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It is demonstrated that the Bethe formula for the relative phase shifts of the Coulomb and hadron 
parts of the scattering amplitudes of charged particles is valid at high energies and fixed momentum 
transfers. The proof is based on factorization of the electromagnetic correction to the strongly
interacting amplitude in the region kl_ « iJ. 2• The existence of factorization is a consequence of 
gauge invariance. The Bethe formula is invalidated by the contribution from large values of k 1 . Such 
contributions arise, however, only in hadron theories with small coupling constants. 

IN this communication we consider the question of the 
interference of the Coulomb and nuclear interactions in 
the scattering of charged particles of high energy. This 
question was considered in a number of papers[l-3] with 
different results. We shall show that on the basis of 
general considerations the result of this interference 
coincides with that obtained by Bethe[ll. 

Let us consider the scattering of two charged had
rons of high energy with initial momenta p1 and p2 
and final momenta p~ and p~. The strongly-interact
ing amplitude of this process G with the electromag
netic interaction turned off will be represented by the 
diagram shown in Fig, 1. 

The electromagnetic interaction in first-order per
turbation theory can be taken into account by all possi
ble insertions of the virtual photon line into the hadron 
amplitude (Fig. 1). The diagrams with the photon line 
connected to the external lines (Figs. 2a and 2b) and 
the diagrams with the photon line emitted and absorbed 
within the hadron amplitude (Fig. 2c) give, generally 
speaking, contributions of the same order. 

The integration with respect to the momenta k of 
the intermediate photon is best carried out in terms of 
the Sudakov variablesf4 l, where k 1 is the projection of 
the momentum perpendicular to the momenta p1 and 
p2: 

It is shown in[ 5 • 6 l that in the region of integration 
with respect to small kJ. << iJ. 2, where iJ. is the charac
teristic hadron mass (pion mass), the entire contribu
tion from the electromagnetic correction is separated 
in the form of a multiplier for the hadron amplitude. 
This multiplier is determined by the sum of diagrams 
of the type of Fig. 2a, whose photon line joins by all 
possible means the charged ends of the hadron ampli
tude, with the internal hadron amplitude taken on the 
mass shell over the charged lines that enter in it. This 
result is a consequence of the gauge invariance and is 
manifest in the fact that the contribution of the cuts 
over the mass variables (Pi + k)2 from the sum of all 
the diagrams of Figs. 2a, b, c turns out to be smaller 
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FIG. I 

by a factor k1 / iJ. than the contribution of the pole parts 
of Figs. 3a and b[6 J 1>. 

We note that this result is analogous in form to the 
result for infrared photons [?J, but at high energies the 
formulated statement is stronger than the correspond
ing statement for the infrared photons, since all that is 
required here is the smallness of kJ., whereas for the 
infrared photons it was required that all the compon
ents of the photon momenta be small. 

The real part of the contribution of the s-photons 
joining the charged lines with momenta p1 and p2 or 
p~ and p~ cancels out at small values oft the contribu
tion of the "u-photons," which join lines with momenta 
Ph p~ or p2, p~. The contribution of the "t-photons," 
which join lines with momenta p~, P1 or p~, P2 is small 
at small values of t. As a result, the contribution of 
the electromagnetic correction from the region of 
small kl_ is determined by the imaginary parts of the 
"s-photon" diagrams of Fig. 3 corresponding to the 
section of the lines 1, 2 or 3, 4, and can be written in 
the form 

ia f d'k.1. - G(s,(q-k.1.)'); 
3t k.l.'- A.' 

t = q' =(p,-p/)' (1) 

1l In the case of a four-point diagram, after averaging over the angles, 
there may appear in place of the intermediate momentum 11 (see for
mulas (11) and (12) of (6]) a momentum q, and therefore the contri
bution of the cuts contains a small quantity of the order of k1/11, and 
not k1/11 2 as in the case of a three-point diagram. We note further that 
the condition k 2 = k1 2 + sail~ 11 2 , which was needed to prove this in 
[ 6 ], follows only from the requirement k1 2 ~ 11 2 • Indeed, in the case 
when s01{3 ~ k1 2 , the dependence on k12 drops out from the integrand 
and a small quantity appears in terms of the phase volume 

1 k.J.' 
-Sd'k.l.--~1. 
sa~ sa~ 
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FIG. 2 
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FIG. 3 

This result does not depend on the character of the be
havior of the hadron amplitude off the mass shell. How
ever, the principal contribution is made by different 
Feynman diagrams for different forms of this behavior. 
When the hadron amplitude decreases with the mass 
the main contribution is determined by the diagrams' of 
Fig. 2c, and the contribution of the diagram 2a arises 
only from the region ki « JJ. 2/ s and is small like 
~ JJ. 2/ s at any fixed :\ 2 >J! 0. 

When the hadron amplitude is independent of the 
mass variables, the contribution is determined by the 
diagram of Fig. 2a. 

Since the hadron amplitude G decreases with in
creasing momentum transfer q2 , small k 2 ~ q2 << JJ. 2 

are important in the integral (1 ). The confribution of 
large ki to the diagram of Fig. 4 is automatically eut 
off. 

We do not see an essential contribution from photons 
with large k~ ~ JJ. 2 in diagrams with photon lines inside 
the hadron amplitude, with the exception of the diagrams 
corresponding to the electromagnetic renormalizaHon 
of the position, and the residue of the vacuum pole of 
the hadron amplitude of Fig. 4, where the wavy line 
denotes the contribution of the singularity of the hadron 
amplitude. However, in contrast to formula (1) the 
diagrams of Fig. 4 give a purely imaginary co~tribu
tion. The contribution from large ki » JJ. 2 can arise 
only in a theory with a small coupling constant g 2 when 
the condition g2 lns << 1 is satisfied, in the case ~hen 
individual blocks of the Feynman diagram do not depend 
on. the momentum transferral. Thus, formula (1) deter
mmes the entire electromagnetic correction to the 
hadron amplitude. 

If we take into account also the Coulomb interaction 
between the charged particles, we can write the total 
amplitude for the scattering of two charged hadrons in 
the form 2l 

2y~a ia J d'kj_ a 
A(s,t)=--+-= +G(s q') 

q' in kj_'- A.' (q- kj_)' ' 

ia J d'k +--;:;- kj_'-A.'G(s, (q-kj_)')l•'~o, a=..::::_, 
4nlic 

(2) 

The imaginary part of the amplitude (2) at positive and 
negative s determines the total cross section for par-

2lThe amplitude A(s, t) is normalized by the condition IAI 2 = 
daeJ/dt. 

FIG. 4 
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ticle-particle scattering (a+) and for particle-antipar
ticle scattering (a-) 

a±= Bn{g±(s,O)+~sd'kj_ f(s k ')+~s d'kj_ ~} (3) 
n kj_' ' J. 2n • kj_' kj_' ' 

where 
G(s, q') = f(s, q') + ig(s, q'). 

In (3) we assume that the Pomeranchuk theorem is 
satisfied for the hadron amplitude: g+ = g. The inte
gral in the last term, corresponding to the total cross 
section of the Coulomb interaction, is cut off at small 
momenta by the quantity o. This means that it is 
necessary to subtract the Coulomb peak from the total 
cross section a± up to momentum transfers t = o. 
The cutting off the integral in the second term of (3), 
generally speaking, is not required, since f( s, k~) 
~ k~ at small ki. 

If we take for the hadron amplitude the contribution 
of the vacuum pole 

-1 +e'""'' 
G(s, t) = ~ s"'', 

sin :n:a't 
1 

, g(s, t) = ~s·~, f(s, t) =-- Pna'ts•~ 
2 ' 

then we obtain (C is Euler's constant) 

A(s, t) = 2l';;a (1- ialn~) +ips"'' (1- ialn 1 + iaC) 
t A.' A.'a'lns 

1 ia 1 
-- pna'ts"''--~n-

2 2 Ins' 
(2') 

S d'~ a 1 
a±-4a ----=8ng(s,0)-4n'aP-. 

kj_' kj_' ln s 
(3') 

Thus we see from (3) that the presently observed dif
ference between the cross sections of scattering of 
particles and antiparticlesC 9 l cannot be explained with 
the aid of electromagnetic interactions 3l. 

The validity of the foregoing statement can be veri
fied with different models. Let us consider, for exam
ple, a model where the strongly-interacting amplitude 
G is taken to be a scalar square[uJ. In this case the 
main contribution is made by the diagrams of Fig. 5. 
By direct calculation of the asymptotic form of the 
diagrams we can verify that the real parts of the dia
grams a and d (a' and d') cancel out. The imaginary 
s-channel part of diagram d (d') cancels out the 
imaginary part of the diagram a (a') corresponding to 
division of the lines 5 and 7 (2' and 4'). Diagrams b 
and c (b' and c') have a pure imaginary principal 
contribution4l. The imaginary parts of diagram b( c) 
corresponding to the sections of the lines 5, 1, 4 (2, 3, 

3lThe question of the possible violation of the Pomeranchuk theorem 
because of electrodynamic interactions was raised by Solov'ev ( 10) and 
by V. M. Shekhter. 

4lThese diagrams were incorrectly calculated in [9). 
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FIG. 5 

7) and 5, 7 (5, 7) cancel each other; the imaginary part 
corresponding to the section 2, 3, 7 (5, 3, 4) cancels the 
imaginary part 2, 3, 7 (5, 3, 4) of diagram a. Analog
ously, everything stated above is valid for the diagrams 
a', b ', and c '. These cancellations are the already 
mentioned consequence of gauge invariance. Thus, the 
resultant contribution coincides with the remaining un
cancelled imaginary parts of diagrams and and a' from 
the sections of lines 2 and 4, corresponding to the 
general result formulated above. 

We note that it is possible to write out in similar 
fashion the contribution from any number of virtual 
photons. Summing over the photons with allowance for 
their identity, we obtain [l2 l 

where 

A (s, t) = ~ (' d2peiqP (e2i&(p) -1] 
,.2 1/ r! ~ 

+ ~d2peiqoe2i&(p) A (s, p), 

A(s, p) = ( 2~) 2 ~d2qA(s, q2)eiqp' 

• ( ) a r d 2k j_ ipk 2 2 uP =~2 ,-2 --e l_, kj_=-kj_<O. 
r! " k j_- 'A' 

(4) 

The infrared divergences are separated in both terms 
in (4) in the form of an identical phase factor[aJ. If we 
assume that we can introduce the concept of the nuclear 

potential for the hadron amplitude and use the quasi
classical approach, then 

1 . 
A (s, p) = ----=[e'''bnuc (•.r)- 1] 

i·2l'n · 

In this case formula (4) leads to the answer obtatned 
by Bethe[ll. 

The authors are grateful to V. N. Grib:>v, A. V. 
Efremov, L. D. Solov'ev, and A. V. Shchelkachev for a 
discussion. 
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