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The motion of the spin of particles in storage rings (accelerators) is investigated. The methods and 
the results of articles £2 -7) on the investigation of spin resonances are generalized to the case of an 
arbitrary closed orbit.£ 1 l ln addition to resonances of the first approximation, higher-order reso
nances are considered, for which the selection rules of the resonating harmonics are derived. The 
major part of the article is devoted to the crossing of the resonances. The concept of the effective 
and the adiabatic bands is introduced. The complete solution of the problem of a single crossing is 
given, unifying the specialJ;esults. £2, s-7 l On this basis the problem of the periodic crossing of a 
resonance is solved by using the general natwre of the motion of a spin in a periodic field, which was 
established in £ 1 l. 

1. INTRODUCTION 

QuESTIONS of the preservation of the coherent polari

zation of the beam and controlling its direction and de
gree of polarization are crucial tor experiments on the 
spin dependence of the interaction between charged par
ticles. The smallness of the deviations from the equi
librium orbit is a specific property of the motion of par
ticles in storage rings (accelerators). Because of this 
the spin trajectories can diverge only during a time in
terval which appreciably exceeds the period of the cyclic 
motion of the particles. As far as the dynamics of beam 
polarization is concerned, the important feature is the 
existence of a direction of stable polarization, n. In the 
case of a planar equilibrium orbi:t, n is directed along 
the guiding magnetic field (n = const). As shown in £1 l, 

a direction of stable polarization exists even in astor
age ring with an arbitrary field. In this connection n is 
a periodic function of the azimuth of the particle. In 
practice it turns out to be possible to create any arbi
trary direction n at a given point in the orbit. 

As is well known,£ 1 - 7 l the motion of the spin be
comes unstable only in narrow rt\!sonance regions when 
the frequency of the spin's precession is close to some 
combination of the frequencies of the orbital motion. In 
this connection, a small spread in the trajectories of the 
particles may substantially decrease the initial degree 
of polarization of the beam. This effect is dangerous for 
experiments with polarized beams; on the other hand, it 
can be used for intentional depol~rization. 

In practice the situation involving a crossing of the 
resonances is important, the crossing being produced 
both by natural causes and by artificial means (accel
eration of the particles, modulation of the frequencies 
of the motion, synchrotron oscillations of the energy, 
etc.). The case of a single crossing was investigated in 
articles £2 • 5 -7l. In spite of its practical importance, 
the problem of a multiple crossing has not been investi
gated up to now. The reason for this is its mathemati
cal and physical complexity. 

The problem of a multiple periodic crossing is solved 
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in the present article. The main idea for its solution is 
an understanding of the general nature of the motion of a 
spin in a periodic field, which was established in £ll. 

The obtained results answer the question about the be
havior of the polarization of the beam as a whole asso
ciated with periodic crossing of a resonance, in partic
ular, they determine the conditions for depolarization. 

In addition, in this work the results of the investiga
tion of steady-state resonances and of a single crossing 
are generalized and determined more accurately; this 
is necessary for practical applications and for the in
vestigation of multiple crossing. 

2. RESONANCES OF THE SPIN MOTION 

The motion of the spin vector is described by the 
equation £1, 8 ' 9 l 

(2.1)* 
( q' ) [ vV'] q Hv q 

WL= i+y- ----,__v+-(vE], 
q, v' y v' y'v' 

where q = CJo + q'= (e/m) + q' is the gyromagnetic ratio, 
q' is its anomalous part, y = (1- v2)-1 12 , c = 1, v and 
v denote the velocity and acceleration of the particle 
which is moving in the electromagnetic field E, H. Let 
us introduce the following notation: Ws(l.l} = Ws(l.l + 27T) 
is the value of WL on the equilibrium trajectory; l.l is 
the generalized azimuth of the particle which subse
quently plays the role of the time; w s is the equilibrium 
frequency of revolution (dl.ls/dt = Ws). 

As is shown in £ 1 l, on the equilibrium trajectory the 
solution (2.1) has the form ( Ys = const). 

~(0) = ~.n(O) + Re C1J(O), ~., c = const, 

where n, 7J, 11 * are orthogonal solutions of (2.1) on the 
equilibrium trajectory, possessing the properties 

n(O + 2n) = n(O), 1](0 + 2n) = e~'"'"1J(O), 
(2.2) 

n' = 1, 1J1J" = 2, v = const. 

The quantity 27Tv has the meaning of the angle of rota
tion of the spin around n during the period of the parti
cle's motion along the equilibrium orbit. In the moving 

* [vEl = v X E; Hv = H · v. 
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periodic system of basis vectors e1 , e2, and n 

Eq. (2.1) takes the form 

db == ~ = [W~], W = vn + w == vn + ":L - w, 
dB u w, 

(2.3) 

(2.4) 

Under steady-state conditions for the motion of the 
particles in a storage ring, one can represent w in the 
form 

·wn = 1:, Wteivl 9 , 

I 
(2.5) 

(we shall denote the quantities pertaining to w · n and 
w · e by the indices l and k respectively). The frequen
cies vz and Vk are combinations of the frequencies of 
motion of the particles. In view of its smallness, taking 
account of the perturbation w can essentially change 
the motion of the spin only near the spin resonances, 
when v is close to some frequency vc-which is a com
bination of the frequencies vz and vk. 

The method of averaging is applied in order to inves
tigate the behavior of the spin near a resonance. In ar
ticles [2 - 71 only resonances of the first approximation, 
v::::; Vk, were investigated for the case n(B) = const 
(plane equilibrium orbit). One can easily extend the re
sults of these articles to the general case n(8) * const. 

The motion of the spin near a resonance, v::::; vk, 
takes place in the following manner. In the system 
which is rotating relative to (2.3) with a frequency vkn, 
the spin slowly precesses with a frequency [ I Wk 12 

+ (v - Vk)2 ] 1 / 2 around the direction which makes an an
gle a ~ tan-1 [I Wkl/(v- vk)] with n. 

Combination resonances v::::; vc appear in the higher 
approximations. It is simplest to obtain the equation 
describing the averaged spin motion near a resonance 
of arbitrary order in the "resonance" system, which is 
rotating with the frequency vc around n. In this system 
the spin is moving in a "field" w' = (wx, wy., wz), 

w/ + iw.' = weexp {-iv,e}, w,' = wn +v- v,; (2.6) 

For small times T << I w' I -1 one can determine the 
solution for I; at the instant of time T in the form of a 
series 

r 

~T =(1 + AH;o, 1. = J (w' + w'w' + ... )de, (2.7) 
0 

where t is the column formed out of the components of 
the vector I;; w' is the matrix defined by 

• 
Wm1 = .E Bicd.Wa. 1, w' = s w'de. 

0 

In our case the method of averaging means the de
termination of a constant effective "field" h such that 
the solution tT = ehT to of the equation t = hi; averaged 
over the time interval T will agree with (2. 7): 

ehT = 1 + 1., 
1 1 }.• ) 

h=-ln(1+!.)=-(!.--+ .... (2.8) 
T T 2 

Having chosen T with the relations 8 ch << T << 1/ I w I 
taken into consideration, where Bch denotes the charac
teristic time of variation of w', we obtain 

h = (w'- 'j,[;''w'] + ... ), (2.9) 

where the angular brackets indicate averaging over the 
time e. Upon taking account of the terms of n-th order, 
the solution (2.9) will obviously differ very little from 
the exact solution for 

1 
S"(;j;'Jiw'ech 1'-•. 

Strictly speaking, the resonance occurs when the di
rection h(v) differs substantially from n. For the exact 
resonance hz{vr) = 0 the difference vr- vc is a cor
rection to the position of the exact resonance, due to 
perturbation w 1 • The effective width of the resonance 
is determined by the quantity h(vr) = I hx(vr) + ihy(vr) I = h 1 , which for a resonance of n-th order is propor
tional to the n-th power of the perturbation. 

As is evident, in the second approximation only the 
resonances v ::::; vz + vk, which arise as a consequence 
of the correlations between the oscillations of the pre
cession frequencies and the transverse perturbation, 
are possible. For a constant value of w • n ( vz = 0) the 
second approximation does not give a new resonance, 
but is a correction to the first resonance. 

Let us indicate the simple selection rule for the com
binations of frequencies for a resonance of arbitrary or
der. In the resonance system, one can write the general 
condition for a resonance of n-th order in the form1> 

"'• + ... + v,.,,+ s,.(v,,- v) + ... + s.L(v •• l.- v) ~ 0~ 
s, = ±1, n 11 + nl. = n. 

(One can include the choice of the sign in front of vz in 
the subscript" l," because the frequencies vz form the 
spectrum of the real quantity w • n.) Since only linear 
resonances v::::; vc are possible [1 1 for the spin system, 
then one must have 

S, + ... Snl. = 1. (2.10) 

From here, in particular, it follows that n 1 is odd. 
Thus, in the n-th order the resonances 

(2.11) 

are possible with fulfillment of the condition (2.10). The 
intensity of the resonance is proportional to the product 
wz ... wz wk •.• "~- . The resonances of n-th or-1 nil 1 -Knl 

der reduce to a correction of the lower -order reso
nances, when out of the total combination (2.11) a part 
which is small in magnitude is isolated, where the num
bers of frequencies Vk entering into this subcombina
tion with positive (si > 0) and with negative signs 
(si < 0) must coincide. For example, the resonances 

are possible in third order. They reduce to corrections 
to the resonances of first or second order if vz + vz' 
::::; 0, Vk' ::::; Vk'', or vz ::::; 0. 

Let us apply the described method of averaging just 
for an isolated resonance, i.e., when the condition 

(2.12) 

is satisfied only for a single combination frequency vc. 
If several combination frequencies vc satisfy the con-

!)Identical frequencies may occur among "I and "k· 
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dition (2.12}, then after averaging with respect to the 
fast frequencies the effective field h will be a function 
of the time whose frequencies of variation are compar
able with the quantity I hI : 

h=ho+A(8), 
(2.13) 

h,= (h_c, 0, e), lr.!,nl ~h, 
where h1 and E are the width antl frequency deviation 
of the selected (fundamental) resonance, and the 4m 
characterize the intensities of the remaining reso
nances. 

Such a situation in general means the presence in the 
spectrum of a perturbation of sm1111 frequencies (syn
chrotron oscillations of the energy, external modulation, 
and so forth). 

Let us consider the case of overlapping resonances 
of essentially different intensitie$. Let 14m I<< IUm 1. 
It again turns out to be possible to use the method of 
averaging in order to solve such a problem. For 4 = 0 
a single (fundamental} resonance occurs, and the spin 
precesses around h0 • Taking 4 into account leads to a 
substantial distortion of the motion only near the "mod
ulated" resonances. The resonances Um ~ ho are pos
sible in the first approximation. Their width is given 
by wm = h;1 14m Xh0 1. 

The treatment under discussi~m gives results, which 
differ substantially from the theory of an isolated reso
nance only for IE I :5. h 1 . In the opposite case (IE I>> h 1 ) 
the side resonances are actually'separated from the 
main resonance and can be regarded as isolated reso
nances. 

In the case t::. >> IUml, when many resonances of 
the same intensity (in order of magnitude} overlap, the 
method of averaging is not appli¢able. In this connec
tion an approach to the problem,, not in terms of an 
overlapping of individual resonances but rather by 
means of repeated crossings of the "fundamental" reso
nance, turns out to be more usefhl. 

3. SINGLE CROSSING OF A RESONANCE 

The single crossing was first considered in (2J for 
a constant rate of crossing (hz, .11. 1 = const) and for spe
cial initial conditions with regard to the polarization of 
the field. Under arbitrary initia~ conditions the. result 
is known only for the case of rapid crossing (I hz I 
>>h~J_}.[2,3-7] ' 

The complete answer to the problem of a single 
crossing is not only of independent interest, but we also 
need it in order to construct the solution in the case of 
a periodic crossing. It turns out to be possible to solve 
such a problem in a somewhat broader formulation. 

Let the spin in the resonance system be moving in 
the "field" 

h = (h_c, 0, h,). (3.1) 

(One can always eliminate the rotation h 1 by making a 
transformation to a system whiqh is rotating with re
spect to the resonance together With h 1 .) 

The initial conditions for the spin are given for hz 
-- oo. It is required to find the solution t after cross
ing the resonance for hz - oo, IP. the region of adiabatic 
variation of h( 11) the motion of the spin corresponds to 

a precession around h with a frequency h. In order to 
fulfill the adiabatic condition, it is necessary that the 
change in the angular velocity h of rotation of the spin 
should be small during the time 27T/h required for one 
revolution: 

(3.2} 

Condition (3.2) guarantees the exponential accuracy 
of the solution in the adiabatic region associated with 
the monotonic variation of h. If h undergoes oscilla
tions during the crossing, then the additional condition 
that the frequency U of the oscillations be small is 
also required: 

Q~h. (3.2'} 

We note that if (3.2) is satisfied for all values of hz 
(h~ >> In I), then the adiabatic solution is valid every
where with exponential accuracy in the adiabatic param
eter. In this connection, the exponentially small differ
ence from the exact solution piles up in the region where 
(3.2) is least strongly satisfied, i.e., in the region I hz I 
.5 h 1 . Therefore we shall understand the boundary of the 
effective resonance region (band} to be given by 

' 4 ) 
h;'ff- max(h.c,l'li.'+li.c'). (3.3 

Our goal is to match the adiabatic solutions to the 
right and to the left of the effective band (3.3). The 
present problem can be completely solved for an arbi
trary rate .of crossing, hz, provided that the relative 
change of hz and of h 1 are small in the effective band: 

(3.4} 

For this it is more convenient to use the equation for 
the variable x 2> 

(3.5} 

where a are the Pauli matrices. 
In the system where the 3 axis is directed along the 

field h, the adiabatic solution of Eq. (3.5) has the form 

x=Soo (!), Soo=exp{- ~ a.J hda}. (3.6) 

In order to find the connection between A and B for 
e < 0 and e > 0, we shall use the method of joining the 
solutions by means of going into the complex plane of 
the time e. In our case the singular points, determined 
from the equation 

h =(h.'+ h_c') '" = 0, 

lie in the complex plane of 9, and the present problem 
is mathematically equivalent to the problem of above
barrier reflection in quantum mechanics. If hz and h 1 
are constant, then there are only two singular points
the "turning" points 11t = ± ih1 /hz· The deviations of 
hz and h 1 from constant values lead to a displacement 
of these points and to the appearance of new singular 
points, which can be neglected provided (3.4) is satis
fied. Following articles [ll-l3 l, let us go around the ef-

2l For spin s = 1 I 2 the variable x is the spin wave function. In the 
case of arbitrary spin, one can interpret Eq. (3.5) as the equation for 
the wave functions xa (a= 1, 2, ... , 2s) of 2s independent particles with 
spin 1/2, out of which one can formally construct particles with spin 
s. [ 10] 
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'P 
f 

Graph of the function <P(a2/4). For a rapid 
crossing of the resonance (a 2 I 4 ~ I) one has 
<P"' (1T/4)-(a2 /4)(1n (4e/a2 )-0.577) + ... For 
a slow crossing (a2 /4 > I) one has <P"' ( l/3a2 ) 

+ (8/45a6 ) + ... 

fective band along a circumference of large radius on 
which the solution has the form (3.6). We obtain the de
sired relation between A and B:3> 

(~) a>o=R (~)O<O (3,7) 

R(n, > 0) = [1 - e-"pe-••,• + ie-'au = Rr (n, < O), 
• t 

26 = 1 f h ae'j. (3.8) 
• t. 

ifJ denotes the constant phase which remains undeter
mined in l 11 - 13 l, The instant (} = 0 is chosen such that 

ReSt= 0. (3.9) 

From (3,6) and (3. 7) one can obtain the relation 
X(} = Se oRSoo X(} = Uxe . One can find the phase ifJ 

2 2 1 1 1 

from a comparison with the exact solution for constant 
hz and h 1 , the exact solution being constructed in the 
Appendix. In this case 

(3.10) 

in agreement with (3.8), and 

n a' a' ( a') <p= --+-ln--argr i-
4 4 4e 4 

(3.11) 

where r denotes the Gamma function. A graph showing 
the dependence qJ(a2/4) is given in the accompanying 
figure.l 14 l For a small deviation of hz and h 1 from 
constant values, in the effective band one can always 
neglect the difference of ifJ from (3.11). (We note that 
for a slow crossing (a2 >> 1) the absolute change of o 
and the shift of (} = 0 in this connection may be large.) 
Thus, under conditions (3.4) the matrix R is given by 
expression (3.7) with ifJ from (3.11). 

From Eqs. (3.5) and (3.10) one can obtain the rela
tion between the components t"h = l: · h/h and the phase 
1/J of the rotation around h. Let us present the expres
sion for t"h: 

\;.(6,) = (1- e-")~.(6,)- 2e-'(1- e-")"' (1- V(S,)) '" 

x cos { cp + J h ae + 1Jl (e,)). 
'· 

(3 .12) 

In connection with a slow crossing (I hz I << h~) the spin 
preserves its projection along h with exponential accu
racy~ reversing together with h. In the fast case (I hz I 
>> h 1 ) the change in the projection along n is small 
( ..... ,;r; ). Formula (3.12) generalizes the result given in 
[2] 

One can, for example, use the slow crossing of the 
resonance in a storage ring in order to obtain beams of 

3lin ( 11-13] the cut in the complex() plane is drawn between the 
turning points. In our definition h is positive everywhere on the real 
axis. 

electrons and positrons with identical directions of po
larization (under the effect of the synchrotron radiation 
the beams should be polarized in opposite directions £15 • 

16 l), By switching on a radial electric field Er one can 
separate the beams according to energies (for coinci
dent orbits). After this, by slowly passing one of the 
beams tb..rough the spin resonance (vpositron 
* Velectron), one can change its polarization to the op
posite stateY 

4. CROSSING OF THE RESONANCES 11 = k 

Hitherto we have not considered the effects which are 
related to the variation with time of n and v as func
tions of the equilibrium energy Ys (or of the other pa
rameters). Far away from the resonance v = k the 
change of n and v is adiabatic and does not lead to any 
important effects. The problem of crossing these reso
nances requires special investigation. Let n( Ys 1 (}) and 
v( Ys) be known for each value of Ys· As the resonance 
point Ys = Yr we choose the value of the energy at which 
v1 is closest to an integer k: 

(4.1) 

(in particular, ~Vmin may be equal to zero). Let us 
write down the equations of motion of the spin in the pe
riodic system with nr=n(yr,e)and er = e(rr,e): 

;=[w'~J. w'= (t1vm,.+n, Ws)n,+Re{b w,e,)e,, 
ro, w, 

b w. = w,(y., e) 
w, w, (y,) 

w,(y" e) 
w, (y,) 

(4.2) 

(the deviations from the equilibrium orbit are unim
portant). After averaging with respect to (} we obtain 

(w') = !1 Vm;nD, + Re ( e, '6 ::) e, (4.3) 

((nr • o(ws/ws)) = 0 according to the definition of the 
resonance point rr: ( ilv/ily)r = 0). Formula (4.3) gives 
the following relation between n(rs, (})and v(ys), and 
nr and ~Vmin: 

(v(y,)- k)n(y., e)= (w'). (4.4) 

The width of the resonance is determined by the quan
tity ~Vmill' 

According to the usual behavior of the axis of pre
cession in the region of a spin resonance, for a broad 
resonance the direction n is transverse to nr. 

All of the results obtained in the present work are 
also applicable to the resonance v ::>! k with the follow
ing substitutions: 

h , h dj(w,(y,e)e,)j 
j_-+LlVmin; ,-+(y-y,)JY W,(y) . ,· 

5. PERIODIC CROSSINGS 

From a general point of view, the problem of periodic 
crossings of a resonance is the problem about the mo
tion of a spin in a periodic field 

h(e) = h(e + T) = (hj_, o, h,), (5.1) 

4lwe note that this method is not feasible near points "Ycr at which 
(il-y/ilr)el"' (ilv/ilr)pos· For a planar equilibrium orbit "Ycr = (qfq')Y'. 
(Here v does not depend on Er.) 
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where 21T/T is the frequency of the crossings. 
The general nature of the motion of a spin during a 

periodic crossing follows from th~ results of [ 11 . A 
certain periodic solution m( 11) exists for the spin, 
which is repeated after an interval T. During the pe
riod, all of the remaining solutions are rotated around 
m through one and the same angle 21TIJ.. Thus, our prob
lem reduces to finding the periodic solution m and the 
frequency of precession IJ.. Let tne matrix A be known: 
XT = AX 0 i according to the meaning of m and IJ. the 
matrix A has the form (A +A= 1) 

from where it follows that 

cosn1-1 ='/,SpA, m =~SpaA. 
2s~nn1-1 

(5.2) 

Let us consider the case when th~ condition (3.4) is 
satisfied in the effective band. (Iri this connection, it is 
assumed that the amplitude hz of the oscillations is 
sufficiently large.) Then one can ~onstruct the matrix A 
by using the results of Section 3: 

A= sT.,R,s.,.,R,s.,o. (5.3) 

Here 11 2 and 11 1 denote the moments of crossing the 
resonance, which satisfy the condition (3.9). Introducing 
the notation 

x = <P•+<P•+ ; , x= x;-+x- = fkd6, 
0 

X+-X s·· ~ Y = --2--, X- = h d6 + J h d6 ""' X~) + ,t'~ , 
0 •• 

(5.4) 

<Pt.• = cp(a',,,/4). 

from Eq. (5.3) we obtain the follqwing results for the 
matrix elements: 

Au= f(1- e-"·) (1- e "•)e-'" + e-•,-•,+••, 

A.,= {l'1 - e-"• exp { -15, + i(x + y) I 2} -l'1- e-20• exp { -15, 
(t) (2) 

-i(x+y)/2}exp{i(rp,+x- -q>,-x_ )/2}. (5.5) 

Thus 

cosnJ.! = f(1-e "•) (1- e "•) cosx+exp{-15, -1\,}cosy, (5.6) 
Im Au' . . . A,• 

mh = -.--, m1 + zm2 == - z--. 
sm ltj.l sin rr~• 

The obtained formulas give al~ necessary information 
about the behavior of the spin. T!le vector m specifies 
the direction of the periodic solution at the moments 
0, T, ... (The moment 11 = 0 is ¢hosen in the adiabatic 
band, where the spin motion is kli10wn.) Formula (5.6) 
determines the angle 27T!J. through which the spin ro
tates around m during the period T. 

In practice it is interesting t~ trace how the projec
tion along n varies in the adiaba,tic zone during a peri
odic crossing. It is obvious that its variation substan
tially depends on the orientation [of m with respect to h. 
For example, for the initial condition l;h = 1 the compo
nent th varies within the interv~n from 1 to (2mh- 1). 

Now let us see how the orienciltion of m depends on 
the parameters of the problem. 

a) Fast crossing (o1 << 1, 62 << 1). Here, as one 
can verify without difficulty, 

sinnJ.! ~ (sin'y+2(1i,+l5,) ~4yl5,15,cosxcosy)''•, 
mh ~sin y I sin ltJ.!. (5.8) 

As is clear, mh is almost always equal to unity, with 
the exception of narrow bands in y: 

IY- krrl ~(I\,+ 15,- 2fl5,1\,(-1)'cosx) ~.. (5.9) 

Formula (5.9) determines the "resonance region" in 
which the periodic solution strongly depends on the pa
rameters. The polarization th may vary substantially 
only in this region. Here the spin is rotating slowly 
around m with a frequency ~{f). For example, for a 
symmetric crossing K+ = K _; 01 = 62 = o: 

· 21'215 X ,(2 h.l. ( 1t 1 JT ) 
1-1=--;tsin2 = y n (IJi.l)'ksin "4+'4 /de . 

Even a small violation of the symmetry of the crossing 
(1 >> j K+- K _j »..fa) displaces the resonance (5.9) and 
then the component tn is conserved. 

b) Slow crossing (e01 >> 1, e02 >> 1). In this case 

sin rq...t ~ (sin2x + e-201 + e-202 - 2e-01 - 02 cos x cos y) 1/z, 

m, = sin x /sin Jtj.l. 
(5.10) 

Just as in the previous case, almost always mh = 1, 
with the exception of the resonance region: 

/x- kn I ~ (e-"• + e-zo,- 2e-•,-•, ( -1)' cosy) Yo. 

c) Mixed case (o1 << 1, e 02 >> 1). Here 

1 1'26. 1 ' 
J.t ~ 2 --11-cosx-;-e- 2 cosy, 

m, ~ l'215, sin x- e-•, sin y, 

+ . . { i ( + (2) (t) ) } m, 1m, = 1 exp 2 x+ ?<- - X- . 

(5.11) 

(5.12) 

It is easy to understand the meaning of this solution in 
the following way. During rapid motion "from below up
ward" tn isn't able to vary. Then, during the slow 
crossing "downward" tn changes sign. Therefore the 
spin under goes a half -rotation ( IJ. = %) around a cer
tain direction, transverse to the axis n. 

In contrast to the previous cases, the smallness of 
mh does not indicate a resonance ( IJ. * k). 

d) Intermediate case (61 ~ 1, 62 ~ 1). In contrast to 
the cases which have been considered, here the direc
tion of m substantially depends on (x, y) over the entire 
range of their variation. In this connection mh takes 
all possible values 

(5.13) 

The greatest sensitivity to the position of the point 
(x, y) is observed near the resonances J.L = k, when 

15, ~ 1\,=1\, cosx ~cosy~ ±1. 

Near a resonance the approximate formulas have the 
form 

sinn1-1~ [ (~:.-=-_62'+(1-e-'')(flx)'+e-"(!ly)']'/,, 
(5.14) 

1 
mh ~ -.--[e-"!ly- (1- e-") !lx].. 

S!n1tj.l 

Here ~x and ~y denote the deviations from the reso
nance point cos x =cosy = ±1. 

6. FAST CROSSINGS WITH AN ARBITRARY 
PERIODIC DEPENDENCE h(9) 

Formulas (5.6) and (5.7) of the periodic solution are 
valid under conditions (3.4). In the important case of 
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fast crossings, one can solve the problem without any 
restrictions on the form of the periodic dependence. 
During a fast crossing, in the effective band the spin is 
not able to substantially change, and therefore the solu
tion in this band can be found by using perturbation 
theory. 

For a single crossing, the relation between x to the 
right and to the left of the resonance in the system ro
tating relative to the resonance with a velocity hzn has 
the following form in the first approximation: 

. - . 
X a,= ( 1-T aH,) J(a, Hx' + iH,' = J h.1. exp {- i J h,df) }de, 

-IXl a0 

h,(flo)=O, fl,>flo>fl·,, Hg=O. (6.1) 

If we return to the initial system and match with the so
lutions in the adiabatic bands, we obtain the following 
result for the matrix A' (in the resonance system): 

T 

Hx + iH, = J h.1.e-;'• dfl, H.~ 0, 
0 

- s' eff df) eff { h, in the effective band Xe- e , e = 
, hh,/Jh,J in the adiabatic band. 

Hence 

5in .'tf! = (sin'1/2Xr + 1/4H') '!>, 

sin '/,xr . Hx + iH, {. Xr} 
m. - -. --' mx + zmy = . exp l- . 

smn[L 2smn[L 2 

(6.2) 

In the presence of adiabatic bands and conditions 
(3.4), the solution (6.2) goes over into (5,8). The peri
odic solution, just as previously, is always directed 
along the axis n, with the exception of the resonance 
region (compare with Eq, (5.9)): 

(6.3) 

We note that in contrast to (5.8), the solution (6.2) is 
applicable even in that case when the adiabatic band is 
not reached (KT = ( hz) T << 1). 

In this connection, as is evident from (6.2) the spin 
is moving in the average field: 

(h) = ( <h~>, 0, (h,) ). 

By the same token the condition KT << 1 indicates 
the limits of applicability of the method of averaging for 
the investigation of multiple fast crossings. 

7, CONCLUSION 

Now let us briefly consider the application of the ob
tained results to the problem of the behavior of the po
larization, averaged over the beam, associated with 
periodic crossings. The spread in the parameters en
tering into the problem leads to a spread in m and f-1.. 
The spread in f-1. guarantees a mixing of the phases of 
precession around m. Therefore, after multiple cross
ing the average polarization will be given by (in the ab
sence of intermixing of the particles' trajectories) 

;= (~m),=om. 
Very special conditions are required in order to 

eliminate the initial polarization along n by a multiple 
periodic crossing. Thus, for either fast or slow cross-

ings the variation of l:n takes place only in the narrow 
resonance bands given by Eqs. (5.9), (6.3), and (5.11). 
The mixed case of fast-slow crossing deserves atten
tion, when no additional conditions are required in prac
tice for depolarization of the beam. 

The author thanks V. N. Baier, S. T. Belyaev, N. S. 
Dikanskii, and Yu. M. Shatunov for discussions and for 
their interest in this work. 

APPENDIX 

For constant values of hz and h 1 Eqs. (3.5) can be 
solved exactly. In the resonance system these equa
tions 

correspond to the functional relations for parabolic cyl
inder functions Dp (z). (17J 

The solution has the form (hz > O) 

x(fl) = ( '/,ae'~'~:~:(z), -'/,a~=~~~P~~ (- z)) ( ~) "'"M(B) 

where 

a and {3 are constants determined by the initial condi
tions. In order to determine U (see Eq. (3.10)) it is 
necessary to transform the matrix M ( 8 2)M -1(8 1) into 
the system connected with the direction of h, which can 
be accomplished by making a rotation through the angle 
a = tan - 1 (h 1/hz ) around the y axis: 

U = e~p{ 1 /2 w,a(fl,) }M (fl,)M-' (fl,)exp{ - 1J,;cr,a(8,) }. (A.2) 

In order to determine the constant phase cp in 
Eq. (3. 7) it is sufficient to compare the matrix elements 
U11 given by Eqs. (3,10) and (A.2) in the limit 18 1 1, 18 2 1 
......... 00' 8J 

U11 = (1- e-'")''• exp{- i ( qJ + p dfl)} ~ (M(fl,)M-'(8,) ) 12• 

Substituting o = 1ra2 /4, h = (h:i8 2 + hj_) 112 and using 
the limiting asymptotic expressions for Dp (z), c 17 l we 
obtain expression (3.11) for the phase cp. 
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