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An attempt is made to generalize, analyze, and present in the most clear form the results of theoreti­
cal work devoted to the investigation of the influence of the electron-phonon interaction on the energy 
spectrum of electrons in metals in the normal and superconducting states. An anomalously strong 
reduction of the cyclotron mass of electrons in non-transition metals subjected to pressure is pre­
dicted on the basis of the analysis which is carried out. 

1 . It is known that during the motion of electrons in a 
lattice, the ions are displaced (one can treat this process 
as the successive emission and absorption of phonons by 
the electrons). The displacement of the ions leads, on 
the one hand, to the appearance of an attraction between 
the electrons and to superconductivity at low tempera­
tures, and on the other hand it leads to a renormaliza­
tion of the energy spectrum for electrons in metals in 
the normal state. 

In spite of the fact that a considerable number of 
articles have been devoted to the study of the electron­
phonon interaction, at the present time a number of 
questions are not sufficiently clearly understood. First 
of all, this touches upon the connection between the in­
teractions that lead to superconductivity and the nature 
of the change in the spectrum of the electrons in metals 
in the normal state. In this connection it is important to 
represent more or less intuitively the nature of the 
changes in the spectrum of the electrons which appear 
as the result of renormalization and the physical conse­
quences of renormalization: these consequences develop 
in what kind of phenomena, under what kind of conditions 
(for example, in what frequency interval), and in what 
temperature interval. 

The method of the pseudopotential Ul has been widely 
used in recent years in order to construct the energy 
spectrum of electrons in metals. In the zero- order 
approximation of this method, the electrons are regar­
ded as free, which enables one to obtain an extremely 
intuitive and physically clear picture of the spectrum. 
Taking account of the first- order corrections due to the 
nonlocality of the pseudopotential and the corrections of 
second order associated with the transition to the many­
wave approximation (taking account of the influence of 
the Bragg planes of reflection) leads, without taking the 
electron- phonon interaction into account, as a rule to a 
small change of the initial electron parameters. The 
basic parameters of the resulting model-that is, the 
dimensions and shape of the equal- energy surfaces in 
the bands, and also the quantities characterizing the 
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energy gaps between the bands- are in good agreement 
with the experimental data in the overwhelming majority 
of cases. 

It is of interest to determine what kind of changes 
the electron-phonon interaction introduces into the 
classical spectrum of the free electrons. The analysis 
of the known experimental data shows that the electron­
phonon interaction leads to an increase of the electron's 
mass mbs at the Fermi surface. The values of the 
effective mass of the electrons and their density of 
states Nbs forE = EF, calculated by the pseudopotential 
method, turn out to be appreciably smaller (by 20 to 
100 %) than the experimental values (the subscript bs 
denotes the calculated values of the band structure 
parameters). 

2. The influence of the electron-phonon interaction 
on the spectrum of free electrons was first considered 
by Buckingham and Schaffroth. [2 J Using the Brillouin­
Wigner form of perturbation theory, the authors found 
that the mass m0 of the free electrons near the Fermi 
surface undergoes the following renormalization: 
m* = mo(1- .\.r1 • The more exact calculations by 
Migdal, l3J carried out according to perturbation theory 
for a many-particle system (using a diagram technique), 
showed that m* = m0(1 + .\.). In both cases the param­
eter .\. is determined by the following integral:[41 

1.. = 2 j dro a.'(ro)g(ro), 
0 (j) 

(1) 

where a(w) denotes the electron-phonon coupling con­
stant, and g(w) and w denote the density of states of the 
phonons and their frequency, respectively. For example, 
for Na, Al, and Pb the calculated values of A are equal, 
respectively, to 0.19, 0.50, and 1.6 (see below). 

Migdal's results have been confirmed by more recent 
articles. lS-?J The additional consideration of the 
Coulomb repnlsion of the electrons and of the band 
structurel4 ,s-wJ leads to the following expression for 
the cyclotron mass in non- superconducting metals: 

m' = m,,(1 + 1.. + J.L). (2) 

Here mbs denotes the band mass, and A and JJ. take into 
consideration, respectively, the interaction of the elec-
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trons with the phonons and the Coulomb interaction of 
the electrons. At the present time the value of iJ. is not 
exactly known; however, one can believe that it is small 
(according to the data given in articleltl iJ. "'=' 0.01 for 
Al; for certain other metals values of iJ. are given 
inla-toJ ). 

In accordance with Migdal's results, l3 J the specific 
heat C~ of an electron gas and the density of states N* 
at the Fermi surface for real metals are changed with 
respect to the same quantities (Cv, N) for free elec­
trons: 

Cv• = N• = (m") = (m.,) (1 +A+ f.l), (3) 
Cv N m, m, 

where the angular brackets denote averaging over the 
Fermi surface. This must lead to a change of the cyclo­
tron resonance frequency and a change in the nature of 
the temperature dependence of the amplitude for all 
oscillating effects (the Shubnikov- de Haas effect, the 
de Haas-van Alphen effect, and others). The resistance 
to a constant current and the anomalous skin effect, l6 J 
the tunneling current, the spin-lattice relaxation time, 
the thermal conductivity, and the Pauli paramagnetic 
susceptibility do not change in this connection. [llJ 

The very same quantity A given by Eq. (1), which de­
termines the renormalization of the spectrum of the 
electrons for normal metals (and for superconductors 
when T > T c where T c denotes the temperature of the 
transition into the super conducting state), appears in the 
equation of the BCS theory for the energy gap in super­
conductors, t:.. = 2wD exp (-1/ND) (wD denotes the char­
acteristic frequency of the phonon spectrum, and V is 
the parameter characterizing the electron-phonon inter­
action). The result obtained from the Gor'kov­
Eliashberg equationl12 ' 13 J for the Einstein model of the 
phonon spectrum (w(k) = wE = const) is that NV is sim­
ply equal to A. More exact calculations, ll4 ' 15J taking the 
Coulomb repulsion of the electrons and the band struc­
ture of the metal into consideration, give 

( 2wD ) -t ),. , 

NV= In~ N"/N-y -1-1, (4) 

-2 s~d a'(w)g(w) l ~ 
y- w - n ' 

(J) (J)D 
(5) 

• 
where A and N* /N are determined by expressions (1) 
and (3), the quantity ll 1 takes the Coulomb repulsion of 
the electrons into account (IL 1 is not equal to iJ. in ex­
pression (2)). For Al the calculated value iJ. 1 = 0.1, 
y = 0.05, N*/N = 1.6, and A = 0.5, l 14 ' 15 l which gives 
NV = 0.2. The resulting value of NV is appreciably 
smaller than NV= A = 0.5 in the simple BCS theory. 

In articlertoJ the quantity A is calculated by integra­
tion over the Fermi surface S(k) (k is the wave vector): 

1 s dS, s dS,. '\'1 I M .... 'I 2 IS dS. (6) 
A= 4n' 1 v.Ej 1 v •. Ej ~ w •. , I V,Ej ' 

where ~k~, ~ is the matrix element of the electron­

phonon interaction, E denotes the electron energy, wq ~ 
denotes the phonon frequency, and ~ is the subscript ' 
indicating the polarization. The phonon spectrum ob­
tained from neutron scattering experimentsrtoJ was used 
in articlesra-toJ in order to calculate A, and the Born­
von Karman model for the lattice dynamics was used. 
in r4 J • 

The matrix element Mkk 1 ~ is calculated with the 
aid of the method of orthogo~alized plane waves in the 
theory of the pseudopotential. The numerical values of 
A and NV which are thus obtained are in good agree­
ment with the experimental data. rwJ Theoretical and 
experimental values of A and NV for certain alloys of 
the Pb-Tl-Bi group (A= 1.5 to 0.7) are presented 
inl4l.2J 

Umklapp processes, and also the transverse branches 
of the phonon spectrum, were taken into consideration 
in all of the articles. Their contribution to A reaches 
50%. U 6J The additional calculation of the not exactly 
transverse and not exactly longitudinal nature of the 
phonons leads to an anisotropy of the effective mass. 
For Na Grim val ll6 J found that the associated anisotropy 
of A does not exceed 2% whereas the anisotropy of the 
inverse relaxation time r, which is equal to the uncer­
tainty t:..E in the energy of the elementary excitations 
near the Fermi surface, in order of magnitude amounts 
to 45%. For Na, Grimvall16 '17l also calculated the tem­
perature dependence of A and t:..E. A(T) = 1.2 A(O) 
reaches its maximum value for T "'=' 0.4 Tn (Tn denotes 
the Debye temperature). For T << Tn we have 
A co T2 ln T, and at the Fermi surface the damping is 
given by r = t:..E = T 3 • For T » Tn the parameter A 
falls off in proportion to T -2 • 

One can also take account of the electron-phonon 
interaction on the basis of the theory of strongly com­
pressed matter developed by Abrikosov. u 5 J The as­
sumption that for the majority of metals the kinetic 
energy of the electrons substantially exceeds the energy 
of interaction with the lattice makes it possible to apply 
perturbation theory and to thus calculate the basic 
parameters associated with renormalization. 

3. Let us attempt to intuitively interpret the results 
of the known theoretical investigations of the electron­
phonon interaction in metals. We start from the fact 
that the spectrum of elementary excitations is deter­
mined by the poles of the single-particle Green's func­
tion: 

G-'(p, e)== e-e0 (p) -~(p, e) =0; (7) 

here E0 (p) = E(p)- EF denotes the energy of the elec­
trons in the absence of any electron- phonon interaction . 
For I Eo I « EF one has 

eo(p) ~ PF(P- PF)/m 

(p = lpl, EF and PF are the Fermi energy and momen­
tum, and E and p are the variables appearing in the 
Green's function). 

Equation (7) determines the complex function E(p). 
In what follows we shall only consider those cases where 
jim E 1 « Re E. Then one can interpret the quantity 
It: I "" IRe Ej as the energy of the quasiparticles. As is 
well- known the self- energy part ~ of the Green's func­
tion for electrons interacting with phonons does not de­
pend on p. l3 J Its real and imaginary parts (see Fig. 1) 
in the limits of small and large energies have the follow­
ing form; for jEj « WD 

2>we note that the larger values of.\ for a number of metals and 
alloys do not contradict the criterion for the stability of the lattice 
since the corresponding values of the parameter NV in the BCS formula 
do not exceed 0.5. 
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Re ~ = -A.e, Im~ ~ -kll' I wv', (Sa) 

and for lEI » wD 

Re'~ ·= -Awv2 I e, Im l: ~ -i..wv. (Bb) 

In these two limiting cases the spectrum of the electrons 
can be obtained from relations (7) and (8): for IE I « WD 

e,(p) = eo(P) = p,(p- p,) (9a) 
1+A. m(1+A.)• 

and for lEI » WD 

en(p) = 8o(p). (9b) 

Under these conditions IEII »1m :E(EI) and IEnl 
» Im :E (En), which permits us to consider the electrons 
as quasiparticles (elementary excitations with energies 
I E(p) I) with a rather large relaxation time (weak damp­
ing). In the region where the energy IE I is comparable 
with WD, the damping becomes appreciable 
(lim :E(E)I ~:::: I~EI) and such a consideration becomes 
invalid. From expressions (9) it follows that there­
normalization effects should appear only in the fre­
quency range w << wD::::: 1013 sec-1• 

The picture of the energy spectrum of the electrons 
associated with the interaction with the phonons is also 
complicated by the appearance of new branches of the 
spectrum near the Fermi energy. It is already clear 
from simple considerations that different branches of 
quasi particles (the so- called electron-like and phonon­
like elementary excitations) must appear in the region 
where the electron curve E(p) and the phonon curve w(k) 
intersect. 

Figure 2 illustrates the emergence of renormaliza­
tion of the electron branch near E = 0 and the appear­
ance of new branches of the spectrum. In order to ex­
plain this question in more detail, let us consider the 
spectral function of the electrons 

A(p, e)= :rc'IIm G(p, e) 1. (10) 

It satisfies the sum rule 
~ 

J A(p,e)de=1. (11) 

With the aid of the spectral function one can express 
the Green's function of the perturbed system in the form 

~ 

G(p, e)= J G,(p, e- e')A(p, e')de', (12) 

where Go(p, E) is the Green's function for free electrons. 
From (11) and (12) it is seen that A(p, E) can be inter-

-Rot 

FIG. 1. Self-energy part~ of the 
---.L_----,1<~-'-----. Green's function for electrons inter­

acting with phonons, calculated for 
the exact phonon spectrum (the 
solid curve) and for the approximate 
spectrum in the Einstein model (the 
dashed curve); a-the real part, b­
the imaginary part. 

a 

FIG. 2. Illustrations of the change in the spectra of electrons and 
phonons upon taking account of the interaction between them: a-the 
one-dimensional case, b-the poles of the Green's function for electrons 
in the three-dimensional case according to the data given in article [ 17 ] 

are represented by the solid curves, and by the dot-dash line for the 
case of free electrons. For clearness the energies of electrons and holes 
are measured from the Fermi energy toward different sides. 

FIG. 3. The spectral function 
A(p, e) for free electrons. For arbi­
trary values of the energy e0 (p) the 
function A(p, e) is expressed by a 
6-function whose coordinate axis is 
directed perpendicular to the plane of 
the figure. The cross sections of the 
planes perpendicular to p are depicted 
in the lower right-hand corner. 

preted as the probability of finding ''bare'' electrons 
with momentum p and energy E in the system. For 
electrons which are only interacting with phonons, this 
function was calculated in article£181 (in usJ the function 
A(p, E) is obtained for Na). For free electrons the func­
tion A(p, E) = 6 ( E- E0(p)) is shown in Fig. 3. On Fig. 4 
we have tried to graphically illustrate the results of 
article£181 for the spectral function of electrons inter­
acting with phonons. 

The general nature of the function A(p, E) for elec­
trons interacting with phonons does not depend on the 
quantity ~:31 in the immediate vicinity of the Fermi sur­
face ( IE(p) I « wD) the spectral function has several 
branches (A =AI+ An)· 

The branch AI is a narrow Lorentzian function with 
its maximum at EI = Eo/ (b + ~) and with the half-width 
r = ~EI = lim EII 1:::: I~EIWDI « IEII· It is approximately 
described by 

1 ( So } A,~fBt'l e- 1+A. . 

This branch describes the electrons (or holes) surroun­
ded by a cloud of virtual phonons. 

The branch Au describes electrons (or holes) which 
absorb or emit real phonons. In the region IE(p) I $ wD 
it is impossible to interpret this branch as describing 
a quasiparticle since in this case it is impossible to ex­
press the corresponding part of the spectral function in 
terms of one or several Lorentzian functions. At larger 
energies it:(p)l » wD the sum rule (11) almost com-

3lThe distribution of the intensities between branches I and II de­
pends on the quantity A (see Fig. 4). 
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FIG. 4. The spectral function A(p, E) for the case of electrons inter­
acting with phonons. The width of the crosshatching on the branches II 
and the thickness of the line representing branch I correspond to the 
height of the function A(p, E) above the (p, E) plane. The distribution 
of the intensities in the function A(p, E) for three fixed values of p(p > 
PF, P = PF, and p < PF) is given in the lower right-hand corner of the 
figure. 

jl 
A(p,E) 

-A 

FIG. 5 
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FIG. 6 

FIG. 5. The spectral function A(p, E) for the case of superconduct­
ing electrons. The dotted line depicts the dependence of E on p for 
electrons in the normal state (6 = 0). 

FIG. 6. The change in the density of the electron states near the 
Fermi surface for metals in the normal state. The segments of the curve 
which pertain to the region in which it is impossible to regard the elec­
trons as quasiparticles are indicated by the dashed line. 

pletely exhausts the branch Au, which is now described 
by a Lorentzian function having its maximum at EII = Eo 
and with a half-width r = ><wn (the weight of branch I 
in this region decreases exponentially: AI 
~ exp(-2A.E/wn)). 

Upon the transition of the metal into the supercon­
ducting state, an energy gap ~ « wn appears in the 
immediate vicinity of the Fermi energy. It is natural 
to assume that this gap appears on branch I of the elec­
tron spectrum, which is shown in Fig. 4. The spectral 
function for superconducting electrons, A(p, E) 
= ~O(E- Ep) + V~O(E + Ep) where 

ep = [e,' (p) + L\'J"', 

u? = ~ ( 1 + 81 (p) ) , 
2 8p 

v '= ~(1- e,(p)) 
p 2 e ' 

is depicted in Fig. 5. p 

Fortunately, one can calculate physical quantities 
with the aid of the Green's function even in those cases 
when the simple picture of quasiparticles turns out to 
be in inapplicable, and in individual cases one can phys­
ically interpret the obtained results by isolating the 
contributions of various branches to a given phenom­
enon. Thus, for example, one can show that only the 
electrons of branch I give a contribution to the heat 
capacity. 4 > This same electron branch determines the 
phenomenon of cyclotron resonance. 

Thus, at the present time one can apparently assume 
that the electron- phonon interaction leads to the appear­
ance of a layer of "heavy" electrons near the Fermi 
surface, the thickness of this layer amounting to several 
tens of wn. To a rather high degree of accuracy one 
can regard the electrons in this layer as quasiparticles. 
The change in the effective mass of the electrons in this 
layer leads to an increase in the density of electron 
states at the Fermi surface for normal metals: 
N* = Nbs(1 + .X) (see Fig. 6). 

The picture of the renormalization of the electron 
spectrum in metals considered above is apparently 
qualitatively preserved over a rather broad range of 
temperatures, substantially below the Debye tempera­
ture. us,l?l As to the Pauli paramagnetic susceptibility 
x P' in this case the energies of the subsystems of elec­
trons with spins directed up and down are changed 
independently of whether the electrons interact with the 
phonons or not. Therefore Xp does not depend on the 
magnitude of the electron- phonon interaction. 

At the present time the question as to how the dia­
magnetism of the electrons is changed by the phonon 
interactions remains unclear. One can calculate the 
diamagnetic susceptibility with the aid of the two-parti­
cle Green's function. This was done in articlel19J for 
the case of a free electron gas without taking the elec­
tron-phonon interaction into account. 

Apparently there is still another question which is 
not clear: what kind of role do the different branches 
of the electron spectrum play, for example, in transport 
phenomena? In articlel2oJ where this question was in­
vestigated, the spectral function was replaced by a 
single Lorentzian function of unit weight. But since the 
weight of the side branches of the spectrum .X/(1 + .X) 
is of the order of the renormalization effects them­
selves, then perhaps such an investigation is incorrect. 

In conclusion we wish to point out that the renormal­
ization of the electron spectrum as a result of the 
electron-phonon interaction should lead to an anomal­
ously strong dependence of the effective cyclotron mass 
of the electrons on the pressure. From experiments on 
the effect of pressure on superconductivityl21 J it follows 
that the density of states of normal electrons at the 
Fermi surface is markedly reduced under hydrostatic 
pressure for practically all non- transition metals. 
Since the band density Nbs should change very slightly 

4lin the formula given in [5] (Russian page 231) fro the heat capac­
ity of the electrons in a metal at T = 0°K, the product (il In G(E)/ilE) 
(af(E)/ilE) appears inside the integral sign, where f(E) is the Fermi dis­
tribution function. Since ilf(e)/ile is ali-function, the heat capacity is 
determined only by the behavior of the Green's function for e = 0. At 
this point G(E) is uniquely given by branch I of the electron spectrum 
(see Fig. 4). 
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under pressure, it is natural to assume that the ob­
served strong reduction of N*(EF) is a consequence of 
the decrease of the parameter .\ under compression. 
On this basis one can anticipate that the effective cyclo­
tron mass of the electrons at the Fermi surface will 
also decrease under pressure. A similar effect should 
be observed in connection with the investigation of the 
effect of pressure on the electronic specific heat. 

We take this opportunity to express our sincere 
gratitude to A. A. Abrikosov for a detailed discussion of 
this work and for valuable advice. 
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