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The time of onset of stationary motion in a layer of a nematic liquid crystal located between conduct­
ing planes is determined theoretically. Instability appears at a certain critical potential difference 
V cr• which is independent of the distance between the planes. The stationary motion is periodic along 
a selected direction on the plane. The period d is proportional to the distance between the planes. The 
results are compared with experiment. 

INTRODUCTION 

0 NE of the interesting problems of the physics of the 
liquid- crystal state is the behavior of the mesophases 
in external electric and magnetic fields. The phenom­
enon considered in the present paper was first observed 
by Williams[ 1l. It is manifest by a strip-like ("domain") 
structure of a layer of nematic liquid placed between 
plane-parallel plates to which a potential difference 
V = <p1- cp2 is applied. The necessary conditions for the 
occurrence of this effect are a magnetic field H parallel 
to the plane of the capacitor, or polishing of the plates 
in a preferred direction (the x axis). Under these condi­
tions, in the absence of an electric field E, the nematic 
mesophase becomes single-domain, the long axes of the 
molecules are oriented along the x axis: the "director" 
n is parallel to the x axis. The characteristic periodic 
picture of the black-white bands parallel to they axis 
appears at a definite (critical) field Ecr· 

The cause of this phenomenon apparently lies in the 
fact that the nematic liquid loses mechanical equili­
brium in the electric field and macroscopic motion is 
produced in it. In considering this motion, which has a 
periodic character in the zx plane, it is necessary to 
take into account the volume forces that act on liquid 
containing extraneous charges, internal-friction forces 
due to the viscosity of the nematic liquid, and liquid­
crystal elastic forces. The elastic forces in the nematic 
mesophase are connected with the inhomogeneous dis­
tribution of the director n. The distribution of the direc­
tor n is in this case periodic in the zx plane and gives 
an observable optical picture of alternating dark and 
light strips along the y axis. 

The nematic liquid may also be in mechanical equili­
brium if the potential cp is not constant along the liquid. 
An important role in the stability of such an equilibrium 
is played by the anisotropy of the dielectric constant 
fik and of the conductivity aik in the nematic liquidr2 J. 

Thus, in the case when the conductivity along the x axis 
is larger than along the y axis (this is precisely the 
situation in paraazoxyanisole), the equilibrium will be 
stable only if a definite condition is satisfied. If the po­
tential difference <p1 - <p2 is not too large, then the 
regime of pure electric conductivity is maintained, with 
the potential a function of only the vertical coordinate z. 
On the other hand, if the difference cp 1 - cp 2 exceeds a 
certain critical value, then the space charges produced 
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in the liquid interact with the external electric field and 
cause internal flow that tends to mix the liquid in such 
a way as to equalize in it the potential cp. 

The instant of the onset of such a stationary motion, 
analogous to stationary convectionr3 J, is determined 
theoretically in the present article. In accordance with 
the geometry of the experiment, we assume that the 
plates are polished along the x axis, the electric field 
is directed along the z axis perpendicular to the plates, 
and the resultant "domains" are parallel to the y axis. 
All the perturbations depend on the coordinates z and x. 
A solution of such a two- dimensional problem is given 
below. 

1. EQUATIONS AND BOUNDARY CONDITIONS 

We derive the equations describing the stationary 
flows in a nematic liquid. The liquid is assumed to be 
incompressible. This means that we neglect the change 
of the density p under the influence of a small change of 
pressure p along the liquid. 

The Navier- Stokes equation in an anisotropic liquid 
dielectric containing extraneous charges with density 
Pext is 

(1) 

where v is the velocity of the liquid and fi is the volume 
force, equal tor4 J 

f,=-:-(-p+_!_EmE,p 08m')- 8_!_EmE, o:m• +p"E,, (2) 
ux, 8n dp n ux, 

a{d is the tensor of the stresses due to .he viscosity of 
the liquid crystal r5 J • 

ah/ = atnkntAminmni + aznhNi + a3ni1Vh + a~Ahi 
+ a5nknAii -:- aantn.Aik, 

1 ( OV; OVm) dn 1 Am;=-;--+- , N=--+-[nrotv]. 
2 OXm OX; df 2 

We write the alternating potential cp in the form 
cp = -Eoz + 1/J, -l/2 ::5 z ::5 l/2, assuming that if!« V 

(3)* 

= Eol, where l is the thickness of the layer. We assume 
also that the deviations of the director n from the x axis 
are small: nz = sin 13 "" 13, nx = cos 13 "" 1. Then, writing 
p ext and Eik in the form 

*[n rot v] = n X curl v. 
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1 {) 
p" = -4 -a (e .. E,), 

Jt Xi 

e .. = eJ.Ii,. + (e 11 - B.>.)n,n,, 

and omitting second-order terms, we obtain from 
(1)- (3) 

{) ( {)'v, fJ'v.) 
7h ~'ax'+ ~'",h' 

{) { {)'v, {)'v, E, [ fJG fJ'Ij) {)'IJ!]} 
= fJx ~' fJx' + ~. f)z' + 4;- E,(e 11 - e.>.) fJx- e 11 fJx'- e_c a;:; , 

(4) 
where 

~'=a,+ a,+ 1/2(a, +a,+ a,), ~' = 1/2 (a,+ a,+ a,), 
~' = 1/2(-a,+n.+a,), ~. = 1/,(-n,+a,-a,). 

We write the current density in the form 

We have neglected here the diffusion current, which is 
proportional to r2 ' and is small if the layer thickness l 
is sufficiently large: l > 3 x 10-5 cml2J. The layers of 
the nematic liquid under the experimental conditions 
have a thickness <: 6 x 10-4 em. 

From the equation div j = 0, which the spatial distri­
bution of j in the constant field obeys, we obtain accur­
ate to first- order terms 

ae a•w D2.p 
E,(o11 -o.>.)--ou-. -a.c-. =0. 

ax ax' az' 

The equation of motion for the director n can be 
writteh in the formlsJ: 

dQ 
1-=(nh]-r 

dt ' 

where J is the moment of inertia per unit volume, 

( 5) 

n = n x ( dn/ dt) is the velocity of rotation, h is the 
molecular field, and r is the moment of the friction 
forces. The molecular field h is determined as a func­
tional derivative h(r) = -o.'/on(r). The free energy .T 
of the nematic crystal in the continuous-medium model 
is equal to 

.o/'" = ~ J {Ku (div n) 2 + K,(n rot n) 2 + K,(n rotn]'- _!_em,EmE,}dr 
2 4n ' 

where Kii are the elastic constants. The moment of the 
friction forces in an incompressible liquid crystal is 
given bylsl 

where the velocity N of the internal motion and the 
tensor A = { Aij} are defined in (3), and the constants 

Y1 and Y2 are connected with the Leslie constants Qli by 
the relations Y1 = 0'3- 0'2, y2 = O's- O's. Substituting 
these expressions into the equation of motion, we ob­
tain finally in the approximation under consideration 

eu- B_c ( a.p) fJ'e . fJ'G --E, E,e-- +Ku-+K,-. -. 
4n fJx az 2 ax' 

(6) 

Equations ( 4)- (6), together with the continuity equa­
tion div v = 0, constitute a complete system of equations 
describing the stationary flow in a nematic liquid. This 
system of four equations determines the unknown func-

tions v, e, and 1/J. The boundary conditions on the solid 
surfaces are of the form 

¢ = 0, v = 0, Dv, I az = 0, e = 0. (7) 

The condition av z I oz = 0 follows from the continuity 
equation. The condition e = 0 follows from the formula­
tion of the problem (experiment), namely, we assume 
that the surfaces are polished in the direction of the x 
axis. 

2. CRITICAL FIELD 

Eliminating the variables v and e from the obtained 
equations and recognizing that in a nematic liquid 
(paraazoxyanisole) E1 "" E 11 , 0'1"" 0, y2 ""-y1l21 , we ob­
tain as a result for one variable 1/J an equation of the 
type 

( {)' {)' ) { {)' .. {)' ) f)' {)' f)' iJ' 
az' +a fJx' fii' + ba;z ( a;,z+ c fJx') ( iJz 2 + iJx2 ) lj1 

).(i}' iJ')iJ'Ij) 
= -, a;;+ iJx2 iJx'' (8) 

1 ( au ) y, V' A.=- eJ.--eu --, 
4n O_c ~' K11 

a=i-~ 
~. ' 

b = K, 
Ku' 

On 
C=-. 

O_c 

The boundary conditions (7) are accordingly trans­
formed into 

¢=0, 
iJ',P a;:;:= 0, 

i)'"' a;;=O, iJ'Ij) . iJ'Ij) iJ'Ij) 
~+(b+c)--+bc--=0 
az' ax• i)z' iJx' i)z 0 

We seek 1/J in the form exp(ikx)l;(z). The general 
solution of the equation obtained for l;(z) is a linear 
combination of the functions cosh(21l jz/Z and 
sinh(21ljz/Z), where iJ.~ = (kl)2/4; ML iJ.~, iJ.~ are the 
solutions of the algebraic equation 

(9) 

(4J.L'- ak'l') ( 4J.L'- bk'l') ( 4J.L'- ck'l') + lo( kl)' = 0. (10) 

The coefficients of this combination are determined by 
the boundary conditions (9), which lead to a system of 
algebraic equations, the condition for the compatibility 
of which determines the dependence of kl on A, The 
inverse function A(kl) has a minimum at a certain value 
koZ; the corresponding value A 0 = A (k0 Z) determines the 
criterion for the occurrence of instability, and the value 
of k0 determines the periodicity along the x axis. The 
results of the corresponding calculations, analogous to 
those oflsJ, are presented below. 

The coefficients a, b, and c are numbers of the order 
of unity (in paraazoxyanisole, a"" 3.8, b"" 2.4, and 
c"" 1.5); the critical value of the parameter A/(kl)2 is 
of the order of 50. Therefore the solution of (10) can be 
written approximately in the form 

J.L' ~ g (kl)' (1- ) 2 ~ (kl)' ( 1 + 1- i-y3 ) 
2 ~ 4 v , J.L' ~ g-4 - --2-v , 

J.L•2 ~g (kl)'(i+ 1+f~3v) 
4 2 ' (11) 

where 

g= (a+b+c)/3, (gv)'=lo/(kl)'. 

Setting up an even and an odd (relative to z) combina­
tion of the functions cosh(2JJ.jz/Z) and sinh(2Mjz/Z), which 
satisfy the conditions (9) at z = ± Z/2, we find that when 
(11) is taken into account the compatibility condition is 
given respectively by the equations 
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and 

-(v- 1)''•K[1 b+c be ] (kl--) 
+ g(v -1) + g'(v -1)' tg 2l'g(v - 1) 

3 ( kl) =-.-(1-b-c+bc)th -
g'l, 2 

+(AI +BR)sh(kll'gA)-(BI -AR)sin(klygB) 

ch(kl}'gA) +cos (klJigB) 

(12) 

(v- 1)'1•K [1 + t + c + be ] ctg (!:!... Jig(v -1)) 
g v -1) g'(v -1)' 2 

3 ( kl ) = g"t, (1-b-c+bc)cth Z 

+ (AI+BR)sh(klJigA)+(BI-AR)siri(kll'gB) (13) 
ch(kll'gA)- cos(klygB) · 

Here A, B, I, K, and R are functions of g and v: 

A'= '12{1 +v/2+ l'1 + v +v'), B' = 112(-1- v/2 +1'1 +v+v'), 

K= 1+ (1-~)..!_+(1-~+~)~. 
g v g g' v• 

I=_!_[ (v -1)(v'-1)-~(2+ v)(v -1)'-~(2v'+2v -t) 
v' g g' 

+ b+c {v'- 1 + 2v'-v+2 + v-1 )+~((v- 1), 
g g g' . g' 

+2~+~)]. g g' 

y3[ 1 1 b+c R = 2 (v + 1)(v'-1)+-(v'+3v +2)--(2v + 1)---
v g g' g 

x(v'-1+"+ 2 - v+i)+~{v'-1+~-~)]. 
g g' g'. g_ g' 

Equations (12) and (13), with an arbitrary parameter 
g, are solved in general by numerical methods. How­
ever, when (kh/g/2) ~ 2.3 (in paraazoxyanisole 
g R:: 2.6 and kol ~ 3), we can obtain an approximate 
(error ~ 3%) analytic expression for v(kl), for in this 
case the solution of (12) is the value Y~z./g(v- 1) R:: n/2. 
From this we get 

A.= (kl)'(gv)'l'l:: (kl)'[g+ (n/ kl)']'. (14) 

The solution of (13) is the value klv'g(v- 1) R:: 21T, 
which corresponds to large .\, and consequently to large 
critical fields. We therefore do not consider the corre­
sponding solutions below. 

The function .\(kl) has a minimum at kl = kol 
= 1T-f2[g: 

(15) 

From (8) and (15) we find that the critical potential 
difference at which periodic distribution of n, v, and cp 
along the x axis sets in, is equal to 

V _ 3 1/ 3nKuPau.L E Vcr (16) 
cr,..., ttg r· , cr = --

y,(e.L<Tu- sua-'-) l · 

The optical image of this distribution has a period 

d = 2n/ kol'l:i 2ll'g/2. 

COMPARISON WITH EXPERIMENT 

Substituting in (16) the values K11 = 7 x 10-7 dyne, 
{32 = 0.024 g-cm-1 sec-\ Y1 = 0.03 g-cm-1 sec-\ E1 
= 5.83, E 11 = 5.62, a 11 /a 1 = 1.5, and g = 2.6, which corre­
spond to paraazoxyanisole, we find that the critical volt­
age is V cr R:: 9.4 V. The period is equal to d = 2l. The 
experimental values of V cr and d[ 7- 91 are close to the 
calculated ones. It should be noted here that under the 
experimental conditions these values can vary by 30%, 
depending on the investigated sample[91 • In addition, in 
alternating electric fields the measured (effective) criti­
cal voltage is smaller than in constant ones by approxi­
mately a factor of W 7 ' 81 • 

The critical potential difference defined by formula 
(16) does not depend on the thickness of the layer of the 
nematic liquid, which also agrees with experiment. We 
note that the critical temperature difference at which 
convection sets in depends on the distance between the 
planes[6J. 

From Eqs. (5) and (6) and from the equations div v 
= 0 we see that if, for example, lfi ~ cos kx, then 
8 ~ sin kx, Vz ~ cos kx, Vx ~sin kx, i.e., the nematic 
liquid moves with maximum velocity (perpendicular to 
the planes of the capacitor) at those points of the x axis 
where the director n does not deviate from this axis. 
Such a distribution of the vectors v and n in the zx plane 
was observed experimentally in[9J. 

At sufficiently large values of V(.\), the stationary 
flow of the nematic liquid described above can become 
unstable, just as in the case of convection. Turbulence 
occurs in paraazoxyanisole when V- V cr R:: 3 V[ 91 • 

In conclusion, the author thanks A. I. Larkin for a 
fruitful discussion of the work. 
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