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An asymptotically exact solution of the problem of the anomalous skin effect in metals in slightly 
inclined magnetic fields is obtained for diffuse reflection of the electrons from the boundary. 

1. INTRODUCTION 

THE problem of the penetration of an electromagnetic 
field into a metal in an inclined magnetic field turns out 
to be much more difficult than in the case of normal or 
parallel orientation of the magnetic field relative to the 
surface of the sample. These difficulties are due to vio
lation of the symmetry of the problem when the magnetic 
field is inclined, leading to considerable complications 
when account is taken of the reflection of the electrons 
from the separation boundary. Therefore in the analy
sis of the penetration of electromagnetic fields into a 
metal in inclined geometry the scattering of electrons 
by the boundary has so far been neglected. ct, 2J Although 
the results obtained thereby describe qualitatively cor
rectly the real picture of the penetration of the field, 
there is undisputed interest attached to a rigorous so
lution of the boundary-value problem. In the present 
paper we obtain an asymptotically exact solution for the 
distribution of the high-frequency field and of the surface 
impedance for diffuse reflection of the electrons under 
conditions of the anomalous skin effect. 

2. FORMULATION OF PROBLEM 

We consider a metal with a spherical Fermi surface. 
Let the magnetic field H be oriented at an angle ci1 to the 
separation boundary. We choose the coordinate system 
~1Jt such that the 7J axis is directed along the inward 
normal to the surface and the t axis along the projection 
of the vector H on the surface 1J = 0; consequently, the 
magnetic field H lies in the plane 1J t. 

The complete system of equations consists of Max
well's equations for the electromagnetic field and the 
kinetic equation for the electron distribution function. 
We write out Maxwell's equations for the spatial Fourier 
components of the electric field t!L(k) in the form 

k'B.(k)+2E'(0)=4:rriwc-'i.(k) (J.t=s,s); (2.1) 

j,(k) = 0. (2,2) 

Here we have neglected the displacement current and 
introduced the notation 

B.(k)= 2 J drtE.(rt)cosktJ, 
0 

1 ~ 
E.(TJ)=-J dkB.(k)coskrt; (2.3) 

n • 

l3(1J) is the electric field intensity inside the metal, 

which we continue in an even fashion to the region out
side of the metal 7J < 0, j(k) is the Fourier component 
of the current density, w is the frequency, and k is the 
wave number of the electromagnetic field. Equation 
(2.2) expresses the condition of electric quasineutrality 
of the metal and serves for the determination of the 
component tt11 (k). 

The current density is expressed in terms of the 
electron distribution function which should be obtained 
from the kinetic equation in the corresponding bound
ary conditions. We shall assume that the scattering of 
the electrons from the boundary is diffuse. The case 
of specular reflection, which is apparently more real
istic for electrons that skip along the surface, csJ is 
much more difficult. The distribution functions of the 
electrons in an inclined magnetic field was found for 
diffuse scattering by Chambers. [4J Using this distribu
tion function, we write down immediately a formula for 
the Fourier component of the current density: 

i.(k) = K •• (k)B.(k)- ~j dk'Q •• (k, k')B.(k'), (2.4) 
n, 

where 
n; 211 't' 

K •• (k)= crH Jaesin8 Ja·tn.(T)e-•' J d-r'n.(T')e'''cos[kRa(-r',T)]; {2.5) 
0 0 

Q •• (k k') = crnR f d8sin 9 rd1:n0 (-r) f d;'jn,(;') jcos(kRa(;', 1:)] 
0 0 

,, 
x J d;" e'('"-'ln,(;")cos [k'Ra(•",•')]. (2.6) 

~(t') 

Here n = v /v is the unit vector of the electron velocity 
on the Fermi surface, 8 is the polar angle and Tis the 
azimuthal angle in the velocity space with the polar 
axis parallel to the magnetic field H, 

n,(e, "t) =cos e sin (!l + sine cos (!l sin -r, 

n.(8,-r)=sin8cos't, n:(S, 1:) =cos9cos<D-sin8sin<Dsin;; (2.7) 

3 Ne' 
C1H= 4n mQ' 

v-iw v 
y=-Q-, R=-g• 

I 

(2.8) 

where N is the concentration, e the absolute value of the 
electron charge, m the effective mass, n = eHjmc the 
cyclotron frequency, R the maximum radius of the orbit 
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of the conduction electron, and v the frequency of the 
collisions between the electrons and the scatterers. 
The function a(T', T) is defined by the formula 

" 
a(,;',r)= Ja,;"n,(,;")=q(,;')-q(,;), (2.9) 

T 

q (1:) = 1: cos 8 sin <I>- sin 8 cos <I> cos 1:. 

The quantity .X(T) is the root of the equation 

a(f., ,;) == q('-) -q(,;) =0. (2.10) 

If Eq. (2.10) has many solutions then it is necessary to 
choose that solution which is smaller than T and is 
closest to T. If such a root does not exist, then .X(T) 
should be set equal to - oo. 

The elements of the tensor Kf..l. 11(k) constitute the 
Fourier components of the conductivity operators of an 
unbounded metal with allowance for spatial and tempo
ral dispersion, and also for the dependence on the con
stant magnetic field. The kernel of the nonlocal opera
tor Qf..l. 11 (k, k') is due to the presence of the interface 
and takes into account the contribution made to the 
current by the electrons colliding with the surface of 
the metal and those not colliding with it. 

It is impossible to solve Eqs. (2.1), (2.4), (2.5), and 
(2.6) in general form. We shall therefore investigate 
henceforth the region of the anomalous skin effect when 

kR;;;>i. (2.11) 

We assume the magnetic field sufficiently strong so that 

lvl=lv-iwi/Q~1. (2 .12) 

In addition, we confine ourselves to the region of rela
tively small angles <I> of the inclination of the vector H 
relative to the surface, namely 

f:P~1/kR. (2.13) 

These inequalities enable us to simplify the expressions 
for KJ.1. 11 and Qf..l. 11 , if we replace the exact formulas (2.5) 
and (2.6) by their asymptotic forms. Owing to the con
dition (2.11), the main contribution of the current is 
made by those sections of the electron trajectories in 
which the electron moves almost parallel to the surface 
of the metal, and 

v,(,;, 8) = 0. (2.14) 

However, for electrons from the vicinity of the limiting 
points, i.e., for angles Bin the intervals (0, <1>) and 
(7T- <1>, 1r), Eq. (2.14) has no solutions. Therefore we 
confine ourselves henceforth to integration over the 
interval <I> :s (} :s 1T - <I>. 

3. ASYMPTOTIC CURRENT DENSITY 

We proceed to the calculation of the asymptotic cur
rent density. The Fourier component of the volume con
ductivity KJ.J. 11(k) is conveniently represented in the form 

a n-fll In [ e-ikRq('f) 

K.,(k) =...!!.... J d8sin8J d,;n.(t)e-" ----,. -.,,....--
- 4n .,. , y + 1kRI:P cos e 

eikRq(T) ] T 

+ .k <I> · e J d·t'n,(T')exp[yt' + ikRq(,;')]. (3.1) 
'Y - ! R COS T-Zn 

Tnis formula is obtained from (2.5) if the cosine is rep
resented in the form of a half-sum of two exponentials, 

the integral with respect to T' is transformed with the 
aid of the identity 

T T 

J d,;'G(t')e"''=[1-e-'""]-' J d"t'G(t')e"'', 
-<X> "t-2tt 

G(,;) =G(,;+2n), 

and the inequalities (2.12) and (2.13) are used. The 
terms with [y ± ikR<I> cos or1 have a singularity at 

(3.2) 

y, <1>- 0. All the remaining quantities in (3.1) are 
smooth functions of y and <1>, and owing to (2.12) and 
(2.13) we can put in them y = <I> = 0. The integrals with 
respect to T and T' can then be calculated exactly. It is 
convenient in what follows to represent them with the 
aid of the following symbols: 

K _(_k)= oaJ" d8sin8[F.(k,k) +F.(k,-k) ]F (-k -k) (3.3) 
"' 4n, f(k) r(-k) ' ' ' 

where 
r (k) = v + tkR<I> cos e, 

'" F;(x, y) = exp(ixR sin 8) Ja.-m;("t, 8)exp(- iyR sin 8cos ,;) ; (3.4) 
• 

mj(T, 0) are the components of the unit vector of the 
electron velocity (2.7) at <I>= 0; 

F,(x, y) = -2ni sin 8 exp (ixR sin 8)/,(yR sin 8), 

F,(x, y)=O, F~(x, y) =2ncos8exp(ixRsin8)/0 (yRsin8). (3.5) 

To simplify the kernel Qf..i.ll• we use the identity (3.2) 
and the inequalities (2.12) and (2.13). As a result we 
obtain 

where 

Q.,(k, k') = ';.[P.,(k, k') + P.,(k, -k') 

+P.,(-k, k') +P.,(-k, -k')], 

oHR n-s"' sin 8 's" P.,(k, k') = ~2 d8-(- d"tn.(T)exp[- y,;- ikRq(T)]· 
n .. r k) 0 

T TO 

(3.6) 

X J d"t'Jn,("t') Jexp[i(k-k')Rq(,;')] J d,;"n,("t")exp[yt" +ik'Rq(T")]. 
"t-2l'l '-(t"') 

Just as in the case of the kernel Kf..l. 11 , the function 
r-1(k) has a singularity at y, <I>- 0. However, unlike 
(3.1), the remaining quantities in (3.7) are no longer 
smooth functions at small values of y and <I>. In other 
words, in (3. 7) there are still factors of the type 
r-1(k'), which arise as a result of the fact that the 
function .X(T') can assume a value - oo. Therefore in 
formula (3. 7), in the integrals with respect to T and T', 

it is necessary to separate those integrals where the 
function .X(T') has no jumps. This separates in explicit 
form all the singularities of the type r-1(k'), after 
which the remaining smooth functions of y and <I> can 
be replaced by their values at y = <I> = 0. As a result 
of these essentially simple but very laborious calcula
tions, we can obtain the following approximate formula: 

(3.8) 

(l) r _ OH "sl' Sin(J { r [ f(k) f 

P,,(k,k)-'2ni(k-k')·, d8f(k) F.(-k,-k) f(k') F,(k,k) 
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- F"(k' k)]- F.(k'~- k)[F"(- k,- k')- F,(- k', k)] }. 

pC'l (k k')= f!n sn d8 sinS {F (-k' -k)[F (k k') (3.9) 
"' , 2rri(k- k') n/2 r(k) " , ' , 

-F,(k'~k)]-F.(k', -k) [ ~~~~{,(-k,k')-F,(-k',k) ]}. 

Formulas (3.3), {3.8), and (3.9) can be further sim
plified by using the asymptotic forms of the Bessel 
functions that are contained in FIJ.(k, k') for large val
ues of the argument. The transition to this asymptotic 
form is connected with the inequality (2.11), and, as in
dicated above, is determined by the stationary-phase 
points q(r), which satisfy Eq. {2.14). Owing to (2.14), 
the coupling of the tangential components of the electric 
field 0 ~ and Zi!;; with the longitudinal component 8 TJ 
turns out to be negligibly small. In other words, in the 
expression for the tangential components of the current 
density one can disregard the terms with 07), and Eq. 
(2.2) need not be considered at all in the calculation of 
0~;;, 8~, and the surface impedance. 

We shall investigate below the case of linear polari
zation of the current along the ~ axis and formulate a 
criterion of conductivity along this direction much 
larger than conductivity in the !;; direction. Omitting 
the vector indices, we write down the asymptotic ex
pression for j~{k) = j(k) in the form 

1 ~ 
j(k) = K(k)/!f(k)--J dk'B(k,k')/!f(k'), 

rr o 

(3.10) 

where 

<In ' (1- x')'l• . 
K(k)=-Jdx [1-smkD]· 

kR_, r(k) ' (3.11) 

B(k, k') = :l(k:l '"R { k ~ k' J dx(1- x'\ '"cos kD [1- cos(k- k')D] 
-1 

X (r-'(k)+ r-'(k') )- _,_· -, s' dxsign x(1- x')'l• [1- sinkD 
k-k 

-1 

. 1 1 

-sin k'D + cos(k- k')D] (r-'(k')- r-• (k)) + k + k' J dx(1- x') '"-
_, 

x [1- sin kD- sin k'D + cos(k + k')D] (r-• (k') + r-• (k)) 

-- _,_· -, s' dx sign x(1- x') v, [cos kD +cos k'D- sin(k + k')D] 
k+ k -1 

x(r-'(k)+r-'(k'))}; {3.12) 

D=2R(1-x')'h, x=cosO. (3.13) 

Formulas (3.10)-(3.12) represent an asymptotically 
correct expression for the ~ component of the current 
density in the region of the anomalous skin effect (2.11), 
strong magnetic fields (2.12), and small inclination 
angles (2.13). However, even these asymptotic expres
sions are still sufficiently complicated. In order to 
simplify formulas (3.11) and (3.12), we stipulate the 
satisfaction of one more inequality 

lvl-
w = kii(j) ykR ~ 1, roG;v. (3.14) 

In this case we can neglect the oscillating terms in the 
integrands of (3.11) and (3.12), since their contribution 
to the conductivity is smaller by a factor w than the con
tribution of the non-oscillating terms. This result is 
due to the fact that when the condition (3.14) is satisfied 
the interval of the characteristic variation of the oscil
lating functions (I x I c-;:; (kRf112) near the point of the 
stationary phase x = 0 turns out to be much smaller 
than the width of the resonant denominator 
(lx I cv I y I /kR<P). 

The physical meaning of the inequality (3.14) can be 
understood by starting from the following simple con
siderations, (see r1 ' 2 J). The drift motion of the electrons 
along the magnetic field, and consequently into the depth 
of the metal, causes the electrons near the central 
cross section of the Fermi surface to turn out to be 
in a special position relative to those electrons whose 
drift velocity along the vector H is of the order of the 
Fermi velocity. Since the electrons that drift slowly 
in the interior of the metal return many times to the 
skin layer, their conductivity is much larger than the 
conductivity of the remaining electrons. This fact is 
described by the resonant denominators r-1(k) or 
r-\k'), and the relative number of the slow drifting 
electrons in the quasistatic region of frequencies 
w ~ v is of the order of I y I /kR.P. On the other hand, 
the interaction of such resonant electrons with the 
electromagnetic field depends on the phase relations, 
namely on the number of wavelengths subtended by the 
diameter of the electron trajectory. The inequality 
(3.14) represents the condition that the scatter of the 
diameters of the resonant electrons liD= R( I y I /kR.P )2 

is much larger than the wavelength. OWing to the inter
ference of the contributions of different resonant elec
trons, averaging takes place over the phase of the in
teraction. This averaging corresponds to neglect of the 
oscillating terms in the current density. As a result we 
obtain 

crnf' (1-x')V• 
K k =- dx 

( ) kR I'(k) ' 
-1 

(3.15) 

B(k k')= cru {--i - 1
Jdxsignx(1-x')'i•(I'-'(k)-r-'(k')) 

' 2(kk') 'I•R k- k' _, 

1 1 

+ k + k' J dx(1- x') ''•(r-'(k)+r-'(k'))}. (3.16) 
-1 

Formulas (3.15) and (3.16) admit of one more limit
ing transition to the case of parallel orientation of the 
magnetic field (cl> = 0). In this case one obtains the well
known expression (see [5J) for the Fourier component of 
the current density. Recognizing that in the case con
sidered by us the relative number of resonant electrons 
is small and 

I v I I kn <.{ flJ, (3.17) 

it is easy to calculate the integrals with respect to x 
and to obtain the following asymptotic formula for the 
Fourier component of the current density: 

j(k) = ~{/!f(kJ+ ..!_~Jrik'(!!.._ )"'[ rn kL + In(k'/kl ]fff(k')} 
(kR)'f!J rr 0 k' k k- k' · 

(3.18) 
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where 

( n) R<D L = 2exp -1--z -y- (3.19) 

If we solve (2.1) jointly with (3.18), then we can calcu
late the distribution of the electric field in the metal 
and the surface impedance 

Z=~S- dkiS(k). 
c'E' (0) 0 

(3.20) 

It should be noted that the inequality (3.17) ensures 
the smallness of the conductivity along the l; axis com
pared with the conductivity in the direction of the ~ 
axis, and the condition (3.14) leads to a small coupling 
between the tangential components of the electric field. 

4. DISTRIBUTION OF THE FIELD AND SURFACE 
IMPEDANCE 

We write down the integral equation (2.1), in which 
the current is determined bf formula (3.18), in terms 
of dimensionless variables1 

( •' _ an)F(•)+.!!...·J~[sln(s/6') -ln6] F(6') = 1. (4.1) 
.. 6' .. · n 0 (66') ''• 6 - •' 

Here ~ = kL is the dimensionless wave number, 

/S(s) =- 2L'E'(O)F(s), 
4no .. roL~ 

a= i c'R'<D . (4.2) 

The surface impedance (3.20) is expressed in terms of 
F(~) by means of the following formula: 

8iroL·s z=--- F(sJd6. 
c' 

0 

(4.3) 

The integral equation (4.1) can be solved exactly with 
the aid of a bilateral Laplace transformation. The 
method of solution is close to that proposed by Hart
mann and Luttinger[&J for an integral equation with a 
homogeneous singular kernel. Unlike the equations 
considered in [&J, the kernel of the integral operator 
(4.1) is not homogeneous: it contains a term with ln ~. 
the presence of which changes the form of the integral 
operator under similarity transformations of the inde
pendent variable. This leads to the need for modifying 
the method of Hartmann and Luttinger. 

We make the change of variables 

6 = e', 6' = e', F(e') = g(t). (4.4) 

Then (4.1) takes the form 

(e"- an)g(t)+: L d,;A(t-,;)g(T) 

-
- : te'''J d,;e-'''g(T) =e ... (4.5) 

(4.6) 

The kernel of the integral equation (4.5) does not make 
it possible to use directly the method described in [eJ. 
The difficulty lies in the fact that after the change of 

I) Although the integration here is over all~. actually the main con
tribution to the integral is made by the values r - ~ "' ian- 114 • It is pre
cisely these values of~ that should enter in the inequalities given above. 

variables (4.4) the kernel of the integral operator (4.5) 
is not of the difference type, but has the form of a sum 
of a difference kernel and a degenerate kernel. 

We introduce the Laplace transformation M(z): -
M(z)= J g(t)e-"dt, 

f c+ioo 

g(t) = -. J dzM(z)e", 
. 21tz·c-ioo 

c=Rez. (4.7) 

The real number c is arbitrary and is chosen inside the 
band within which M(z) is a regular function. In the case 
when the sought function g(t) is an exponential-growth 
function, with g(t) ~ eat as t - + oo and g(t) ~ ebt as 
t-- oo, the Laplace transformation M(z) is regular in 
the strip a< Re z <b. From (4.5) it follows that as 
t- + oo the function g(t) ~ e-2t, and as t -- 00 the 
asymptotic form is g(t) ~ e2t. Consequently, the strip 
in which M(z) is regular is -2 < Re z < 2, i.e., a = -2 
and b = 2. It will be convenient for us to seek a solution 
M(z) that is regular in a displaced and somewhat broader 
strip, overlapping the strip -2 < Re z < 2. The transi
tion to the region - 2 < Re z < 2 is realized with the aid 
of analytic continuation. 

We stipulate that the function M(z) satisfy the follow
ing conditions: 

1) M(z) is regular in the strip - 4 + .6.1 < Re z < .6.2, 

0 < .6.1 < .6.2 < ~. with the exception of certain points; 
2) at the point z = -2 the function M(z) has a simple 

pole with unity residue; 
3) at the point z = -~ the function M(z) has a second

order pole and near it M(z) = (a/1T) M(~)(z + ~ )2; 
4) M(z) should decrease when z- ±i 00 and, finally, 
5) M(z) satisfies the difference equation 

M(z-4)-8(z)M(z) =0, (4.8) 

where 

8(z) = -antg'nz. (4.9) 

The transform M(z) satisfying all these conditions 
determines a unique and single-valued solution of Eq. 
(4.5). Conditions 2 and 3 make it possible to obtain in
stead of the inhomogeneous equation (4.5) the homo
geneous equation (4.8) for the transform M(z). The 
presence of condition 3 is that additional requirement 
which is missing from [&J and results from the degen
erate part in the kernel of the integral operator of Eq. 
(4.5). In spite of this additional requirement, it is pos
sible, nonetheless, to find the unique function M(z) sat
isfying all the conditions 1-5. To prove this statement 
and to find M(z) in explicit form, we substitute g(t) 
from (4.7) in (4.5). We obtain 

~<+s•· dzM(z) [e<•+<J'- 8(z)e"] =e.,+ !!....te'1'M('f,); 
2m n 

,_,. A,< c< A,. (4.10) 

In the integral containing e<zH>t, we displace the contour 
of integration by Re z = 4 to the left. Using conditions 
1-3, we obtain 

e+ioD a 1 c+i<XI 

- 1- J dzM(z)e<<+'l'=e.,+-te'1'M('f,)+-. J dzM(z-4)e". 
2ni,_,_ n 2m,_,_ (4.11) 

Substituting (4.11) in (4.10), we arrive at the relation 
f c+ioo -. J dze'~[M(z -4)-8(z)M(z)] = 0, 

21tl. c-i<» 
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which is equivalent to Eq. (4.8). The general solution 
of this equation contains as a factor an arbitrary peri
odic function V(z) with a period 4. Therefore to obtain 
the general solution it suffices to find some particular 
solution. Since 6(z) is a periodic function with period 1, 
such a particular solution may be [a(z)] -Z/4• Conse
quently, the general solution (4.8) is of the form 

M(z) = [8(z)]-*V(z). (4.12) 

The regularity conditions 1-4 make it possible to 
find the explicit form of V(z). It is easy to verify that 
the function 

M( ) :n; [ z + 2 1 ( ] ( 2 ) " [ sin 'f,:n; (z + '/2 ) ] ''• z =-exp --- n -:n;a) tg :n;z -• -.-....,:.,----=-
16 4 ·· sin '/,:n; 

[ sin '/,:n;(z + '/.) ]'''[ sin '/,:n;(z + 'J,) ]'''[ sin 'f,:n; ]''• 
X sin '/8:n; sin 'f,:n; sin '/,:n;(z + '/2) 

[ sin '/,:n; ] '''[ 1 ] 2 
[ sin 'f,:n; ]''• 

X sin 'f,:n;(z + 1) sin 'f,:n;(z + 2t sin 'f,:n;(z + 3) 
(4.13) 

satisfies all the necessary conditions 1-5. Formula 
(4.13), together with (4.7), (4.2), and (4.3), gives an 
asymptotically exact solution for the distribution of the 
field in the metal. The surface impedance Z is ex
pressed in terms of the value M(-1) and is given by 

Z =- BiroLc-'M(-1) 

= (; )"' (1 +2'1•)~(<1> G=~ :: )_"' exp( -i3;) • (4.14) 

Since aH is inversely proportional to O, the real and 
imaginary parts of the surface impedance decrease with 
the magnetic field like H-1/ 4• The dependence on the fre-

quency is Z ~ w 314 • The value of the impedance is inde
pendent of the mean free path and consequently of the 
temperature; the ratio of the imaginary part to the real 
part is equal to tan(37T/8) ~ 2.41. The surface imped
ance was calculated in Ul without allowance for the re
flection of the electrons from the separation boundary. 
The value of Z obtained there turns out to be larger by 
a factor (1 + 21/ 2 )/2 ~ 1.21 than in the case of an un
bounded metal. 

It should be noted that in an inclined magnetic field, 
in the limiting case considered here, there should take 
place a noticeable anisotropy of the surface impedance, 
even in the case of a spherical Fermi surface. This 
anisotropy is due to the fact that when the magnetic 
field is inclined, in the region of {3.14) and {3.17), the 
conductivity of the metal in the t-axis direction turns 
out to be smaller by a factor kR<P/1 y I c21 than the high
frequency conductivity in the perpendicular direction 
{the ~ axis). Accordingly, the surface-impedance com
ponent Ztl: turns out to be larger than ZH. 

1 E. A. Kaner, Zh. Eksp. Tear. Fiz. 44, 1036 {1963) 
[Sov. Phys.-JETP 17, 700 {1963)]. 

2 E. A. Kaner and V. G. Skobov, Adv. in Phys. 17, 69 
{1968). 

3 N. M. Makarov and I. M. Fuks, Zh. Eksp. Teor. 
Fiz. 60, 806 {1970) [Sov. Phys.-JETP 33, No.2 {1971)]. 

4 R. G. Chambers, Proc. Roy. Soc. A202, 378 {1950). 
5 • 

M. Ya. Azbel' and E. A. Kaner, Zh. Eksp. Teor. 
Fiz. 32, 896 {1957) (Sov. Phys.-JETP 5, 730 (1957)]. 

Translated by J. G. Adashko 
124 


