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It is shown that a low-frequency collective oscillation branch should be possible at low temperatures 
and high carrier densities in the electronic subsystem of a pure compensated semiconductor. The 
oscillations are similar to electron sound in metals, a phenomenon previously considered by the 
authors; however, in contrast to metals, in semiconductors the interaction between the carriers in
volves direct Coulomb interaction between the electrons. Macroscopically, electron sound is a tem
perature wave with a velocity on the order of the thermal velocity of the heavy carriers. If compensa
tion is not complete and the difference between the number of electrons and holes is sufficiently small, 
a soft optical branch arises with an activation frequency that is proportional to the difference between 
the electron and hole concentrations. It is shown that in the hydrodynamic region soft activation fre
quencies also appear in transverse electromagnetic waves. 

1. INTRODUCTION. SECOND SOUND IN A SYSTEM OF 
CHARGED PARTICLES 

Peshkov, who observed experimentally the second 
sound predicted by Landau in He2, was apparently the 
first to notelll that a similar phenomenon can occur in 
crystals, namely, collision sound in a gas of phonons, 
which is perceived macroscopically as a temperature 
wave. It is important that the sound can exist only in a 
"window" l21 

1/-r:v~ w~ 1 h", 

where its attenuation is small1 J: 

(1.1) 

(1.2) 

Here 1/T N is the frequency of the normal collisions be
tween the quasiparticles, in which both the energy and 
the quasimomentum are conserved; 1/T V is the fre
quency of collisions in which at least one of the indicated 
quantities is not conserved. (Among such processes are 
also collisions with Umklapp.) In crystalline He4, the 
existence of a "window" was proved experimentally: 
Mezhov-Deglin observed hydrodynamic thermal conduc
tivity of thin samplesl41 , while Ackerman, Bertman, 
Fairbank, and Guyer observed phonon second soundl 5 ' 61 . 

We have previously shownl31 that a collective branch 
similar to second sound can also exist in a system of 
charged quasiparticles- electrons in a metal, if besides 
the conditions ( 1.1) (which are discussed for metals 
inl3J and will be discussed for semiconductors below) 
there is also satisfied the condition that the number of 
electrons and holes be equal. 

Indeed, frequent normal collisions lead to the occur
rence of a drift described by a local- equilibrium distri
bution function 

'J- ( e(p)-pu-11) _ 1 
j< -fo T,(1+ti) ' fo(X)=ex+1' (1.3) 

where the wave of second sound can be described as a 

l) It is assumed that the velocity of sound V and the average velocity 
of the q uasiparticles v are equal. In the general case (see [ 3 ] ) we have 
w- 1 Imw- wrN [I+ (v/V) 2 ], 1/wrv 
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wave of drift parameters (u(r, t), OJ.l.(r, t), and J.(r, t). 
Here oiJ.(r, t) = J.l.(r, t)- J.l.o is the local deviation of the 
chemical potential J.1. from the stationary value J.l.o· In 
the linear approximation, the function (1.3) leads to an 
electric current proportional to the drift velocity u: 

j = 1/ae(pv)u= e(n_- n+)u, (1.4) 

which vanishes only if the numbers of electrons and 
holes are equal2 J. (An analogous condition can be formu
lated for open Fermi surfacesl31 .) We have used the 
notation 

2 J ( Bf,) (rp)==- dp --, rp(p), 
h' Be 

where the integration is over the main cell in p- space 
and summation over the energy bands is implied. 

The presence of drift currents would lead to an ap
preciable role of longitudinal electric fields, with the 
produced activation oscillations with high (plasma) fre
quency, generally speaking, not falling in the "window" 
(1.1) where hydrodynamic motion is possible. As will 
be shown below, in semiconductors with small decom
pensation there can exist soft optical branches of os
cillations with activation frequencies proportional to the 
difference of the electron and hole densities. 

According to (1.1), for the existence of sound it is 
necessary to ensure a sufficiently strong "normal" 
interaction between the electrons. Unlike in metals, 
where such an interaction is possible by exchange of 
thermal phonons, in nondegenerate semiconductors fre
quent normal collisions can be ensured by direct 
Coulomb interaction at low temperatures and high 
carrier densities. The Coulomb mean free path 

(1.5) 

then becomes the smallest of the characteristic lengths. 
The electronic system turns out to be practically isola
ted from the lattice (see Sec. 4). A similar situation 
can arise in pure intrinsic semiconductors with suffi-

2lThe importance of such a condition was first pointed out by 
Gurevich and Shklovskil [7 ] in an analysis of phonon second sound in 
semiconductors. 



ELECTRON SOUND AND THE SOFT PLASMA BRANCH IN SEMICONDUCTORS 645 

ciently narrow forbidden bands, and can also be obtained 
by illumination at large lifetimes of the non- equilibrium 
carriers. (These states are similar to those used in 
semiconductor laserslSJ or investigations of the exciton 
transition tsJ . ) 

As already mentioned, satisfaction of (1.1) pre
supposes a small probability of collisions with Umklapp. 
If the electron or hole groups lie on the boundaries of 
the Brillouin zone, then the Umklapp is just as probable 
as normal collisions. But by choosing the biased main 
cell13 l it is possible to ensure (but now with a new 
classification of states) remoteness of the boundaries 
from the extrema of the zone and exponential smallness 
of the Umklapp probability. 

2. ELECTRON SOUND IN A SEMICONDUC10R 

In this section it is assumed that the electron and 
hole densities are equal with sufficient degree of accur
acy, so that the drift current and the associated electric 
field are negligible. As will be shown belo~~ to this end 
it is necessary to have In_- n+l/n « 1/wr v. 

Let us consider a picture typical of a semiconductor, 
when there are several electron and hole groups, parti
cle transitions between which in interelectron collisions 
have exponentially low probability (of scale exp(-AE/T), 
where A€ is the band energy). At the same time, owing 
to the pure normal collisions between the groups, there 
occurs exchange of momentum and energy and a com
mon drift velocity u and a temperature J are estab
lished. The drift function (1.3) depends on the index of 
the group a: the oscillations of the chemical potentials 
OJJ.a (and in the case of a nonequilibrium situation the 
chemical potentials JJ.~ themselves) can be different for 
different groups. 

The problem of electron sound in such a situation, 
for an arbitrary statistics and spectrum, were consid
ered for an electron-phonon system inl3 J. Therefore 
the expressions of interest to us for the velocity and 
polarization of the wave of the electron sound can be 
obtained by omitting the phonon mean values from the 
corresponding formulas (22) and (23) ofl3 J. The velocity 
of sound Vo is given here by 

(2.1) 

where the index K denotes the projection on the direc
tion of the wave vector k, 

1: (p,)•(p.)• a,.= (p,p.)-
(1)" 

~ [ (p.v.)•]' { .~ (e')•(p.v.)• )', 
c .. =~ (1)• + (p.v.s')-~ ( 1)• (2.2) 

(s')"=l"(.E( (~')"- (~~"}' ](", l"=B-11o". 
~ 

We note that the relative placement of the groups in 
p- space does not affect Vo. 

Let us estimate the velocity V0 , assuming the elec
tron and hole spectra to be isotropic and quadratic. We 
reckon the quantities E, JJ. and pin each group from 
their values in the corresponding band extrema. Then 
Ea = ±p2/2ma and ft = exp(±(JJ.a- E8)/Te. (Here and 
below the upper sign pertains to the electrons and the 
lower to holes, JJ.a = JJ.~). We introduce for convenience 

the density n~ = %7T(2Tema/fl2) 312 , corresponding to 
degeneracy for the given group. Accurate to coefficients 
of the order of unity under the logarithm sign we have 

""T In n,•(T,) (2.3) 
lla-. ~· 

where na > 0 is the density of the carriers in the group. 
The estimates for the mean values entering in (2.2) are 
of the form 

(pv)• ~ ±n., (1)• ~ n./ T,, (p')• - m.n., 

(p)• ~ n.-ym./ T,, (pvr)• ~ (T, =F 11a)n., 

(r)• ~ ±(T,=F~-t.)n./T., <r>•- (T.=Filo)'n./T., 

(pve'>•- (T.=F 11.)n. (1: (T. =F ~-t•>'n.!T. r"'. 
• 

As a result 

Cxx ,_ ·~ na I 
T ~ (f + (T, =F 11•)'n. ) 

• E (T, =F 11•)'n• . 

v,• _ . T, En. (' f-1- (T. =F lla)'n. )· 

,Em.n. • E (T, =F 11•)'n0 

a b 

(2.4) 

(2.5) 

If it is assumed that the numbers of the carriers in the 
groups are of the same order, then 

V, ~ 'IT,/ m•, (2.6) 
where m* is the mass of the heavy carriers. 

We note that if the carrier velocities differ strongly, 
then as a result of the diffusion dispersal of the fast 
particles from the slow wave (for example, ve » vh 
~ V) the attenuation of the sound increases and the 
"window" (1.1) becomes narrower (see footnote 1). 

At large differences of the effective masses, interest 
may attach to a situation in which a common drift is es
tablished, owing to the rapid exchange of quasimomen
tum, but the exchange of energy is difficult, as is the 
exchange of particles. In the case of isotropic groups, 
the equations for the drift parameters then take the form 

611"(1)• + '!}•(e)•- u.(pv)"/3V = 0, 
611"(1!)" + 'l}"(e')• - u.(pve)" I 3V = 0, 

1: 611" (pv)• + 1: '!}" (pve)•- Vu. (p') = 0. 

(2.7) 

. 
From this we get 

'!}" = u. (pv)•(e)• ~(1)"(pve)• 
3V ( (~)")' -(1)"(e')• (2. B) 

11 • _ u. (l!)"(pvl)"-(pv)•(e')• 
11 - 3V ((l)")"-(1)"(e')• 

1 ~ 1 { ( (pve)"(1)•-(pv)"(l')")" } 
V" = (p')~ (1)• (1)"(1!2)"-((1!)")' +((pv)")' · 

In order of magnitude, the velocity is equal, as before, 
to the thermal velocity of the heavy carriers. 

3. PLASMA OSCILLATIONS AND TRANSVERSE 
ELECTROMAGNETIC WAVES IN mE HYDRO
DYNAMIC REGION 

We consider now the more general situation when 
%(pv) = n_- n+ ;.< 0 and the drift current also differs 
from zero. In this case an important role is played by 
electric fields, and it is necessary to consider a system 
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of bound equations: the kinetic equation (or the hydro
dynamic equations that follow from it) and Maxwell's 
equations. The connection with the electric field, as we 
shall show, strongly influences the spectrum of the os
cillations, leading to the appearance of an activation 
frequency and to additional damping, which in some 
cases is quite appreciable. 

As before we assume that inside the system of car
riers there is established (locally) a common drift and 
a temperature, with different chemical potentials for 
the isolated groups. In the kinetic equation we retain 
the term with the electric field eE · vafo /a E. The com
plete system of equations with allowance for the dissi
pative terms is of the form 

ien,(6n ·N) 
~ .. u. = -;;;- V E, \ 6,. n + buut , 

( , OJ' ) 4niCQ. d 
k 6u-k,k,-7~" E, =---;;z-1•, 

d ( {Jn 1" N) +" N(OJp)'1 ji = neu1 6il-;- + ulW't , rit = Bil zoot -;- il· 

We have introduced here the notation 

~ .. = V'a,.- c,., V = OJ I k, 6n = n_ - n+. 

(3.1) 

(3.2) 

(3.3) 

The hydrodynamic equations can be derived from the 
kinetic equation by the Chapman-Enskog method (see, 
for example/101 ). Eq. (3.1) follows from the complete 
system of hydrodynamic equations after exclusion of 
the drift parameters o JJ. a and J. For the proof of the 
vanishing of the coefficient of {3 ik which is linear in V, 
seel3l; aik and the only nonvanishing element cKK of the 
matrix cik are given above (see (2.2)). 

In Maxwell's equations (3.2) there is separated a 
"deformation" current jd, proportional to u. On the 
other hand, the part of the current proportional to the 
field is referred to the dielectric constant 'Eiz, which, 
in addition, contains the lattice part of Eil· 

All the dissipative terms (proportional to iwr N) are 
written out in order of magnitude, and the quantities 1ik 
that enter in them are numerical coefficients of the 
order of unity. In (3.1) we have left out for simplicity 
the usual dissipative hydrodynamic terms that lead to 
the damping (1.2), which will be taktm into account 
directly in the final results. 

In the general case, the dispersion equation that 
follows from (3.1)-(3.3) is quite complicated. But if 
the direction of propagation of the wave K coincides with 
a principal direction of the crystal, then the longitudinal 
and transverse branches of the oscillations separate. 

For the longitudinal wave, the dispersion equation 
then takes the form 

(3.4) 

where 
, 4ne'(p,v,)' 

ron= , 
aueu 

(3.5) 

Yo is the velocity of the electron sound at n_ = n+ (see 
(2.1), a 11 = aKK• E11 = EKK' and the coefficients of order 
of unity were omitted from the terms containing w r N. 

We present an expression for the dispersion of the 
longitudinal wave in those cases when the absorption is 
small (w-1 Im w « 1). Under the condition 

, N 6n 1 
OJp't ~OJ~-

n 'tN' 
(3.6) 

where wp is the plasma frequency of the heavy carriers, 
the spectrum takes the form 

(J)' = OJu' + k'V,' + iCJYtN OJ,' ( (Jn In+ OJu' I OJ'). (3. 7) 

We note that the activation frequency w 11 (3.5) is smaller, 
in order of magnitude, by a factor n/on than the plasma 
frequency wp: 

It is important that under hydrodynamic conditions when 
n_ ~ n+ the soft-activation branch of the oscillations is 
due not to the low density of the carriers, but to the 
mutual compensation of the current and the charge den
sity in the common drift. We note that the activation 
becomes manifest noticeably only if the very stringent 
condition wErN « on/n is satisfied; this condition fol
lows from (3.6) with w = WJI· 

In the remaining possible cases, the spectrum has an 
activationless form 

w' =. k'Vo' + iOJ'f, (3.8) 

where the relative damping r is equal to 

It is necessary to add to the damping in (3.7) and 
(3.9) the term 1/wr Y; the viscous damping wrN (see 
(1.2)) has already been taken into account in these 
formulas. 

From the foregoing results we see that in the case 
when wprN >on/n the damping is small in the 
''window'' 

1 1 ( {Jn )' 1 
-,--~OJ~-. 
'tv 't'N n 'tN 

and when wprN < on/n the damping is small if 
w > wpon/n and the condition (1.1) is satisfied. 

(3.10) 

As follows from (3.8) and (3.9), in this case the 
second-sound wave remains practically a purely tem
perature wave, although the electric fields may make 
an appreciable contribution to the damping of the wave. 
To the contrary, the solution (3. 7) describes a soft 
plasma branch of the oscillations, in which the decisive 
role is played by longitudinal electric fields. This longi
tudinal branch of the oscillations can be regarded as a 
continuation of the high-frequency collective branch of 
Pines and Schriefferl 11J to the low-frequency region. 

Let us consider now the transverse case. Its dis
persion law with allowance for the hydrodynamic damp
ing (1.2) is 

(3.11) 

where the activation frequency is 

w.c' = 4ne'(p.v,)' I e.ca.c. (3.12) 

It is assumed that the wave is polarized along one of 
the principal axes of the two-dimensional tensors Eo:/3 
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and aaf3 (a and (3 number the axes that are orthogonal 

to the propagation direction K}, E 1 and a 1 are the corre
sponding principal values. The condition of the small
ness of the damping of the transverse wave is of the 
form 

(3.13) 

As seen from the foregoing results, the activation 
frequency for the transverse wave is of the same order 
as for the longitudinal one: w 1 ~ w 11 ~ wpon/n. In both 

cases, the activation appears significantly if the condi
tion wprN « on/n is satisfied. If a1 E1 > a 11 E11 , then 
the longitudinal and transverse branches intersect, and 
since Va « c, the point of intersection is close to the 
limiting frequency of the longitudinal wave w II (see 
(3.4), (3.5), (3.11), and (3.12)). 

In propagation along the principal direction, the 
longitudinal and transverse branches are independent, 
and the presence of the point of intersection does not 
affect the two waves in any manner. However, even a 
small deviation from the principal direction leads to 
lifting of the degeneracy and to an appreciable mutual 
influence of the branches. For the case of intersection 
of the longitudinal branch with one of the transverse 
branches (twofold degeneracy) we can easily obtain the 
spectrum 

U>' ~ wu' + w_~_'(k) ± [ ( wu'- w_~_'(k) )'+a_~_ (a,,+~ )'wu'w_~_'(k) ]'f,. 
2 2 a 11 a_~_ e 11 • 

(3.14) 
Here w~(k) = c2k 2/ E 1 + w~, a is the direction of polar
ization of the transverse wave, and the nondiagonal 
elements aKa and EK 01 are small because of the small
ness of the deviation of the vector K from the principal 
direction. 

For an arbitrary propagation direction, the results 
remain qualitatively in force: there exist three waves 
with activation frequencies of the order of wpon/n, and 

when w >> wpon/n their spectrum goes over into a line 
spectrum, the phase velocities of two of the "trans
verse" waves are close to c, and that of one "longi
tudinal" wave is close to V0 ~ vT/m*; there is no 
intersection of the branches. 

It is important that at sufficiently small on/n the 
longitudinal wave attenuates weakly within the limits of 
the "window" (1.1), whereas in the case of the trans
verse wave there should be satisfied the additional con
dition wprN « 1 (see (3.10) and (3.13)). On the other 
hand, the presence in the hydrodynamic region of trans
verse waves with soft activation frequencies can be re
vealed by the reflection of the electromagnetic waves 
from the surface of the semiconductor. Apparently this 
is easier to effect experimentally than observation of a 
temperature longitudinal wave of electron sound. 

We present in this connection the reflection coeffi
cient of electromagnetic waves (for the simplest case, 
when the wave propagates along the principal axis 
normal to the surface of the metal): 

R= 1(1-v:)/( 1+vc_~_)f, (3 .15) 

where V 1 = k-1v'k.2c 2/ E 1 + w2 is the phase velocity of the 
transverse wave (see (3.11)). 

4. POSSIBILITY OF HYDRODYNAMIC SITUATION IN 
SEMICONDUCTORS 

We now return to estimates of the frequencies of the 
collisions of the carriers with one another and with the 
lattice, in order to ascertain the feasibility in principle 
of the existence of the "window" (1.1) of interest to us, 
in which the hydrodynamics is applicable. 

We consider first collisions between electrons and 
lattice vibrations. Scattering by ionized impurities will 
be assumed to be sufficiently small in view of the small
ness of the concentration of impurities in comparison 
with the concentration of the carriers. (At the time that 
the scattering cross sections for electron- impurity and 
electron- electron interactions are of the same order.) 

In scattering by acoustic phonons, two limiting situa
tions are possible, depending on the ratio of the thermal 
momenta of the electron PT and of the phonon qT. (The 
temperatures of the carriers Te and of the lattice TL 
are assumed to be different, satisfying the conditions 
ms2 « Te « ®D, ms2 << TL « ®D, where sis the 
speed of sound, m is the electron mass, and ®D is the 
Debye temperature.) 

When PT ~ qT (Te ~ TlJms2) the main contribution 
to the relaxation is made by processes of spontaneous 
emission of phonons with large nonthermal momentum 
PT· Their energy is PTS ~ v'ms2 Te « Te, i.e., this is 
almost elastic scattering, leading to a collision fre
quency 

where A is the deformation potential and p is the den
sity. We note that the same mechanism is responsible 
for relaxation in metals at high temperatures. 

In another case typical of semiconductors, PT 
« qT (Te « T!/ms2), only phonons with momenta 
q ~ PT, and accordingly with energies sq « TL, take 
part in the relaxation. (For processes in which thermal 
phonons take part, the laws of energy and momentum 
conservation are incompatible.) There are many such 
phonons (N ~ TL/tlw ~ 1), and the principal role is 
played by the processes of their induced emission and 
absorption. An additional factor N ~ TL/ v'ms2T e ap
pears in the collision frequencyl 121 : 

The general expression valid in both limiting cases 
is 

The electron mean free path is equal to 

l l {jms'/T~-· T,>TL'/ms', 
acoust~ o '/T T ~ T '/ 2 ms L, e~Lms, 

where lo ~ ti.4p/m3A2 ~ 10-3 em for A ~ 2 eV, 
m ~ 10-27 g, and p ~ 5 g/cm3 • 

The interaction with optical phonons with activation 
energy no >>Tv Te leads to the following reciprocal 
energy relaxation timeu 2 J: 

A'g'm''•T y, { YQ Q ''• 
V t ~ ' e-00/T _ 0 + e-00/T (........: \ } 

op h'pQ 0 L T, ' T, 'J · 
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The expression for the momentum relaxation frequency 
differs only in the degree of the factor il 0 /Te of 
exp(-ilo/Te), namely 3/2 in lieu of 5/2. 

The carrier recombination time in semiconductors 
is usually quite largel131 • We shall therefore not dis
cuss the different recombination mechanisms. 

A comparison of the presented formulas with the ex
pression for the interelectron mean free path (1.5) leads 
to the conclusion that at low temperatures of the lattice 
and of the electrons, the electron-lattice mean -free paths 
can be made much larger than the electron- electron 
ones, provided the electron concentration is high. For 
example, at Te ~ TL ~ 1 oK and n ~ 1014 we have 
lacoust ~ 10-4 and lee ~ 10-6 em. 

The use of a pure Coulomb cross section in the esti
mate of the electron- electron interactions is justified 
by the fact that at densities that are sufficiently large 
but smaller than nF(T), the Coulomb diameter p 1 
= e2/Te, the Debye length (Te/47rne2) 112 , and the thermal 
de Broglie wavelength of the carriers "-T = n;rmr::_- do 
not differ very strongly from one another, and conie
quently neither the Rayleigh nor the diffraction factors 
should greatly change the cross section in the region of 
interest to us. The Coulomb logarithm is also small, 
and it can be assumed that it is compensated for by the 
factor due to the dielectric constant of the lattice. 

The authors are grateful to F. G. Bass, L. V. 
Keldysh, Z. I. Uritskil', and I. N. Yassievich for useful 
discussions. 
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