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Non-isotroric systems are considered on the basis of the general theory of Vander Waals forces de
veloped in[ l. The torque tending to rotate two isotropic crystals separated by an air layer relative to 
each other is calculated, as is the quasiperiodic increment to the interaction force of isotropic bodies 
separated by a cholesteric liquid crystal. The obtained anisotropic increments lie within the limits of 
experimental accuracy. 

1. Most results for Van der Waals forces in isotropic 
systems were first obtained by E. M. Lifshitzlll without 
using the methods of quantum field theory. Although it 
is usually perfectly permissible to neglect the aniso
tropy of the dielectric constant, even a small anisotropy 
of the bodies leads to a number of specific phenomena. 
Dzyaloshinskii', Lifshitz, and Pitaevskii'l2 J noted the ap
pearance of a torque that tends to rotate two anisotropic 
crystals relative to each other. In the present paper we 
calculate this torque and, in addition, consider the 
anisotropic addition to the force of interaction of iso
tropic bodies separated by a cholesteric liquid crystal. 
The analysis is by the methods of quantum field theory. 
Although physically the problems considered by us are 
quite different, they have something in common, for, as 
will be shown later, the anisotropic parts of the forces 
result from the same property of the equations for the 
temperature Green's function of the photon. Therefore 
for both cases there are similar dependences on the 
distance between the bodies (different from the depen
dences of the isotropic parts). It should also be noted 
that the quasiperiodic addition to the force, resulting 
from the cholesteric layer, is due to the torque acting 
on the pitch of the cholesteric helix. It is precisely for 
these reasons that both problems are considered in this 
paper jointly. With respect to the second problem, it 
should be stated that if the axis of the cholesteric helix 
is not perpendicular to the planes of the attracting 
bodies, then besides the calculated force there appears 
also a torque due to the Van der Waals interaction. 
There are in this case, however, also torques connec
ted with the short- range orientation forces, and in some 
cases the Van der Waals contribution may be the main 
one. Leaving this question for a separate analysis, we 
assume in the present paper that the axis of the choles
teric helix is perpendicular to the planes of the inter
acting bodies. 

2. In order to obtain an expression for the stress 
tensor in the anisotropic case, it is necessary to recog
nize that the polarization operator is connected with the 
dielectric tensor by the following relation: 

(1) 

This formula is obtained from the Dyson equationl2 J in 
perfect analogy with the isotropic case. Here Eik is the 
dielectric tensor, ~ n = 21rnT. Using this expression for 
the polarization operator, we can write in the usual 
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mannerl2 J the contribution of the Van der Waals forces 
to the free energy of the system and then find the stress 
tensor. We present immediately the final expression for 
the stress tensor after subtracting the constant uniform 
pressure: 

+D,.H{r,r)- 1/ 20;,D11 {r,r)}. (2) 

The prime at the summation sign denotes that the zero 
term has a half weight, 

D,."(r, r'; 6.) = -s.'D,,(r, r'; !;.}, (3) 

D,.H(r, r'; 6.) = +roturot.m' Dm,(r, r'; s.), (4) 

Dik(r, r'; ~ n) is the temperature Green's function of the 
radiation. 

From formula (2) we readily obtain the acting force 

F, = Bo,. I Bx,. (5) 

Thus, the problem reduces to a solution of equations for 
the Green's function in the anisotropic case: 

[eu{r, is.H.Z+rot;mrotm,]D,,(r, r'; s.)=-4n6{r-r')6,.. (6) 

We consider first the problem of two anisotropic 
crystals (regions 1 and 2), separated by an air layer 
(region 3) of width l; let the x axis be perpendicular to 
the surfaces of the crystals (the planes x = 0 and x = l). 
We refer the dielectric tensor of one of the crystals 
(say, the second) to the principal axes: 

e<'> = l ;!'l ~•> ~ l· 
0 0 el'l 

The dielectric constant of the first crystal is obtained 
by applying the matrix of rotation through an angle () 
(the angle of rotation of the principal axes in the (y, z) 
lJlane): 

A ... = {~ c!o -si~o}. 
0 sinO cosO 

We ultimately obtain the following components of the 
dielectric tensor of the first crystal: 

£u = e,<•>, e.,= e{1- 6 cos 20), £aa = e{1 + 6 cos 20), 
En= llza =e6 sin20, e.,= £u =e.,= e., =0. {7} 
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We have introduced here the notation 

e = '/,(e,<•>+ e,<•>), II= (e,<•>- e,<•> )/(e~'1 + e,<•> ). (8) 

The Green's function that enters in (6) depends only on 
the coordinate difference y- y' and z- z'. We can 
therefore take the Fourier transforms with respect to 
these coordinates. For convenience we choose the wave 
vector q parallel to they axis. Then all the derivatives 
with respect to z vanish. We also assume (without loss 
of generality) that 0 < x' < l. Then, for example, we 
have for the function Dzz(x, x', q; ~ n) the following sys
tem of equations: 

for:z:>_l 
(e,<•>s,' + q'- d'/d:z:')D .. = o, (9a) 

for O<:z:<l 

for:z:<O 
($.' + q'- d' I d:z:')D .. = -41&/l(:z:- :z:'), (9b) 

( t • eus.• d' ) z (9 ) e,~. - • 2 +. 2 d 2 D.,-+ e.,!;. D .. = 0. c 
8u~on q X 

There are homogeneous equations for Dyz in the first 
two regions, where this function vanishes. The solutions 
for x > l and for 0 < x < l can be found readily (they 
are the same as in the isotropic case): 

Here 

D,. =Ae-""", 

2n 
D., = C,e-"•" + C2e"•"-- exp {- w, I x- x'l} 0 

w, 

11<•>··+· U/z = y B.s !On. q , w, = y'~.· + q'o 

For x < 0 we seek solutions in the form 

(10) 

(11) 

Substituting (11) in (9), we obtain from the compatibility 
condition a biquadratic secular equation for the deter
mination of s. Its positive roots yield 

_ { e,.!;.'- eus.' [ (e.,!;.'- eus.')' 
St,Z- . 2 + 4 

, z , eu6n2 
] ''• }''• - eue,s. + e., s. , , , 

eus. +q 
A<' eus.' 
B=t ..• = s '+ 2 2 0 + 833 n q - S I,Z 

(12) 

(13) 

In writing down formulas (13) and (12) it was assumed 
for simplicity that the crystals are uniaxial, i.e., 
E~11 = E~11 , E1 21 = E~21 . The arbitrary case does not in
troduce anything new in principle, but the calculations 
for a uniaxial crystal are much simpler. To determine 
the constants A, C1, C2, A!1' 21 and B:1' 21 it is necessary 
to satisfy the boundary conditions of continuity of the 
function Dzz(x) and its derivative at x = 0 and x = l. 
After straightforward but rather cumbersome calcula
tions and after subtracting the terms corresponding to 
the homogeneous case, we obtain ultimately 

) 2n (w,- w2) (w,r- p) (14) D,. (l, l = --,-----.-__:_-..,.---''-:'-:...,-----'-'~---:
w, (w,-w,)(w,r-p)-e',.•'(w,r+p)(w,+w,) · 

Here 
r=1-j2fj,, p=s,-sJ,ff,. (15) 

Analogous calculations for the remaining components 

of the Green's function of the photon yield expressions 
for the moment of the forces acting on a unit area at a 
distance between bodies l and a disorientation angle of 
the principal axes e: 

{) • T • ,. 
Al(l,9)=- dBJ dlLn.E J qdqw, (16) 

l n=O 0 

[ (w,- w,) (w,r- p) 
X (w,r+p)· 

(w,- w2) (w,r- p)- e2,.•'(w, + w,) 

+ ( w,e,~- w2) ( e.,w,r - p) ] } 
(w,e<~>- w,) (e.,w,r- p)- e2,.•'(w,e<; + w,) (e.,w,r + p) • 

The general case is quite difficult to visualize, and 
we therefore confine ourselves to low anisotropy and 
low disorientation. In addition, we assume the tempera
ture to be sufficiently low to be able to replace the 
summation over the frequencies by integrationl2l. Then 
for l < ~ 0 (where ~0 is the wavelength characteristic of 
the absorption spectra of the given bodies), we get 

M(l e)= __ 3_11sin29 
' 16n' P ~. 

- s~ e,(is)-1 ( e(is)-1 )' --
(!) = , e,(isl+ 1 e(isJ+ 1 y'e(is)dso 

(17) 

(18) 

The quantity w plays the role of the characteristic 
frequency of the absorption spectra of the given bodies. 
The dielectric constant of the imaginary frequency is 
connected in the usual manner with the imaginary part 
of the dielectric constant at real frequenciesl3l. 

For l » ~ 0 , when retardation is significant, we have 

111 =Ill-' sin 290 (17') 
3. We now consider the problem of two isotropic 

bodies separated by a layer of cholesteric liquid. The 
respective dielectric- constant tensors are now given by 

{e1 00} {e,OO} 
~<1> = 0 e1 0 , 8<•> = 0 e, 0 , 

0 0 e1 0 0 e, 

where (see, for example, l4 l) 

e,. = e(i-11 cos 2ax), e.,= e,., =ell sin 2ax, 

e.,= e(i +II cos 2ax), 

w = 21T/h, and h is the pitch of the cholesteric helix. 
Substituting expressions (19) in Eqs. (6) for the tem

perature Green's function, we obtain for the function 
Dzz• for example, the following system (0 < x < l): 

( es.'- :;, + q' )D .. + ells.' cos 2ax D .. 

+ e66.'sin2axD., = 0, 
(20) 

- ell!;.' cos 2ax D., + ells.' sin 2ax D" = 0. 

At other values of x, the equations are the same as in 
the isotropic case (Dyz = 0). 

Unlike (9), the system (20) cannot be solved exactly. 
However, as beforel4 l, we can find solutions in a 
"resonant" region (v'E~~ + q2 ~ a) and in the region of 
applicability of perturbation theory in il (il < 1; in real 
cholesteric media il ~ 0.01). By matching with the iso
tropic solutions, we obtain, in analogy with the fore
going, for l < ~o 

F(l)=~ cos2al r 
4:rt2 l' (I)' (21) 
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F 

where wr is the characteristic "resonant" frequency 
(the factor o 01 corresponds to the width of the "reson
ant" region). On the other hand, the region l ~ >..o for 
real cholesteric media corresponds to l >> 1/01, since 
01 ~ 0.5 x 105 and the quasiperiodic increment vanishes 
because of the rapid oscillations. 

We note one more essential difference between 
formula (21) and the isotropic contribution to the force 
F. This difference is connected with the fact that usually 
the Van der Waals forces depend very little on the tem
perature (at low temperatures). The pitch of the choles
teric helix, to the contrary, and consequently the 
"period" of the anisotropic increment are very sensi
tive to the influence of the temperature. Therefore the 
increment to the force (21), unlike the main term, also 
has a strong temperature dependence, which can be 
separated experimentally. We present also an expres
sion for the resonance frequency in formula (21): 

_ (e,(i~)- a'/~') (e,(~)- a'/~') 

w' = s (e,(i~)+ a'/~') (e,(i~)+ a'/~') 
where ~ is the "resonant" frequency in Eqs. (20). The 
figure shows the schematic dependence of the quasi
periodic increment F on the distance between the bodies 
(the period 10-5 and the characteristic wavelength >..o 
are of the same order of magnitude). The same figure 

shows (not to scale) the isotropic contribution to the 
force. 

In conclusion we note that it is possible to solve other 
non-isotropic problems in similar fashion, for example, 
the attraction of non- isotropic particles dissolved in a 
liquid to a solid surface. The necessary formulas are 
obtained by slightly modifying those given above. How
ever, for actual utilization of these formulas it is neces
sary to compare the Van der Waals contribution with the 
short- range forces exerted on the liquid by the wall. To 
this end it is necessary to calculate the second varia
tion of the free energy and to compare it with the short
range contribution ( ~ {3k2 , where k is the momentum 
and {3 is a certain coefficient). The corresponding esti
mates show that the Vander Waals contribution, gener
ally speaking, is of the same order as the short- ran~e 
one and may exceed it at not too small momenta. Th1s 
is precisely why in the present paper we were interes
ted only in problems in which the short- range for~e~ 
are insignificant (l >> a, where a is the characteristic 
interatomic distance in the liquid). 
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