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The interaction between two solid immobile spheres or a plane and a sphere in an ideal Bose gas is 
considered. It is shown that long- range interaction arises between the spheres or between the plane 
and the sphere below or near the condensation point. 

IN a system undergoing a phase transition, long-wave 
fluctuations begin to play an important role near the 
transition point, and long-range order appears below 
the transition point. Naturally, this should lead to a 
unique interaction between the impurity particles via 
this system even in the case when they do not interact 
directly. Such an interaction can lead experimentally to 
coagulation of impurity particles below the transition 
point or to their emergence at the surface. 

1. INTERACTION OF SPHERES IN AN IDEAL BOSE 
GAS 

For an asymptotically exact solution of the problem 
we have considered a model in which two solid (impene
trable to bosons) immobile spheres of radius a are 
placed in an ideal Bose gas. The distance between the 
spheres is l (the centers lie at the points y = ± l /2 on 
the y axis). We consider only the case l ~ a, and since 
an important contribution to the interaction at such dis
tances can be made only by bosons with momentum 
k :s r 1 ' the following condition is always satisfied: 

ka~ 1. (1) 

The boundary conditions on the surfaces of the spheres 
for the wave function of the boson can be replaced by a 
pseudopotential, and condition (1) enables us to confine 
ourselves only to S-wave scattering11 J 

V,(r) =4rrali'm-1[o(r1) +b(r,)], (2) 

where r 1 = r + Y2l, r2 = r - Y2l, m is the boson mass, 
and h is Planck's constant. 

The wave functions of the particle with wave vectors 
k are chosen in the form 

_ 1 ( 1 sin kl ) -'/, [ sin kr1 sin kr2 ] 
'I'±-~ ±-- --±--

2l'rtR kl r 1 r, 
(3) 

The plus and minus signs correspond to symmetrical 
and antisymmetrical combinations of the S waves, and 
k, l, r 1 , and r2 are the moduli of the corresponding vec
tors. The functions are normalized to one particle in a 
sphere of radius R, are orthogonal, and diagonalize the 
perturbation V s(r). 

Let us calculate the corrections of first and second 
order E~1 > and E~2 > to the energy of the bosons with a 
perturbing potenhal V s(r) 1>: 

!)The corrections due to the l' waves with l' =I= 0 are smaller by a 
factor (a/1)21'-1 than E<2l±. 

613 

(1) 2ali'k' .( sin kl ) E-+ =-- 1+--
Rm kl ' 

(4) 

E<•> = 4a'h.'k' ( 1 sin kl) ( ~ k"!'lk _ rt cos kl). 
T' Rm + kl l....i. k'- k" 2l 

(5) 
h!=Flt 

The divergence at large momenta in (5) is connected 
with the fact that the pseudopotential (2) cannot be ap
plied at large momenta; this divergence should be elim
inated by cutting off the integrals at k ~ a -r. 2> 

L~t us find the increment introduced in the free en
ergy of the system by the presence of impurity parti
cles. Since the impurities only change the spectrum of 
the Bose particles, it follows that 

(o) (1) (2) 

Q = T ~ In [ 1 - exp ( ft -E. ~ E+ - E+ ) ] 

+ T ~In [ 1 - exp ( f.t - E~> ~ E':!:> - E<.!> ) J 

~ [ ( 11. - E(O) ) ] ~ E'.P + Jf'> + E') + E<•> ""'2T ~In 1-exp r::_ __ n +~ + + - -

n T n' exp [(f.t- E~))JTJ -1 '(6) 

where n is the set of quantum numbers characterizing 
the Bose particle; n' is a set of quantum numbers on 
which the increments E?> and Ei2> depend; E~> is the 
energy of the Bose particle in the absence of impurities, 
IJ. is the chemical potential, T is the temperature, and k 
is Boltzmann's constant and equals unity. 

We expanded the potential n in (6) in powers of E~ 1 > 
and E~2 >. If we substitute expressions (4) and (5) in (6), 
then we obtain two increments to n' one of which, ~nl, 
does not depend on l and is connected with scattering 
by isolated spheres, and the other, 6n2, depends on l 
and is connected with the interaction of the spheres. 
We are interested in ~n2. Recognizing that the addi
tions to all the potentials in terms of their variables 
are the same: (6F)T V N = (~n)T y "r2J, we obtain 

' ' ' ',..... 
an expression for the increment to the free energy of the 
system, connected with the interaction of the spheres: 

!lF - a' ~s p sin(2pl/h.)dp 
2
-- nl'7(1., exp[(p'/2m- ~.t(T))/T]-1 (7) 

where 
~.t(T) = -1.2T,t' (8) 

2l It can be shown, by solving the exact problem of scattering by a 
sphere, that such a cutoff does not change the character of the singu
larities. 
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is the chemical potential of an ideal Bose gas with den
sity n near the condensation point To, and 
T = (T - To)/To[ 21 • We see that (7) does not contain 
divergent parts, i.e., there is no need to use cutoff for 
its calculation. 

The integral in (7) is investigated in the Appendix. 
Above the condensation point ( T > 0) 

2a'T { 2! ) 

1
----=-;- exp -- for l > "-r 

llF = ynl r. 

~ 4'8-;~'T for !<iii: A.r' (9) 
nA.rl 

where r~ = h/v'2mtJ.(T) is the correlation radius and 
AT = h 1 v'2m T is the thermal length of the wave. 

We see that on approaching the condensation point 
there arises an attraction force between the spheres 
- r3 (for l »AT) and- r2 (for l «AT)· Below the 
condensation point (f..l. = 0), by separating from the in
tegral (7) the term connected with the condensate, we 
obtain for the free energy 

_ ~ n'li'a'n [ 1 _ { _!_ )"'] _ ~'T 
AF, =I 3 ml To fnl' 

_ ~ n'.li'a'n [ 1_ (.!.)'''] _ 4.8y2a•r 

for l>"-r 

(10) 

3 ml To 1rlJ.vrl for l< Ar 

The first term in the expressions of (10) is connected 
with the presence of the condensate and leads to an 
attraction force - r 2 • The ratio of this term to the 
second is - ATnl T (when l » AT) and - A TnT (when 
l «AT), so that the first term plays the principal role 
only at very large distances l - 1/ATnT (at l »AT)· 
If T- 0, the principal role is played by the condensate 
term. 

2. INTERACTION OF A SPHERE Wim THE SURFACE 

As the model of the surface we consider an infinite 
plane inpenetrable to bosons. The problem reduces to 
the same as before; the only difference is that we must 
choose in (3) only the antisymmetrical function lj!. In 
this case the first-order correction to n differs from 
zero. Using expressions (4) and (6), we obtain for the 
increment to the free interaction energy of the surface 
with the sphere 

llF = -~ s· psin(2pl,fli)dp (11) 
nml 0exp[(p'/2m- f.I)/T]-1' 

where l 1 is the distance between the sphere and the 
plane. Expression (11) is investigated in analogy with 
expression (7). For T 2: To we obtain 

1
- 4~T exp{-~) for l,;!!J>Ar (12) 

llF = yrr.l, r. 

9,6}'naT f 
- or l,<A.r 

y2A.r 
and forT 5 To 

1
-~ n'li'an [ 1 _ { _!_} '"] _ 4~T 

!J.F = 3 m To ynl, 

_ ~ n'li'an [·I _ ( !___)'''] _ 9,61'2 ~ 
3 fur ~<~ 

m To :rt "-r 

(13) 

We see that on approaching the transition point the im
purities will be concentrated from a layer - rc into a 
layer- AT· 

Although an ideal Bose gas does not correspond to 
any real system, one can hope that the main features 
of the considered phenomenon are retained also for real 
systems such as liquid helium, the critical point of a 
liquid, and the critical point of lamination of solutions. 

The idea of the general character of the interaction 
near critical points was expressed by A. Z. 
Patashinskii', to whom the authors express their grati
tude. 

APPENDIX 

To investigate the integral (7) we introduce the con
venient variables 

X = -,-..!P__,. 
(2mT)'I•' 

I f.I(T) 
~~:=--r-· 

nl' 
c=;;T· 

Then 

·s xtksinxp \-1 s· [ 
c!J.F, = 2 exp(x + f.l')- 1 = Im .i..J k dk exp +. ikp 

o n•O-~ 

- (k' + f.l') (n + 1)] 

= ~;-fl Eexp[-J.L'(n-j-1)-~-] (n-j-1)-'i•. 
•=• 4(n-j- 1) 

For p » 1, using the Poisson summation formula, 
(A.1) can be represented in the form -

(A.1) 

c!J.F, =I,+£ I.; (A.2) 
n=t 

where 

Io= -y-;ps· exp[-f.l'(x-j-1)- p' ]<x+1)-'iotk, 
2 0 · 4(x+ 1) 

I.= -y~ jexp[2nnxi-f.l'(x-j-1)- p' ]<x+1)-'lodx. 
• 0 4(x-j- 1) 

It is easy to show that In/Io ~ e-P. Retaining the first 
term in (2) and making the substitution (x + 1) = y-\ we 
obtain 

' ( ll' p'y') I,= p)'-;s exp - 11--4- dy. 
0 

(A.3) 

The main contribution to (3) is made by p' « 1 and 
JJ. 1 « 1, and therefore the integral can be extended to 
infinity, and can then be found in the tables. As a result 

c!J.F, ~ 2l'n exp ( -2pi;:t'). 

When p « 1 and f..1. 1 « 1, the main contribution to (1) is 
made by small x: 

f• xdxsinxp s· x'tk . (A.4) 
c!lF, = 2 ~ 2p -- = 4 Sp 

e~+"'-1 ":1:-1 '· 
0 0 
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