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The nature of the discrete spectrum for an electron in the Coulomb field of a bare nucleus with charge 
Z close to 137 is investigated. In this region of Z values the level spectrum significantly depends on 
the cutoff of the Coulomb potential at small distances. Equation (6) is obtained for the determination of 
the energy levels En· In the logarithmic approximation (i.e., provided that L = ln (li/mcR) >> 1, where 
m is the electron mass and R is the nuclear radius), this equation can be solved in explicit form and 
the simple expressions (24), (25), and (28) are obtained for En· 

1. INTRODUCTION 

IT has recently been shown [1-3 l that the relativistic 
Coulomb problem possesses a number of interesting 
properties. The "collapse to the center," which is well
known from quantum mechanics/ 4 ' 5 l appears in the Di
rac equation for a point charge Ze with Z> 137; as a conse
quence the energy levels, the S matrix, and the other 
physical quantities become sensitive to the cutoff of the 
Coulomb potential V(r) = -a/r at small distances. The 
introduction of cutoff in the region r < R (i.e., taking 
the finite size of the nucleus into account) enables us to 
follow the movement of the levels for Z > 137.r 6 l With 
an increase of Z the critical value Z = Zcr(R) > 137 
is attained, at which the ground level 1S1 ; 2 sinks down 
to the boundary of the lower continuum, E = -mc2 • 

For any cutoff model it is relatively simple to cal
culate the value of Zcr (see Eq. (8) in article C3 l), It is 
more difficult to obtain an idea about the nature of the 
entire discrete spectrum in the region of Z values close 
to 137 because the equation for the energy levels E 
= E n{a) has a rather cumbersome form (see Eq. (6) be
low). For this reason, the case of a very small cutoff 
radius R is considered in the present article, namely, 
the case when R is not only small compared to the 
Compton wavelength of the electron, but the more strin
gent condition (10) is also satisfied. In this approxima
tion, which we shall call the "logarithmic approxima
tion," the problem can be solved in analytic form and 
the simple formulas {24) and (28) are obtained for the 
energy levels. It is found that the dependence E = En(a) 
has a steplike nature: at that instant (a = a~If>) when 
the levels nS112 and (n+1)P 112 disappear into the lower 
continuum, all of the levels lying above them abruptly, 
almost discontinuously, decrease their energy (for more 
details, see Sec. 3, in particular, Fig. 2). 

The question of the accuracy of the logarithmic ap
proximation in the region R ~ 10-12 em (Sec. 3) and the 
Coulomb problem for a scalar particle (Sec. 6) are also 
discussed in this article. In Sec. 4 several remarks are 
made about the application of Case's general method r5 l 
of investigating singular potentials to the present prob
lem. A brief discussion of the obtained results is given 
in Sec. 7. The Appendix contains a summary of the 
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basic formulas for the Whittaker functions wk, ig(x) 
which are used in the article. 

At the present time there is a great deal of interest 
in work in the area of the synthesis of superheavy ele
ments. In a number of laboratories searches are being 
made for elements with Z = 110, 114, and 126; certain 
isotopes of these elements possess (according to theo
retical calculations) a rather large degree of stability 
with respect to spontaneous fission, a -decay, and {3-
decay (see the review articles[7,al). The detection of a 
nucleus with z = 110 in cosmic rays was reported in 
article r9 l. There are certain indications f?J of the pos
sible existence of stable nuclei near Z = 164. In this 
connection, it appears to us that the discussion of the 
properties of the discrete spectrum for Z ~ 137 is 
rather urgent. 

2. THE COULOMB PROBLEM FOR LARGE 
VALUES OF Z 

Let us consider the Dirac equation with the potentialu 

V 
{ 

-air for r>R 
(r)= 

- ; f ( ~ } for 0 < r < R 
(1) 

(R denotes the nuclear radius). In the external region 
r > R we have the exact solution: 

(2) 

where x1 and x 2 are expressed in terms of Whittaker 
functions (see formulas (12)-(14) in r3 l). In the interior 
region we change to the dimensionless variable p = r /R 
and we take into consideration that R << 1. Discarding 
terms of order R, we obtain the following equations for 
the radial functions G and F: 

dG >< dF >< 
-=--G+af(p)F, -=-af(p)G+-F (3) 

dp p dp p 

(0 < p < 1 ). Here, as usual, Clo l 

(4) 

!)Here and in what follows, Oi = Ze 2/hc = Z/137. The system of units 
is used in which h = c = m = I, where m denotes the electron's mass. The 
remaining notation is the same as in article [ 3 ). 
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In order to determine the spectirum of the levels, it 
is sufficient to find from (3) only a single constant, 
which we choose to be the logarithmic derivative of the 
function G(r) at the edge of the m1k:leus: 

~=[!_dG] .. 
G dr ,~R · 

(5} 

We note that l; depends on a, K, and on the form of 
the cutoff function f( p) (but it doe~ not depend on the 
energy). The energy level € is fo}md by matching the 
wave functions at r = R. In addition to l;, the quantities 
F /G and F' /G for r - R - 0, wh~ch can be expressed 
in terms of l; if p is set equal to !unity in (3} and it is 
taken into consideration that f(1) :c 1, appear in the con
dition for matching. Finally we obtain2 > 

1 ' g' + ~· xW,. ,,(x) / W,, ;g(x) =-+ ~- • 
2 at+x+ ~ (6} 

where x = 2AR, A = ~. g = .Jb. 2 - K2, and for the 
quantities k and t one can take either the values: 

k=~-~ 
A 2 ' 

A , 1/ 1- e 
t=~= Y·1+ 8 ' 

(7a) 

corresponding to the continuity of! x fix 11 or else the 
values , 

00 1 1/1-8 
k=T+2• t=- ~ 1+e ' 

(7b) 

corresponding to the continuity of x ~ /x 2 • One can show 
that for R << 1 both of these eq~tions are equivalent. 
We emphasize that Eq. (6) refers !to any arbitrary level 
of the discrete spectrum (with arbitrary values of j, K, 

and of the principal quantum number n). For the levels 
nS112 (K = -1) it goes over into Eq. (16) of article rsJ if 
we set l; =a cot a, which corresponds to a square cut-
off: f(p} = 1. , 

One can solve Eq. (6} by numehcal methods if one 
uses the integral representations given in the Appendix 
in order to calculate the Whittak~r functions. In the fol
lowing section we shall analyze tJilis equation qualita
tively in the limiting case R - 0, Here we only indicate 
what happens for € - -1. In thisi case t - oo and on the 
right-hand side of Eq. (6) one h~ left l; + %. Using for
mula (A.8) from [2 J, we find 

zK;,'(z) IK;,(z) =1 2~ 
(6'} 

(v = 2g, z = y8aR, a= Ucr). 

We still need to discuss one q?estion of a methodo
logical nature. As follows from (2}, as r - oo the wave 
functions with energy € have the following asymptotic 
form for -1 < € < 1: 

G = Ay1 + ee-''r"'l', F = -AY1- 8e-"r"'i\ (8a) 

and at the boundary of the lower ~ontinuum, € = -1, 
they have the asymptotic form 

G=A'(2rla)-'l•e-l'"', F=;A'(2rla)'l,e-l'"' (8b} 

(the constants A and A' are determined from the nor
malization). At first glance it is,not clear how the 
asymptotic form (8a} changes intjo the form (8b). In or
der to exhibit this, we note that the quasiclassical solu
tion is valid for r >> 1: 

2>With regard to the properties of the Whittaker function with an 
imaginary index, Wk, ig(x), see the Appendix. 

G,Fooexp{iS(r)}, S(r)= fdrV 2a 8 -A', 
o r 

where S(r) is the classical action for the radial motion. 
Let € < O, then (r0 = 2a IE 1/(1- €2)) 

G(r)oo exp {-A [ )'r(r + r,)+ r,ln (Y :. + V 1 +:. } ]} 

= {exp(-)'8alelr) for r~r, 
e-'' (rlr,) "'1' for r ~ r, · (9) 

From here it is clear that the usual asymptotic behavior, 
e-Ar, which is characteristic for bound states, s> is es
tablished only for r > r 0 • When € - -1, then the point 
r 0 goes off to infinity and the opposite condition, r <<r0 , 

is satisfied; therefore G and F are proportional to 
exp (-./Bar). 

3, THE LOGARITHMIC APPROXIMATION 

Equation (6) for the level spectrum has too compli
cated a form and requires numerical calculations. In 
order to simplify the situation, let us suppose that 
R - 0; then the "large logarithm" 

L=-lnR~1. (10} 

appears in the problem. We shall call this approxima
tion the logarithmic approximation, or, more briefly, 
the L-approximation. First of all let us present some 
qualitative arguments in favor of the fact that the ex
pansion parameter is L - 1 • 

1) First let a < 1. For the ground state of an elec
tron in the field of a point charge Ze we have ( y 
=..f1-a 2 , A =a) 

8= Y1- a', 
(11) 

G(r) = Ay1 + 8e-''r', F= -AY1- 8"-''r•: 

Using perturbation theory to calculate the levelshift due 
to the cutoff of the potential in (1 ), we obtain (for 
R << 1) 

a'(2aR)'' 1 

de= yf(2y + 1) { 1- 2y j f(x)r'dx}. (12) 

The correction ~€ ceases to be small when R 2 Y ~ 1, 
i.e., yL~ 1 or 1-a .$ L-2 • 

2) Let us estimate the energy of the ground state for 
a = 1 (this value of a is critical for a point charge). In 
this case the functions G and F have logarithmic singu
larities at the origin: 

G(r) oor"=1+e!nr for r-+0, 

from which 

~ = [rG' I G] '~" ,= e I (1 + e In R). 

Since L >> 1 and l; = 0(1 ), then €(181 ; 2 ) "' L - 1 for 
a=l. 

(13) 

3) For a > 1 the wave functions in the problem in
volving the Coulomb potential of a point charge have a 
singularity of the following type at the origin (r << 1): 

G,Foosin(glnr'+<'l), g=Ya'-=-f (14) 

3lThe factor r aE/'A is due to the interaction of the electron with the 
nucleus, which Uust as in the nonrelativistic case) significantly distorts 
the wave function at arbitrarily large distances from the nucleus. 
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For the solutions which decrease at infinity, the phase 
o = O(g) for a - 1. With the cutoff taken into account, 
formula (14) is valid in the external region r > R. 
Since the wave function of the ground state does not have 
any nodes, then the 1S1 ; 2 level may exist only for gL 
< rr. The maximum possible values of g and a corre
spond to the disappearance of this level into the lower 
continuum: 

gcr =niL, Gcr = 1 + n' / 2L'. (15) 

From what has been said it is clear that the param
eter L determines both the width of that region around 
the point a = 1, in which it is essential to take the finite 
size of the nucleus into account, as well as the depend-· 
ence € = E:(a) in this range of values of a. 

Upon fulfillment of condition (10), by using the 
asymptotic form (A.2) for the Whittaker function, one 
can simplify Eq. (6) to the form: 

(2).R)"'= (~+ig)(at+x+ig)r(1+2ig)f('f,-k-ig) (16) 
(~- ig) (at+ x- ig) r(1- 2ig)r('/,- k + ig) 

Here the specific form of the cutoff enters in a very 
simple way (only in terms of !;). 

If a< I K I = j + %, then g- iy (y = ·IK2 - a 2 ). Pro
vided that y L >> 1 the roots of Eq. (16) are close to the 
poles of the function r (- E:a/,\ + y), appearing in the de
nominator. This leads to the usual expression for the 
energy: 

Bn;= [ 1+ (n,~y)' r•:, n,=n-lxl=0,1,2, ... , (17) 

which is characteristic of the Coulomb problem with a 
point charge. 

Taking the logarithm of (16) and taking into consider
ation that g << 1 according to (15), we obtain 

1 1 1 n'n 
ln2).R+ -argr('/,- k + ig)= -+--+ 2¢(1)-- (18) 

g · ~ at+x g 

(n' is an integer). As g- + 0 the function w (x, g) 
= r(x + ig) experiences abrupt discontinuities near the 
points x = -n at which the poles of the r function are 
located. Namely, if I x + n I >> g, then to within terms 
of order g2 one has 

{ · g.p(x) for x>O 
w(J1,g)= -(n+1)n+g¢(x) for-(n+1)<x<-n (19) 

where zj;(x) denotes the logarithmic derivative of the 
r-function. In the immediate vicinity of the pole 
x = -n one has 

( x+n) w(x,g)=-,- nn+arcctg-g- . (19') 

In the region 1 >> I x + n I >> g formulas (19) and (19'} 
are matched to each other, and both expressions give 

w(x,g)=-[(n+v)n+g/(x+n)+ ... ], (19"} 

where v = 0 for x >-nand v = 1 for x < -n. We fur
ther note that w (x, g) is a monotonically increasing 
function of x (for arbitrary g > 0) since 

w'(x,g)=lm.p(x+ig)=gt[ (x+k)'+g']- 1 >,0. (19m) 
k=:O 

Now one can write down the solution of Eq. (16) in 

explicit form. First let us assume that € = -1. Then 
%- k- oo (see Eq. (7)) and from Eqs. (18) and (19) 
we obtain 

n'n 
gcr = L -ln(2j + 1)+ 2¢(1)+ ~-• (20} 

. 1 (n'n)' 
Gcr=T+-+ +O(L-') 

2 (2j +1)£' (21) 

Here n' = 1, 2, 3, ... ; zj;(1) = -0.5772 (Euler's con
stant). In what follows we shall relate n' with K and 
with the principal quantum number n. We note that acr · 
depends on the sign of K only by means of !; • Since we 
are interested in the region a i':! 1, then it is sufficient 
to consider states of the type S1; 2 and P 1 ; 2 (K = '1'1) 
since for all remaining levels acr is too large and for 
a< 2 one can use formula (17) for them, this formula 
referring to the Coulomb potential of a point charge. In 
the field of a point charge with a< 1 the states nS1 ; 2 

and nP1 ; 2 are degenerate with respect to the energy; 
as a -1 

n-1 y 
Bn = + + O(y'). 

(n'-2n+2)'1• (n'-2n+2)'1• 
(22) 

For n = 1 this formula describes the nondegenerate 
ground level 1S11 2 , and for n :::: 2 it describes the states 
nS 112 and nP1 ; 2 • Expression (22} has a square-root sin
gularity at the point a = 1, and therefore it cannot be 
directly continued into the region a > 1. 

If quantities of the order of unity4 > are neglected in 
comparison with quantities of the order of L, and if we 
do not yet consider the case € - -1 (when In ,\ cannot 
be neglected in comparison with L), then the equation 
for the energy levels takes the following simple form: 

w(-e/'A,g)=gL-nnforx=-1, (23a) 

w(1-e/'A,g)=gL- (n-1) n forx=+1, (23b} 

where n denotes the principal quantum number, and 
w (x, g) is the function defined above. In this connection, 
the number n' appearing in Eq. (20) is given by 
n' = n- (1 + K)/2. With (19') taken into account, from 
here we obtain the following result for the ground state 
energy: 

( ) - {ycthyL for a.;;; 1 · 
s, a- . 

. gctggL for a~ 1 (24) 

We recall that y = ~ and g =-/ a 2 - 1 . In con
trast to (22) the point a = 1 is not singular for € 1(a). 
In the region a< 1 (i.e., up to the "collapse to the cen
ter" coth y L - 1 and even for L2(1 - a) >> 1 the en
ergy E: 1(a) essentially does not depend on the cutoff of 
V(r) (see Fig. 1), and (24) goes over into the correspond
ing formula for a point charge, € 1(a) --/1- a 2 • 

For a> 1 the function (24) has a pole for g = gcr 
= rr/L. Indeed, it is clear that E: 1(acr) = -1 but not 

- oo. The point is that the approximation (23} ceases to 
be valid when E: 1 (a) is not small. For g- gcr "'L-2 

there exists a region of rapid decrease of the energy € 1 

from values close to zero to the boundary € = -1. We 
shall investigate it a little bit later on (see Eq. (28)). 

4) In this connection we automatically neglect the splitting of the 
levels nSy, and nPy, which is of the order of()+ -L)L "2 . In this approxi
mation the energy levels do not depend on the shape of the cutoff of 
the potential inside the nucleus. 
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FIG. I. The ground state energy 
€1 (a) for values of a close to unity. 
Curve~ I , 2, and 3 correspond to 
L = 3.$, 5, and I 0 (the correspond
ing values of the cutoff radius R 
are equal to 12, 2.6, and 0.0 !8F). 
The limiting curve for R = 0 (the 
point ~oulomb potential) has a 
squarej-root singularity at a= I, and 
then gpes vertically downwards. 

FIQ. 2. The energies of the lower 
levels qf the discrete spectrum near 
a= I (the qualitative form of €n(a) 

" for L ~I); an= I+ n2 7r2I2U de
notes the critical value acr for the 
levels nSv. and (n + l)Py,. 

Let us summarize. An electrci>n in the state with 
j = 1'2 begins to "experience" the singularity of the 
Coulomb potential as r - 0 when a approaches the 
critical value ll!cr(O) = 1 (for a point charge, R = O) at 
a distance of the order of L - 2 (s~e Fig. 1). We note that 
the difference ll!cr(R) - 1 is als<) of the order of L - 2 , 

that is, all phenomena associated with the "collapse to 
the center" take place in the region All! ~ L -2 around 
the point 0! = 1. In this connection, as long as gcr - g 
>> L-2 (or, what is the same thi4g, ll!cr- a>> L-3), 

the energy of the ground state is!described by formu-
la {24). 

Now let us go on to the excited levels (n 2:: 2, K = ±1). 
For them one will have E/>..- n- 1 as a ..... 1. There
fore the approximation {19') is valid for the w -function 
in {23), and this gives 

e,(a.)= . n-1 + · gctggL (25 ) 
(n'- 2n + 2) 'I• (n1 - 2n + 2)''• · 

This expression remains valid even for a < 1 pro
vided we make the substitution g- iy. Taking the cut
off of the Coulomb potential into :account changes formu
la (22) for a point charge only with regard to y 
- y coth y L. This correction xiapidly becomes unim
portant as the value of a decreqses; however in the 
region I a - 11 ~ L - 2 around the point a = 1 it has a 
decisive value. According.to Eq, {25) the energies of 
all levels decrease monotonica4y with increasing a. 
For g = gcr = 7T/L the 1S1 ; 2 an~ 2P1 ; 2 levels disap
pear into the lower continuum, :!fnd the remaining levels 
undergo a shift: n- n- 1, after which the level spec
trum is again described by formula {25). The next 
abrupt change in the spectrum occurs for g = 27T/L, 
when the levels ~112 and 3P 1 ; 2! disappear into the 
lower continuum, and so forth. With an increase of a, 
such abrupt changes may be rep~ated many times (see 
Fig. 2) as long as, finally, we do not escape from the 
region g << 1. 

The entire region a > 1 is subdivided into regions 
corresponding to slow and rapid changes of the level 
spectrum. The "slow" regions correspond to 
(n- 1)7T/L < g < n7T/L, where g is separated from the 
end points of this interval by an amount ~ L - 2 ; here 

formulas {24) and {25) are applicable. The "rapid" re
gions consist of the intervals Ag ~ L -2 around the 
critical points g = g~~> = n7T/L. In order to obtain the 
equation for E (a) in this case, it is necessary to return 
to Eq. {18) and to take into consideration that the r
function is not close to a pole, and therefore one can use 
formula {19) for w(%- k, g). Ultimately we find (for 
E > 0) 

1jl ( -e I A.) = n-'L(gL- rm). (26) 

The curve E = E{a), determined by this equation, 
joins smoothly with (25). Let us demonstrate this for 
the example of the 2S112 level, whose energy is given by 

ez(a.)={2-Y•[1-ni2L(n-gL)) for gL<n (27) 
gctggL for n < gL < 2n 

Under the condition 1 >> I gL - 7T I >> L-., from here 
we find 

{ 2-'1• [ 1 + !_ ctg gL] for o < gL < " 
,,(a)= 1 2 {27') 

l ~~~ fur"<~<~ 
On the other hand, the argument of the lJI-function in 

Eq. {26) changes from -1 to 0, and if it is taken into 
consideration that near the pole (z- -n) 

"¢(z) =-(z+n)-'+.P(n+ 1) +O(z+n), 

then from (26) we obtain the same expression as above 
for E2{a). 

We still have to investigate the behavior of the levels 
in the region E 2::-1, which is immediately adjacent to 
the lower continuum. Here in Eq. (18) it is necessary to 
retain the ln >.., which is important as E - -1. With the 
aid of (20) we can eliminate from {18) the terms which 
depend on t, after which the equation for E takes the 
form 

/±(e)= L(1- g I gcr), Kcr = n'n I L. {28) 

For the nS112 levels we have: K = -1, 0 > E 2:: -1, 
n' = n, and 

f-(e)=-[ln2,+1J1(-~)+ 1 + 8 ] {29a) 
. A. 1+e+A. ' 

and for the nP1 ; 2 levels one has: K = +1, n' = n- 1, 
2-1 / 2 > E 2:: -1, and 

f+(e)=- [lnA-+111(1-~)- 1+e -] 
A 1+e+A. · {29b) 

We note that as E- -1 

f+(e) = '1,(1 +e) + ... , /-(e) = '/,(1 +e) +... {30) 

From here it follows that as a - ll!cr the levels disap
pear into the lower continuum, having a finite derivative 
(oE/oa): 

c,J-' 
e,="(a.) = -1 + --(O.cr- a.) n'z - {31) 

(c+ = 3/27T2 , c_ = 3/57T2 ). For L >> 1 and for small val
ues of n the curve E = E(a) becomes very steep: almost 
all of the change of E from 0 (or 2-1 / 2 ) to -1 takes 
place in the region All!~ L - 3 near ll!cr· For highly
excited states (n >> 1) this sharp decrease is smoothed 
out. At the other end of the interval under consideration, 
expressions {28) and {29) join smoothly with {25). For 
example, for n = 1 (the ground state) under the assump
tion that gcr >> gcr- g >> g~r both {24) and {28) give 
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e,(a) = '-gcr" I 11(g .. - g);= -11 I L(n- gL) (32) 

(here gcr =7r/L, 1 >> IE: 1 1 >> L-1). The dependence 
E: = E:(a) which is determined by Eq. (28) is shown in 
Fig. 3. For purposes of comparison, the corresponding 
curve for a scalar particle is also shown. 

In addition to the spectrum of the levels, it is also of 
interest to determine the form of the wave functions as 
a - 1. In order to not have to present cumbersome for
mulas, we shall confine our investigation to the ground 
state. In analogy with (11) we assume 

G = )'1 + ee-l'z'[i- (e' + t'H,(z) + ... ], 
(33) 

F= -Y1- ee-•l'z'[1- (e'+ t'Hz(z) + ... ] 

(x = 2.\r; E:, g- 0). Substituting these expansions into 
the Dirac equation, we obtain the following equations 
for the corrections ~ 1 and ~2 : 

I (f f) ) f ~.- 2+-;- (s.-~. =2$· (34) 

6.'+ (~-~) (~.-6.)= __ 1 . 
2 z . 2z 

The solution of this system (vanishing at infinity) has 
the form 

• - .. {In(f +t) f } 
t;,,,(z)=Jdte . t =F2(f+t) ' 

0 

(35) 

where 
s•.,z(z) ='/.In' z + O(ln z) .as z~ 0, 

,, = 1/2z+ ... ' sz=3/2z+ ... as. z~oo. 
(36) 

The condition for the applicability of the expansion 
(33) is (€ 2 + g2)1 ~(x)l <<1, or x >> Xo = exp{-(€ 2 +g2)_1 , 2}. 

Here E: = g cot gL; therefore Xo ""R for a> 1, but for 
a< 1 the quantity Xo = exp {-y-1 sinh yL} rapidly tends 
to zero, and the difference between the wave functions 
(33) and expressions (11), which are characteristic of a 
point charge, becomes small for all values of r. We 
further note that in the region Xo << x << 1 (when 
g ln r >> 1) 

G ~ -F = 1 + e In :x: -- 'f,g'ln' x + ... (37) 

In concluding this section, let us say a few words 
about the accuracy of the L-approximation in the actual 
domain corresponding to the radii of heavy nuclei, 
R Rl 10-12 em (L = 3 to 4). For this purpose let us com
pare the critical values acr obtained by the numerical 
solution of Eq. (6') with the asymptotic formulas (20) 
and (21). As always happens in such cases, the problem 
arises about the choice of the best asymptotic form, 
since expressions which do not differ among themselves 
in the limit L - oo give different numerical results for 
small values of L. For example, the calculation ac
cording to formula (21) leads to an error "" 40% in the 
value of O!cr- 1. On the other hand, the more fundamen
tal (with regard to its derivation) relation (20) has bet
ter accuracy. Let us introduce the notation 

cr,=Lgcr/n, era= (L-ln2+2,P(1) +1;-')gcr/11 (38) 

(the deviation of the quantities a1 and a2 from unity 
characterizes the accuracy of the L-approximation). 
From Fig. 4 it is seen that the simplest formula gcr 
= 1r/L gives gcr with an excess, but taking account of 
the correction terms in (20), which depend on the cutoff, 

0 

f ., 

-f.O 

FIG. 3 FIG. 4 

FIG. 3. The dependence of the energy level € on a in the region of 
"rapid collapse" associated with a--> acr· Curves I and 2 refer to the 
levels IS~ and 2P~, and curve 3 refers to the IS level for a particle with 
zero spin. The quantity y = L(g-gcr)/gcr is plotted along the axis of 
abscissas. 

FIG. 4. The question of the accuracy of the L-approximation. The 
curves refer to the lowest level IS~ for model I (a square cutoff, see [2] ). 

The values of the cutoff radius R are given in fermis. 

improves the accuracy in the region of small values of 
R and gives an approximation with a shortage. On the 
whole (20) determines gcr with an accuracy ""10%. 

The small differences between the values of acr for 
the nS11 2 and (n + 1 )P 112 levels are also described by 
formula (20), but with worse accuracy: 

(39) 

One can show that t+ is always greater than t_, and 
therefore ~an> 0. Numerically, for R = 10 F and 
n = 1, expression (39) gives ~a1 = 0.20, which exceeds 
the true value ~a1 = 0.11 by almost a factor of two. 

4. COMMENT ON CASE'S METHOD 

In addition to the explicit introduction of a cutoff for 
r < R, there is another method for investigating singu
lar potentials in quantum mechanics, which is based on 
the choice of the boundary conditions at the origin (see 
[5, lll). The Dirac equation with the potential V(r) 
= -a/r is now considered over the entire space 0 < r 
< oo. For r - 0, by neglecting the nonsingular terms we 
obtain the system of equations 

rG' = -xG + aF, rF' = -aG + 'XF, (40) 

whose solutions have the form r±'Y. As long as a 
< IK I, one can choose the less singular solution from 
these solutions and, by following [4 J, it is not difficult 
to show that it is precisely this solution which is of 
physical significance. 

For a = IK I the regular solution is finite at the ori
gin: 

G(O) I F(O) =sign x, (41a) 

but the singular solution has a logarithmic singularity: 

1 f ). 
G(r)=lnr-2;+ ... , F(r)=(lnr+2,;"'+ ... signx. (41b) 
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Finally, if a > I K I , then y = ig, and both solutions 
are identically acceptable. In this case (r- 0) 

G =sin (glnr +II), F =sin (glnr +II +11'), (42) 

where {3 is an arbitrary constant, but the phase shift 1/J 
between F and G is quite definite: 

x+ig " ··--e'• =--, 1j1 =arccos- (g=l'a'-x'). (43) 
a a 

The physical meaning of {3 consists in the fact that 
it is the phase of the wave which is reflected from the 
singular point r = 0 (see article [lll, in which this con
stant is denoted by y, for more details). The choice of 
the boundary condition at the origin reduces to the 
choice of {3 in (42). After this the spectrum of the en
ergy levels E is uniquely determined, the wave func
tions for different points E1 * E2 of the spectrum are 
mutually orthogonal, and the system of eigenfunctions 
is complete.[5 l 

The parameter {3 contains all the information about 
the nature of the cutoff of the potential at small distances 
which is needed in order to determine the energy level 
spectrum. In fact, from Eqs. (5) and (42) we find 

~=gctg(glnR+II), ll=gL+arctg(gfb). (44) 

In order to determine the discrete spectrum, we note 
that a solution which vanishes at infinity (see Eq. (2)) 
exists for any value of E in the interval -1 :s; E < 1. 
For r- 0 it has the form (42) with a definite phase 
{3 = {3(E, a, «)which one can find by solving the Dirac 
equation: 

II = gIn 2A - arg{ {a y' 11; 8
8 +" + ig) 

xr(1+2ig)/r(t- : 8 +ign 

(45) 

(this expression simplifies somewhat for E = -1: 
{3 = g ln 2a- arg r (1 + 2ig)). Equating expressions (44) 
and (45), we obtain the transcendental equation which 
determines the discrete spectrum. Let us consider it 
in the L-approximation for K = ::1::1. Then (N = (n2 - 2n 
+ 2)1/2) 

(46) 

If here {3 is formally regarded as a quantity that does 
not depend on a, then En as a function of a will have a 
singularity for a = 1, and also for a> 1 the energy En 
may either decrease with increasing values of a or 
else increase depending on the sign of cot {3. 

Such an ambiguity was considered earlier[sJ as a 
definite difficulty of the given method. However, in any 
cutoff model, {3 ..... gL for a- 1 and L >> 1, and (46) 
goes into (25). This indicates that for R <<1 Case's 
method leads to the same results as the direct cutoff of 
the potential in the region r < R. It is only necessary 
to take into consideration that the phase {3, which has 
been introduced in a formal manner, is in fact uniquely 
associated with ~ and R. We note that one can also ob
tain formula (20) for gcr by using this method. 

5. CONCERNING THE POSITRON LEVELS 

Usually the levels of the discrete spectrum emerge 
from the upper continuum. The specific Coulomb prob-

lem is then such that in this case for E = -1 there is 
always a wave function which is decreasing at infinity: 

G(r) = aK,(}'Bar), 

F(r) = (x + y)K,(}'8ar) -l'2arK,+<(l'Bar) 
(47) 

(here T = 2y = U «2 - a 2 ; for a > I K I we have T = iv 
= 2 ig). For r-oo the functions G and F decrease as 
indicated in (8b), but for r- 0 

G~r•, F/G=(x-y)/a. (47') 

For y < %(that is, for a> v'j(j + 1) ) the normaliza
tion integral -

J<G'+F')dr 
• 

converges, and the question arises as to the possible 
existence of positron levels. Such levels would emerge 
from the lower continuum and would correspond to 
bound states of the positron. 5 ' Even though V(r) 
= a/r > 0 for positrons, the effective potentiil.l Ueff(r) 
gives an attraction at small distances due to the term 
-% V2, and therefore such levels may arise in principle. 
It is impossible to clarify the question about the exist
ence of positron levels by working with the point Cou
lomb potential. Just like earlier we cut off V(r) for 
r < R and only in the final answer do we let R tend to 
zero. For the determination of those values of a at 
which a bound state of the electrons exists with E = -1 
(i.e., a positron level with zero binding energy), we 
have Eq. (6') in which iv = T. 

First let a < I K I • Then T is real, and therefore for 
z>O 

K/(z) [ K,_,(z) ] 
z K,(z) =- z K,(z) +T <-T<O. 

On the other hand, one can show61 that ~ > v'K2 - a 2 > 0. 
Hence it follows that for a < I« I Eq. (6') does not have 
any solutions. However, if a> I« I then solutions ap
pear for the critical values a = acr of the coupling 
constant. In connection with a small change a = acr 
+ ~a the energy level is changed by the amount ~E 
= -{3~a, where {3 > 0 (see formula (29) in [2 l), There
fore, for a > acr the level under consideration with
draws into the lower continuum (a positron level would 
move upwards, i.e., it would correspond to {3 < 0). 

One can make an even more general statement about 
the behavior of the curve E = e(a) for an arbitrary 
level. Namely, let V{r) = -av(r) where a is the cou
pling constant, and v(r) 2: 0 is any non-negative func
tion (the cutoff Coulomb potential (1) belongs to this 
type). Calculating the level shift by using perturbation 
theory, we find 

iJ -
..;.. =-J v(r){G'(r, e)+F'(r.8)}dr < 0 (48) 
ua • 

S)The Dirac equation is invariant under the substitutions: e-> -e, 
V(r)-> -V(r), "-> -K, G "T F; therefore the level withe= -I for an 
electron corresponds to a positron level with zero binding energy. A. B. 
Migdal called our attention to the necessity of investigating the question 
of positron levels. 

6>The logarithmic derivative~ at the edge of the nucleus decreases 
with increase of the function f(p). For an arbitrary distribution inside 
the nucleus f(p) < p-1 , and Eqs. (3) for f(p) = p-1 have the exact solu
tion: G = p-r, F/G = (K + -y)/cx for which~= 'Y =~ 
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(here G and F are the exact wave functions of the level 
with energy E). From here it is seen that with increas
ing a the curve E = E(a) falls monotonically, which 
corresponds to an electron level but not to a positron 
level. For Coulomb potentials V(r) with a Coulomb tail 
at infinity, F 2 + G2 is quadratically integrable not only 
for -1 < E < 1 but also for E = -1; therefore the level 
E(a) moves off into the lower continuum, having a finite 
derivative ClE/Cla. 

Thus, bound states of positrons are not present in the 
Coulomb field (1) (at any rate, not within the framework 
of the single-particle approximation). 

6. THE COULOMB PROBLEM FOR A SCALAR 
PARTICLE 

Let us consider a particle with zero spin in a Cou
lomb field. For a< 1(2 the Klein-Gordon equation has 
the solution (for a point charge) 

Xo(r) = e-''1"', 

'A= ('/,- 1'/,- a') 'I•, a='/,+ Y'/,- a'. 

This wave function 71 corresponds to the lowest level 
n = 1, l = 0; its energy is given by E1 = ..ra. For a>% 
it is necessary to introduce a cutoff of the potential 
V(r). 

As long as a<%, only the s-states, which we there
fore consider, experience a strong perturbation. The 
energy level is determined from the equation[sJ 

xW~.;1(x)/W •. ,,(x) = 1; 

(x=2'AR, k,=ea/'J.., g=Ya'-'/,) 
(49) 

Hence in the L-approximation k- % = g cot gL, and 
for the energy of the ground state we find 

e, = ['/, + g ctg gL]Y• ~ 2-v, [1 + gctg gL]. (50) 

When g- gcr = rr/L (a- acr =% + rr2 L-2 ) the low
est level rapidly falls to E = -1. Its motion in this 
range of values of a is determined by an equation of 
the type (28), in which it is necessary to replace f±(E) 
by 

fo(e)=- [rn2'A +¢( \: 8
)]. 

See the corresponding curve in Fig. 3. From a compari
son with Section 3 it is obvious that the nature of the de
pendences of E on a are identical for spin 0 and spin 
Y2 (the relativistic Coulomb potential does not distin
guish between bosons and fermions ). 

Finally we note that Eq. (49) simplifies considerably 
for E = 0 and E = -1. In the first case, according to 
Eq. (A.9) we obtain 

RK;,'(R)=(s-'/,)K;,(R) (e=O), (51) 
and for E = - 1 we have 

zK;/ (z) = (2~- 1)/(;,(z) (v = 2g = Y4a' -1, z = Y8aR); (52) 

In Eqs. (51) and (52) the quantity a is unknown. 

7. DISCUSSION OF THE RESULTS 

Let us make several concluding remarks. 
1. For a = 1 the Coulomb problem for a point charge 

7lfor the ground state in the Coulomb potential with a point charge, 
we have k =a, ig = a-(¥2), and the wave function Wk, ig(271.r) simplifies 
appreciably as a consequence of the identity (A.4 ). 

loses its meaning since the energy levels with K = ±1 
have a square-foot singularity at the point a = 1 and 
upon formal continuation into the region a > 1 they be
come complex. Therefore, it is necessary to introduce, 
by one method or another, a cutoff of the potential V(r) 
= -a/r for r < R; after this is done the problem be
comes mathematically "proper," and one can investi
gate the motion of the levels with increasing values of 
a.s> 

-2. Although values R ~ 10-12 em (R '""'0.03 in units 
of ti/mc) have a direct physical significance, in princi
ple the radius R of the cutoff may be arbitrarily small. 
This makes it possible to seek the level spectrum in 
the L-approximation (see condition (10)). Numerically, 
the parameter L -1 is still not very small in the region 
R ~ 10-12 em, but such an approximation is sufficient to 
obtain a qualitative picture of the motion of the levels. 

3. The situation associated with the "collapse to the 
center" in the relativistic equations for spin 0 and 
spin % particles differs from ordinary quantum me
chanics in two respects. If V{r) = -ar-n as r- 0, 
then a "collapse to the center" arises in the nonrela
tivistic case[ 41 for n:::: 2 and for positive values of a 
(more accurately, for a> %), whereas in the relativis
tic case it is sufficient to have n :::: 1 and the sign of a 
may be arbitrary. Formally this is accounted for by 
the fact that Ueff(r) ~ -% V2 as r- O, and the physi
cal reason is that the Dirac and Klein-Gordon equations 
with vector coupling simultaneously describe particles 
and antiparticles. Therefore, the introduction of a cut
off radius R into the Coulomb field with Z > 137 is 
necessary not only for electrons but also for positrons 
(in spite of the fact that the latter are repelled by the 
nucleus). 

4. An electron in the state with total angular mo
mentum j = % begins to experience the singularity of 
the Coulomb potential when 1 - a becomes comparable 
with L - 2 • This is true not only for the lowest level 
1S112, but also for all of the higher excited states nS 112 

(K = -1) and nP 1 ; 2 (K = +1) whose energies for n >> 1 
still lie in the nonrelativistic region: 

e.±= 1 __ 1 __ 1-gctggL + (53) 
2n' n' ··· 

It may seem strange that the levels with n >> 1 for 
a - 1 are sensitive to the cutoff of the potential for 
r < R << 1. The reason is that for all states with 
j = % the effective potential in the Dirac equation be
haves like (%- a 2)r-2 as r- 0, that is, the "collapse 
to the center" begins for a > 1. Since En + 1 - En 
~ n -s, then the level shift due to the finite size of the 
nucleus is much smaller than the distance between 
neighboring levels so long as gL < rr. When g- gcr 
= rr/L, the energies En rapidly change with increase of 
a. In this connection the 1S1 ; 2 and 2P1 ; 2 levels disap
pear into the lower continuum, but for all remaining 
states with K = 'f 1 the picture seems to be as if the 
principal quantum number were decreased by unity: 
n- (n- 1). With a further increase of a, these phenom-

S) Actually we have everywhere regarded a as a continuous variable. 
This is permissible since according to Eq. (21) the difference Zcr(R)-
137 becomes smaller than unity only for R < exp { -1TJhc/2e2}- 10-22 

em. 
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ena are repeated. The energy of each separately taken 
level monotonically falls with increasing a, and the dis
crete spectrum as a whole changes periodically together 
with g (with the period Ag = 1r/L). 

The step-like shape of the curve € = €(a) with the 
division into segments corresponding to rapid and slow 
variation is preserved so long as g = ...J a 2 - 1 << 1. With 
a further increase of a this curve is smoothed out. The 
levels nS1 ; 2 and nP1 ; 2 remain almost degenerate so 
long as g < (n- 1)1T/L; however, the values of gcr for 
them are different (see formula (20) and Fig. 2). 

5. Taking the finite size of the nucleus into account 
gives corrections to the energy levels which are essen
tial for a - I K I . The structure of these corrections is 
the same in all of the cases which were considered 
(compare formulas (24) and (25) for spin s =% and for
mula (50} for s = 0). 

6. The disappearance of levels into the lower contin
uum raises a number of questions of both a mathemati
cal and physical nature. The mathematical question is 
whether the system of eigenfunctions remains complete 
for g > gcr (and all the more for g > g~~ = n1r/L, 
when n levels have disappeared into the lower contin
uum). Although this question certainly deserves a more 
detailed investigation, it appears to us that one can pre
sent arguments in favor of a positive answer. In fact, 
as is clear from (44), upon an increase of g by an 
amount 1r/L the parameter {3 increases by 1T (so long 
as g << 1), i.e., the boundary condition at the origin 
takes its previous form.9 > This can be explained by the 
above-noted periodicity of the spectrum with respect to 
the variable g. Since the assignment of {3 determines 
the self-adjoint expansion of the Dirac Hamiltonian 
(which up to this point has only formally been an Her
mitian operator), then for arbitrary real values of {3 
the property of completeness must be conserved. 
Thanks to the Coulomb clustering of the spectrum near 
€ = +1, the total number of levels does not decrease 
with increasing values of € (in the sense that the car
dinal number oo - n = oo ) • 

The preservation of the completeness properties of 
the functions serves as an additional argument (even 
though of a formal order) indicating the consistency of 
the single-particle description for a> acr· 

7. The disappearance of each level into the lower 
continuum leads to the creation of two positrons.£ 1 l For 
L >> 1 the values acr become rather dense and the 
number of positrons created may be comparatively 
large.10> If the bare nucleus Ze created 2n positrons 

9lJf fj1 -fll = mr, then these two values of fj are equivalent since one 
can always multiply the wave function by a constant (see Eqs. (42)). 

10lHere we wish to correct an error which was made in article [3]. 

In [3] the critical charge Zcr is called the "electrodynamic boundary of 
the periodic system of elements," which would be correct if a bare 
charge with an initial charge Z > Zcr always created Z-Zcr positrons, 
thereby reducing its effective charge (for·an external observer) to the 
value Zcr· In actual fact the number of positrons created is smaller than 
Z-Zcr- For example, [2] Zcr = 170 for R- I0- 12 em, but the nearest 
excited level2~ reaches the boundary e =-I for Z = 185; therefore, 
for 170 < Z < 185 the Coulomb field only creates two positrons. There
fore, in principle electrodynamics does not prohibit the existence of 
atoms and ions with nuclear charge Z > Zcr, but the critical charge is an 
upper limit only for the existence of bare nuclei which are not sur
rounded by an electron cloud. 

then its charge as r - oo would effectively be equal to 
Zeff = Z- 2n (the reduction of Zeff is due to 2n elec
trons localized near the nucleus). The following ques
tion arises: in what state are these electrons found? 
A very plausible answer based on physical considera
tions (due to Ya. B. Zel'dovich} is that the density of 
this electron cloud is formed out of perturbations of 
the wave functions in the continuous spectrum (in an en
ergy band A€ '"" y near € = €0 < -1, where €0 - iy /2 
denotes the energy of the quasistationary state to which 
the discrete level has passed after its intersection with 
the boundary € = -1; see £2 l). It would be of interest 
to verify these qualitative considerations by a more 
rigorous calculation. The analogous situation in the 
nonrelativistic case is investigated in article £15 J. 

In conclusion the author wishes to express his sin
cere gratitude to Ya. B. Zel'dovich and A. B. Migdal 
for interesting discussions during the course of this 
work and for a number of valuable comments, and he 
also thanks V. P. Krainov and A. M. Perelomov for a 
discussion of the results of this research. 

APPENDIX 

Certain properties of the Whittaker function 
Wk IJ. (x) are enumerated below. We give special con
sideration to the case of a purely imaginary index JJ. 
= ig, which is most important for the Coulomb problem 
with a > 1, but is not discussed in the existing refer
ence books. £12 - 14 J The function y = Wk, ig(x) is real, 11 > 

even with respect to the index g, and satisfies the equa
tion 

, ( 1 + k +g'+'l•) y + -- - -- y = 0. 4 x x' 
(A.1) 

Its behavior at the ends of the interval (0, oo) is as fol
lows: 

w •. ,,(x) = al'xsin (gln (1 I x) + 6), x -+0, 

w.,,,(x) = e-•1'x'(1 + c,lx + c, I x' + ... ). X"""+-00, 

where 
ae'"= f(1+2ig) 

gf('J,- k + ig) 
(-)• 

Cn = -n-1-[(k-' 'I,)'+ g'] ... [(k- n + '!.)'+ g']. 

,(A.2) 

(A.3) 

It is not difficult to verify by direct substitution that 

w •. •-v, (x) = e-•l•z". (A.4) 

for any value of k. We also mention the formula 
~ 

W•.>+'la(x) = e->l'z"+< J e-"'(1 + t)••at. (A.5} 
0 

One can carry out the numerical calculation of the Whit
taker functions according to the formulas 12> 

2e-•P.{i sw -
W.,,,(x)= jf('l,-k+ig)j' 

0
e-'K,.,(2jxt)t-{>+'Wdt (A.6} 

(this relation is valid for k < %), 

1llJt is understood that the variables k, g, and x have real values, and 
also x> 0. 

12lThe usual integral representation (see formula 9.222 in [ 12]) is not 
convenient for p = ig since it expresses the real function Wk, ig(X) in 
terms of a complex integral. 
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e-"'' llf'+< • 
w •. lg(.x) = f('t') I e-"'F('f,- k + tg, '/,- k- ig; 't';- t)t'-'dt 

(A.7) 
(here T is an arbitrary parameter). 

From physical considerations the values k = ± %, 0, 
corresponding to the energy ~:: = 0 for particles with 
spin s equal to % and O, have been isolated. In these 
cases one can expect a simplification of the wave func
tions. In fact, by selecting T =% and % in Eq. (A. 7) 
and taking the following equalities into consideration 

F(iv, -iv; '/,; -sh'.x) =cos2v.x, 

. cos 2v.x 
F('/, + 1v, '/,- iv; '/,;- sh' .x) = --h-, 

c .x (A.8) 
. . sin2v.x 

F(1+1v, 1-1v; '/,; -sh'.x)=--, 
vsh2.x 

we obtain formulas which are much more convenient 
for numerical calculations: 

Wy,,,.(.x) = .x _j e-•r..o•• ch..:_cosvt dt, 
in 0 2 

.X s~ t W_y,,,.(.x) = -- e-'f,.oh 'sh-sinvtdt, 
Vf1& 0 2 (A.9) 

W,,,.(.t) = y : ~ e-'1•• ••' cos vt dt = y .xn K,. ( .x2) . 

In particular, v = 0 

- - oo e-' 
Wy,,o(z) = e-0/lj.x, W-v..o(z) = e•t•j.x J-;-dt, (A.10) 

which agrees with Eq. (A.5). 
The case g = 0 in the Coulomb problem corresponds 

to a = IK I, i.e., it corresponds to the critical value of 
the coupling constant a for a point charge. In this con
nection 

w •.• (:r) = e-""ix '¥('/,- k, 1; .x), (A.11) 

where "\It denotes one of the forms of the degenerate 
hyper geometric function:[ 13 l 

1 -'l'(x,i;.x)=r(x) i e-"'t"-'(t+t)-•dt. (A.12) 

As X- 0 the function wk, o(x) has, in general, a 
logarithmic singularity. Values of the subscript 
k = n + % are an exception, when the poles of the r
function in Eq. (A.12) cancel this singularity. Then we 
have 

Wn+%. o(z) = (-)"nl e-•l'}'xL.(.x), (A.13) 

where Ln(x) is the Laguerre polynomial (n = 0, 1, 2, . .. ). 
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