_ exp{_J!:..:_-ko)'}, 
l'nr r' 

(k) i { (oo1,'+!'J.E-k,-k,- ... -kN)~} 
g = --=- exp - . 

l'nr, ft' (7) 

Here w[i is the energy difference between the atomic 

levels in the absence of an external field and AE = Wfi 

- wfi. In addition, r f depends on the external field 
intensity. 

Direct numerical calculations show that 11 (N) is a 
slowly varying function of k within the limits of r and 
rf, and can therefore be taken outside the integrals. 
As a result we obtain 

I N 1 { l'i' }. W\~ = 2 {n (-) --exp --. -, -. TJ<N>(k0), 
Io ferr feff 

where 

Io = 14.038 x 1016 W/cm 2 ; 1l(N), A, and reff are 
reckoned in atomic u:1its. 

(8) 

From (8) we see that when (1) is not fulfilled (for 
example, when the radiation linewidth greatly exceeds 
the level shifts, or when the external field is of low 
intensity) we obtain the familiar intensity dependence 

w~N) f ~IN. On the other hand, we can easily imagine 

a situation where for sufficiently large values of AE 
and Nr 2 » rf the probability W~N) f becomes a de­

creasing function of the intensity; this can be inter­
preted as resonance detuning by the external field (see 
the numerical example below). 

3. NUMERICAL RESULTS AND DISCUSSION 

In the calculations of specific atomic transitions the 
most complex t~sk is the computation of the atomic 
parameters 1l(NJ(k), which in the general case are 
expressed by the sum of an ( N -· 1 )-fold infinite series. 
In calculating 1l(N)(k) we use the Green's function for 

an optical electron in an atom, formulated in the ap­
proximation called the quantum defect method. [21 It is 
shown in [21 that the optical electron Green's function 

GE(r r') = ~ ll'n(r)'IJ;(r') + JdE'Ij)E."(r),PE•(r') 
' ._, En-E E'-E 

n=t 

can be represented by 

GE(r, r') = Eg,(E; r, r') Y,m • (r') Y,"(r), 
l,m 

g,(E;r,r )=- . M.n ... •~ - Wvt+ 1J2 -
, v f(l+1-v) . (2r<) . (2r>) 

rr' r ( 2l + 2) ' ' v ' . v . 

_ v f(l+1-v) sinn(f.t,(v)+l) W , (2r)w , (2r') 
rr' f(l + 1 + v) sin 1t(f.t1(v) + v)' '·'+ 1' v •.<+ ~ " · 

(9) 

Here v = 1/..J -2E; r>( r <) is the larger (smaller) of 
thetwoquantities rand r'; J..Lz(v) isthequantumde­
fect interpolated in accordance with the experiment 
atomic spectrum: Enz = -zr2[n- J..Lz(Enz W; M and 
W are Whittaker functions. 

utilizing (9) and integrating over the angle variables 
in (3), we represent the expression for 1l(N)(k) by 
radial integrals of the Whittaker functions: 

(10) 

The lower integration limit r 0 removes the unphysi­
cal divergence of the W functions at r = 0 and can be 
set equal to the radius of the atomic residue. Since 
each inner integral in (10) has a single variable limit, 
integration with a constant interval makes (10) actually 
equivalent to a simple integral. This fact greatly re­
duces the calculating time, which also becomes some­
what dependent on the number of photons participating 
in the transition. The Whittaker functions are easily 
calculated by means of expansions into convergent 
power series.r 3 l 

Table I. The parameter 7J< 2>(k1, k 2 ) for two-photon excita­
tion 21S- 61S in a He atom 

tJ"''il n<2l(k1 , k,) 

I kJ(I.)~/i n<2l (k,, k,) kJ ... Jl n<2l (k,, k,) 
102 at. units 102 at. units 102 at. units 

0.15 7,381 0,275 0.2823 0,4 0.07253 
O.IJ5 0,3740 0.3 - 0.425 0,04600 
0.2 0,05740 0.325 5.093 0,475 0.003246 
0,225 0.003484 0.35 0.4282 0.475 0.002731 
0.25 0.05186 0.375 0.1501 0.5 0.002522 

Table II. The parameter 1J< 2>(k 1, k 11 ) for two-photon exci­
tion 6s - 9d in a Cs atom 

'11 

I 
25 

o. 
0.1 
0.1 
0.1 
0.2 
0.2 
0.2 

5 
75 

25 
5 

I n<2l (k,, k,) I 105 at. units 

39.11 
355.55 

10097.6 
35,55 
8.142 

' 3.360 
1,582 

kt/CJl0/"f. (2) I k./CJ.J'tt n<2l (k, , k,) Tl (kl,k2) 
105 at. units 105 at. units 

0.275 0.6412 0.4 1.653 
o:3 0.05298 0.425 1.308 
0,325' 9.813 0.45 1.152 
0,35 6.613 0.475 1.056 
0.375 2.471 0,5 1,038 
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Table III 

&, 10' V/cm I 0,8 9.9 I 11,1 11.2 11,3 11.4 11.5 11.6 [1.1 1.8 
t.E,cm·• 11.50 ,1,90 ,2.3412.8313 .. 3713.9514,5915.27,5.99,6.76,7,58 

x 12,8412,7412.60 12.40 12.1611.8411.441 o.941 o.341-0.381-1.26 

We computed the 7J(N) parameters for transitions 
that are observable at available laser frequencies. 
These were the two-photon excitations 2'S - 6'S in 
He and 6s - 9d in Cs at the ruby laser frequency 
w = 14 402 cm-1 : 

TJ~ =4.66·10' at. units, TJc~>= 1.034·10' at. units, 

the three-photon excitations 4s - 4f in K and 6s 
- 6f in Cs at the neodymium laser frequency 
w = 9433 cm-1 : 

TJ~'J= 1.76·10" at. units, TJ~?= 1.535·10" at. units, 

and the four-photon excitation 3s - 7s in Na at the 
neodymium laser frequency: 

TJJ!>= 7.4-10" at. units. 

It is of interest that from the standpoint of the hydro­
gen-like model the result 7Jc~ < 11~> is unexpected and 

indicates that the real atomic structure plays an im­
portant role in multiphoton excitation. 

In connection with the development of two-photon 
spect~oscopy it is of interest to calculate 71< 2> for dif­
ferent frequencies of the absorbed photons. Tables I 
and II give values of 7J< 2>(k 1, k 2 ) for He and Cs de­
pending on the frequency of one of the photons. The 
energy unit is here the energy of the transition between 
the given levels: Ef - Ei = w£i. 

We shall now consider how the shifting of atomic 
levels in an external field affects multiphoton absorp­
tion in the case of three-photon excitation of the 4f 
level in K. The characteristic resonance pattern for 
this transition was observed in f4 l, where four-photon 
ionization of potassium was investigated with a tunable 
laser. It was found that the probability of four-photon 
ionization obeys the I4 law only when the three-photon 
resonance is considerably detuned; when the detuning 
is diminished the probability becomes proportional to 
IK with K < 4. 

We calculate the possible values of K on the basis 
of (8) and the assumption that the atomic level shift is 
determined by the quadratic Stark effect. For the dy­
namic polarizability of the 4s and 4f levels of potas­
sium at the ruby laser frequency, calculated by the 
procedure described in(sJ, we have a 4s = 640 at. units 

and a4f = ( -490 + 55i) at. units. We then obtain 

K(I) =In ( W(I + 61) )/ln( I+ 61) 
W(l) I . 

In the case of zero detuning ( w£z = Nk0 ) we obtain 

K (I)= N- 2 ( r/1E )2(1 _ ~·1 ) _ ;1 . 
eff r eff r eff 

Here we assume that ri is determined by ionization 
broadeningj this corresponds to the experimental con­
ditions inr4 • Assuming r = 3 cmf 4 l for the laser width, 
we obtain the values of K(I) given in Table III. 

Our results show that atomic level shifts induced by 
an external field can strongly change the dependence of 
multiphoton excitation probability on the field intensity. 
Specifically, Table III shows that in sufficiently high 
fields K(I) becomes negative, i.e., the excitation prob­
ability falls off with increasing intensity (the medium 
becomes transparent). As already mentioned in our 
Introduction, this behavior of W( I) results from the 
detuning of three-photon resonance induced by a strong 
stark shift, i.e., the stark shift displaces the atomic 
line into a wing of the laser emission line. The behav­
ior of the curve in the region where the laser and 
atomic lines overlap slightly depends on the line shapes; 
it is clear, however, that W( I) remains qualitatively 
unchanged. 

The authors are indebted to G. A. Delone, N. B. 
Delone, and M. S. Rabinovich for valuable discussions. 
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