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Ordinary perturbation theory for the electron mass operator (in the case of weak electron-phonon 
coupling) leads to a divergence of the one-dimensional problem near the singularity connected with 
the singularity of the state density. It is shown how a series in powers of the coupling constant, which 
converges at arbitrarily close distances from the singularity can be set up for the mass operator. 
The electron spectrum for the lowest Landau level (in an extremely strong magnetic field) interacting 
with the optical phonons is calculated by this method. The singularity in the interband optical absorp­
tion coefficient, due to the threshold nature of the optical phonon emission by an electron moving 
parallel to the magnetic field, is also calculated. 

INTRODUCTION 

M UCH attention has recently been paid to "polaron" 
singularities of interband magnetooptical absorption, 
which take place when the cyclotron frequency of the 
electron we= eH/mc coincides with the limiting fre­
quency of the optical phonons w0l1 - 31 • In a note by two 
of usl41 it was indicated that, in distinction from this 
effect, which is connected with the motion of the elec­
tron perpendicular to H, there can exist singularities of 
interband magnetooptical absorption connected with the 
motion of the electron parallel to H. They are due to the 
threshold character of the emission of optical phonons, 
which is possible only when p2/2m > w0 • The role of the 
magnetic field in this case reduces to the creation of a 
one-dimensional situation, a fact that greatly intensifies 
the threshold singularity. Such a polaron effect, accord­
ing tol41 , leads to a dip in the absorption coefficient at 
the frequency w* = toE + wo, where toE is the width of 
the forbidden band with allowance for the shift of the 
bottom of the conduction band and the top of the valence 
band in the magnetic field. 

However, the calculation of the absorption coefficient 
K(w) inl4 J, which was based on ordinary perturbation 
theory for the mass operator, cannot be regarded as 
satisfactory, for it is seen from this calculation that the 
perturbation-theory series ceases to converge near the 
singularity, when [w- w*l .;;;_ awo, where a « 1 is the 
constant of the weak electron-phonon coupling. Such a 
situation is characteristic of the one-dimensional prob­
lem and is connected with the singularity in the state 
density. This difficulty has arisen many times in anum­
ber of problemsl2 ' 51 • 

In the present paper we develop a method which 
makes it possible to obtain for the mass operator an 
expansion in powers of a, valid at an arbitrarily close 
distance to the singularity. This method is a develop­
ment of the theory of threshold singularities, in which 
perturbation theory is not usedl61 • The developed 
method is used to calculate (in the lowest order in a) 
the spectrum of the electron and the absorption coeffi-
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cient. It turns out here that the absorption coefficient 
differs little from that calculated by perturbation theory 
below the threshold (w < w*), but differs greatly in the 
region above the threshold (w > w*). 

1. FORMULATION OF PROBLEM 

In the calculation of the interband absorption it will 
be assumed that the crystal temperature is T = 0, the 
hole band is completely filled, and the electron band is 
empty. Since the investigated effect is connected with a 
singularity of the spectrum in the electron band, it can 
be assumed that the holes do not interact with the 
phonons and that their mass is infinitely large. Under 
these assumptions, the absorption coefficient, as shown 
inl2J, is determined completely by the electronic 
Green's function and is proportional to the density of 
states in the electron band. 

For simplicity, the dispersion of the free electron 
is assumed to be parabolic, so that its Green's function 

c,o(ep,)={e-[w,(z++)+ ::]+iTJr'· (1.1) 

It is assumed that the phonons have no dispersion, so 
that their Green's function is 

D(wq) = (2n)' B(q) [ 1 . - + 1 . ] , (1.2) 
W - Wo + It] W 'Wo - IT] 

where B(q) is the square of the matrix element of the 
electron-phonon interaction. Since the electron concen­
tration is equal to zero, D is not altered by the electron­
phonon interaction. 

We shall henceforth consider the case of strong 
magnetic fields H- oo, when we certainly have we 
» w0 • It is clear that in this case the singularities of 
the absorption at w = toE + w0 are connected only with 
the Landau levell = 0. Also connected with the longi­
tudinal motion at this level are the singularities of the 
absorption at w = toE + 2wo, toE + 3wo, ... , corresponding 
to thresholds with emission of two, three, and more 
phonons. We shall not consider these singularities here, 
however. 
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To calculate the corresponding Green's function of 
the electron Gz (Epz), it is convenient to use a diagram 
technique in the form proposed inl7J, where there are 
no diagrams with loops, since the electron concentra­
tion is equal to zero. Since we are interested in Go( Epz), 
the free ends of the diagrams correspond to l = 0. Fur­
ther, according tol7 J , the nodes correspond to the 
matrix elements Azz•, from the expressions for which 
we see that Azz' - ozz' asH-""· Therefore the summa­
tion over l drops out and all the included Green's func­
tions correspond to l = 0. The phase factor, which en­
ters in accordance withl7 J, also vanishes when H- ""· 
Since Azz' ceases to depend on the transverse compon­
ents of the phonon momenta in the asymptotic approxi­
mation considered here, the integration with respect to 
them couples only the phonon Green's function, and it 
is natural to put 

S dq,_ 
-D(roq) = D((J)q,). 
(2:n)' 

(1.3) 

We see thus that the problem becomes one-dimensional. 
Let us now find the criterion for one-dimensionality 

of the problem (the inequality we » wo will be shown to 
be insufficient). To this end we note that the elimination 
of the summation over l in the calculation of Go( EPz) is 
based on discarding A 0 z with l .., 0 compared with Aoo. 
Therefore a criterion is obtained from a comparison of 
these quantities at the actual q1 , which is attained by 
averaging them with the aid of B(q). It should be borne 
in mind here that the actual momentum qz is of the 
order of the threshold longitudinal momentum of the 
electron Po= -/2mw 0• Using the expressions for Azz, we 
obtain the criterion 

(1.4) 

where a= (c/le!H) 112 is the magnetic length. The ex­
plicit form of the criterion depends on the form of B(q), 
i.e., on the electron-phonon interaction mechanism. 
For the polarization (long- range) interaction PO it is 
customarily assumed that 

B(q)=B,/q', (1.5) 
while the deformation (short-range) interaction DO 

B(q)= B, = const. (1.6) 

This form is actually valid only for long-wave phonons, 
and therefore when necessary we shall introduce a cutoff 
momentum qo >> p0 and assume that 

B(q)= 0 for q > q,. (1. 7) 

Let us return to the criterion (1.4), in which both 
integrals are functions of the parameter aq """ apo. 
Assuming that We >> w0 , we have apo << 1. in the case 
of PO the integral on the right diverges logarithmically 
at aqz = 0, whereas the integral on the left (with l.., 0) 
converges. Therefore the criterion of one-dimension­
ality takes the following form: 

(1.8) 

It is obvious that this is a much more stringent criterion 
than We >> w0• In the case of DO (with allowance for 
cutoff) the integrals converge and we can put in them 
aqz = 0. Then the one-dimensionality criterion takes the 
form 

aq,~1 for IJJ,")$>q,'f2m (DO), (1.9) 

which is also more stringent than we >> wo. 
The phonon Green's function involved in the one­

dimensional problem can be represented in the form 

D((J)q,)=B(q,)[ 1 . 1 ] (1.10) 
ro-ro,+n1 w+ro,-iT) ' 

where 
B(q,)=2:nJ (dq.L)B(q). (1.11) 

We have 
B(q,)=2:n'B,ln(q,jq,)' (PO), (1.12) 

B(q,)= 2:n'B,(q.'- q,') (DO). (1.13) 

We see therefore that when qz ~ Po the function B{qz) 
is practically independent of qz. We shall therefore as­
sume henceforth in the consideration of the one-dimen­
sional problem that 

B(q,) = B = const. (1.14) 

In going over to the one-dimensional problem, we 
shall drop the subscript z of pz and qz and the subscript 
l = 0 of Gz; we shall also reckon the electron energy 
from the bottom of the Landau band l = 0, i.e., we make 
the substitution E- %we- E. It is also convenient to 
carry out beforehand the integration with respect to the 
frequency parameters of the phonon lines in the dia­
grams for G. To this end we note that 

+•d 
J ~iD(ro)F(ro)=BF(roo-iTJ), (1.15) 
-- 2:n 

if F(w) is analytic when Im w < 0. In the considered 
case of zero concentration, the Green's functions are 
retarded. The energy parameters of the Green's func­
tions G0 in the diagrams for G(Ep) have the form 
E- w1- w2- .... Since G0 ( ep) is analytic when Im E 
> 0, the product of all the G0 containing w1 is analytic 
when Im w1 < 0 and it is possible to integrate with 
respect to w1 with the aid of (1.15). This is followed by 
the appearance of G0 with parameters E + iTJ - w 0 - W2 
- . . . . The product of all the G0 containing w2 is again 
analytic when Im W2 < 0, etc. We can therefore finally 
assume that the internal phonon line corresponds only 

+oo 
to the factor Band J dq/21T. 

-00 

2. CALCULATION OF THE MASS OPERATOR 

The simplest approximation for the mass operator is 
given by the loop of Fig. 1, the contribution from which 
is 

M,(ep)= -iaw,~, 
s(e) 

(2.1) 
s'(e)=2m(e-ro,)+i1J, Ims(e)>O, a=2Bm'/p,'. 

We have introduced here the dimensionless weak­
coupling constant 01. We see that M1 is small only far 
from the threshold E = w 0 • This suggests that perturba­
tion theory does not hold near the threshold. This can 
be verified by estimating the contributions from the dia­
grams of higher order, shown in Fig. 2: 

M 81 :::::: a'roo''• Je- w0 J-'!o, M 22 ~a2ro02 Je- ro0 j-1. (2.2) 

From a comparison of these quantities with M1 we see 
that perturbation theory ceases to work at distances on 
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the order of awo from the threshold, where a diagram 
without intersection of the phonon lines becomes signifi­
cant. At even closer distances on the order of 1/w0, a 
diagram with intersection of phonon lines becomes sig­
nificant. 

Since the usual expansion of M in terms of a is im­
possible near the threshold, it is natural to use the 
procedure ofl&J for the consideration of threshold singu­
larities. The only condition for the applicability of these 
methods is proximity to the threshold, i.e., the region 
of applicability is It:- w0 1 « w0 • Since this region over­
laps the region of applicability of perturbation theory, 
it should be possible to join these methods together. 

To obtain an idea of the character of the threshold, 
let us calculate the contributions from the simplest 
diagrams for the vertices r and t:;. shown in Fig. 3. We 
have 

[ 1 1 ] 1 
r.~p. e'p'; roq) = iap,' s(e) + s(e') 0 q' -[s(e) + s(e')]'' (2.3) 

L!. 0 (ep,e'p'; roq, ro'q')= [(e'-ro) -(p'-q)'/2m+i1J]-•. {2.4) 

It will be seen from (2.5) and (2.6) below that near 
the threshold an important role is played by the behavior 
of the vertex r when t: and t:' approach w0 , and by that 
of the vertex t:;. when t: and t:' approach zero. From ex­
pressions (2.3) and (2.4) we see that M1 and n become 
infinite near the threshold, whereas tl.o has no singulari­
ties. It can be verified that an analogous property is 
possessed also by the contributions from the diagrams 
of higher orders. From this point of view, the singular­
ity in question is close to case "c" ofl6 l. 

In analogy with this case, we start from the exact 
equations 

+•d 
M(ep)=B_!~ G(e-roo,p-q)f(e-roop-q,Bp;rooq), (2.5) 

• d I 

I'(e- rop- q, ep; roq) = 1 + J_!_G(B- ro0 p- q') __ 2n 

xr(e- Wop- q', ep; <Ooq')L!.(e- (i) p- q, 8 1 - CiloP- q'; roq, rooq'). 

(2.6) 
In the second equation we put w = w0 , make the substi­
tutions q = p - k and q' = p - k', and put 

f(e- rook, ep; CiloP- k) = f(ep, k), (2. 7) 

~ (e- rook, e- ro,k'; WoP- k, CiloP- k') = L!. (ep, kk'). (2.8) 

Then the equations take the form 
- dk 

M(ep)=B LznG(B-rook)f(ep,k), (2 •9) 

- dk' 
f(ep,k)= 1 +B }_z;-G(B-rook')f(ep,k')A(ep,kk'). (2.10) 

We shall seek a solution of these equations near the 
threshold, where perturbation theory does not hold, i.e., 
at It:- wol -;:; aw0 • The energy parameter of the Green's 
function that enters in these equations is t:- w0 Rj 0, 
i.e., it is far from the threshold. The perturbation 
theory works in this region and makes it possible to 
calculate G-1 by means of an ordinary expansion of the 
mass operator in powers of a. It will be convenient in 
what follows to write 

where 

k' 
G(e- rook)-• = E(e)---K(e,k)+ i1J. 

2m 

E(e) -ro0 -M(e- ~lo, 0) 

(2.11) 

(2.12) 

K(e, k)=M(e-ro,, k)-M(e-ro,, 0). (2.13) 

The quantity E( t:} determines the proximity to the 
true (renormalized) threshold. This is seen from the 
following considerations. The equation E(t:) = 0 obvi­
ously gives E- w 0 = E'(O}, where €(p) is the true 
(renormalized) spectrum, i.e., t: = €'(0) + w 0 = w0• The 
quantity wo which lies on wo above the true bottom of 
the spectrum, indeed determines the true threshold of 
emission of a phonon of energy w0 • 

Let us consider now the singularities of the inte­
grands in (2.9) and (2.10) in the complex k plane. The 
factor G has poles at k determined from the equation 

(2.14) 

Since G( t:p) is even in p, the roots of these equations 
can be written in the form 

k = ± ko(e), Imko(e) > 0. (2.15) 

It is obvious further from (2.11) that k0{ t:) - 0 as 
E(t:)- 0, i.e., as t:- w0 • The order of magnitude of k 0 

can be estimated by noting that E{E} Rj aw 0 and discard­
ing K, which yields ko Rj a 112po. Indeed, since the expan­
sion of K begins with k2 terms, it follows that 
K Rj awo(k/po) 2 Rj a 2w 0 , which is much smaller than the 
retained terms. We note that if K is retained, then G 
also has singularities in the region of large k, such that 
ko - oo as a - 0. These singularities, however, are of 
no interest in what follows. 

We now proceed to the singularities of the factors r 
and t:;.. It is useful to note that near the threshold it 
follows from (2.3) and (2.4) that 

r,(ep, k) = iapo'/s(e) [ (p- k)' +Po'], (2.16) 

Ao(ep, kk')=-2m/[(p-k-k')'+Po']. (2.17) 

We see that the singularities of tl.o and n in the k plane 
lie at distances on the order of p0 from the real axis. 
This is valid also for the exact tl., since it can be expan­
ded in a series in a. For the exact r this can be as­
sumed and confirmed by the solution. 

We now deform the integration contour in Eqs. (2.9) 
and (2.10) in the manner shown in Fig. 4, and obtain 

+• 

J ... =~···+f. ..• (2.18) 
c g 

with the closed contour C including only the singularity 
ko( t:) in the region of small k, and the contour n passing 
below all the singularities of /::;. and r in the upper half-
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® 
FIG. 4. Deformation of the con­

tour in the equations for the mass 
operator and the vertex; •-singu­
larities of G, •-singularities of I' 
and!::.. 

plane. Then Eqs. (2.9) and (2.10) assume the following 
form: dk 

M(ep) = f(ep, ko(e))M(e)+ B J-G(e- roo, k)r(ep, k) 

" 2n (2.19) 

where 

f(ep, k) = 1 + r(ep, ko(e)) l\(ep, kko(e))M(e) 

J dk 
+ B -G(e- ro0,k')f(ep, k')l\(ep, kk') 

0 2n 

P dk 
M(e)=B -G(e-ro0,k). 

c 2n 

(2.20) 

(2.21) 

In this system of equations, the functions k0(E) and M(E) 
can be regarded as known, since they are determined 
by the function G( E - w0 , k), which can be calculated by 
perturbation theory. On the other hand, as will be shown 
below' the integrals along n (unlike the integrals along 
the real k axis) can be regarded as small in terms of a 
and we can iterate in terms of these integrals. This is 
connected with the fact that since n leaves aside the 
region of small k, the smallness of E - w0 does not lead 
to large values of G(E- w 0 , k). 

Let us consider the lowest approximation, discarding 
the integrals along 0. In the non- integral terms we can 
put in this approximation k0( E) = 0 and t:. = t:.o. In addi­
tion, we can put E = w0 in t:..0 • We then have the equations 

M(ep)=F(ep, O)M(e), 

I'(ep, k)= 1 + r(ep, 0)8o(OloP, k0)111(e). 

Substituting in (2.23) k = 0, we get 

and then 

where 

r(ep, 0)=[1-~o(p)JI1(e)]-• 

f(ep, k)= 1 + i\0 (roop, kO) [M(e)-'- ~o(P)]-•, 

M(ep) = [M(e)-'- ~0 (p)]-•, 

i\o(P)= i\o(roop, 00)= -(ro, + p'/2m- iTJ)-•. 
~ 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

To calculate M( E) in the lowest order in a we can dis-
card K, after which we get 

ko(e)'.= 2mE(e)+ iT), 

M(e)= -tarooPo/ko(e). 

In turn, in the lowest order in a we have 

(2.28) 

(2.29) 

E(e) = e- roo- M,(ro,) = e- roo, Wo =roo- aroo. (2.30) 

A comparison of M-1 and t:.. 0 determines two regions of 
closeness to the renormalized threshold: 

I a'{t)o~le- rool~aroo, where a'kro 0 ~ll?(e)~ roo; 
II l.e-wol~a'roo, where roo~Ji?(e). 

In region I we have from (2.24)-(2.26) 
r(ep, 0)= r( p, k)= 1, 

M(ep) = 111(e), 
(2.31) 
(2.32) 

i.e., in this region the result forM differs from pertur­
bation theory only in a renormalization of the threshold. 
It is obvious that the result for r corresponds to the 
fact that in the iteration we regard as small not only the 
integral term but also the second, nonintegral term. 
Let us estimate now the individual terms in (2.19) and 
(2.20), noting that in the estimates 

G ~ 2m/po•, J dk ~ po, l\o ~ 1/roo. (2.33) 

Then it turns out that 
Discarded terms Retained terms 

Equation for r: ri1M-;:;'!!_, BJdkGrl1-;:;cx 
CDo 

Equation for M: B J dk cr-;:; fXCDo 

A comparison of the retained and discarded terms justi­
fies the iterations made in region I. 

Let us proceed to region II. Here there are essential 
differences between the estimates for r at k = 0 and 
k.., 0; from (2.24) and (2.25) we have 

r(ep, 0) ~ Olo/111(e), r(ep, k) ~ 1. (2.34) 

Estimating again the individual terms of Eqs. (2.19) and 
(2.20), we find 

Discarded terms 
Equation for r: B J dk Gr (k) 11-::; IX 

Equation for M: B J dk cr (k) -;:; fXCDo 

Retained terms 
1, r (OJ 11M :::d 

from which we see the justification of the iteration in 
region II. The system of equations (2.19) and (2.20) can 
be used for repeated iterations and to obtain results in 
higher orders in a. 

The result (2.26) is not valid in its derivation far 
from the threshold, when IE- w0 1 » aw0 • In this region, 
however, as can be seen from (2.30), we have ~(E) 
= E- w0; it follows therefore from (2.29) that M( E) 
= M1(E), with M1(E) « wo. Therefore (2.26) yields M(Ep) 
= M1 ( E), i.e., a correct result of perturbation theory, 
which is valid in this region. As a result, formula (2.26) 
turns out to be valid in the lower order in the entire 
energy region. 

3. SPECTRUM OF ELECTRON 

In the lowest order in 01, the spectrum of the elec­
tron is determined from the equation 

e- p'/2m- M(ep)= 0 (3.1) 

with Min accordance with (2.26). If we are in_!;erested 
in the spectrum in the complex E plane, then M(E) should 
be regarded as specified, in accordance with (2.29), in 
the E plane with a cut Re E 2': w0 • In order to simplify 
the equation, it is convenient to replace in t:..o(P) of 
(2.27) the quantity Wo by Wo; the error thereby incurred 
in t:.. 0 is of the order of aw01 , i.e., of the same order as 
the terms discarded in the considered approximation. 
If we change over to dimensionless variables 

e/wo = z, p'/2mw0 = t;;:;. O, 

then the equation takes the form 

(3.2) 

ia-• (z - 1) 'h = 1 / (z - t) - 1 i ( 1 + t), Im (z- 1) 'k > 0, (3.3) 
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Table I. Roots of spectral equation 

Physical sheet Unphysical sheet 

(l 

Z=t+ Vt:-t 
4t2 

z = 1-a.'(t- t')' 

or after squaring and multiplying 

( z-t )' (z-1)(z-t)'=-a' 1- 1 +t . (3.4) 

Equation (3.4) has roots that are not roots of (3.3) or, 
in other words, lie on the unphysical sheet of the E 

plane. Using the smallness of a, we can find the roots 
of (3.4) and pick up those lying on the physical sheet 
with the aid of the condition 

Re{-1---1-} <0. 
z-t 1+t 

(3.5) 

The results are summarized in the table. The form­
ulas for t < 1 and t > 1 in this table are not valid in the 
vicinity oft = 1, since a coalescence of the roots takes 
place there. Expressions for z(t) in this region can 
easily be obtained, but they are too cumbersome to 
present here. The tables suffice to convey an idea of the 
trajectories z(t) on both sheets of the z plane (Fig. 5). 

The true spectrum 'f(p), as seen from the table, 
exists when z < 1, i.e., below the threshold, E < w0 , as 
should be the case. The dispersion law of 'f(p) is shown 
in Fig. 6. We see that in this case there exists no end 
point of the spectrum. We note that this in no way con­
tradicts the result ofl6J, where the existence of an end 
point was postulated and the behavior of the spectrum 
near this point was investigated. The very question of 
the existence of such a point depends on whether the 
equation 

[e- p' j 2m- M(ep) ],;.;, = 0 
(3.6) 

and SHCHERBAKOV 

"~I l__ FIG. 7. Dependence of the ab-
sorption coefficient on the fre- " quency. 

I. 
[J q w 

has a solution for finite p. Using (2.26) and noting that 
M(w0f 1 = 0, we have, accurate to terms of order awo, 

M(iil,p)= -1/11o(P)= Wo + p'/2m. (3.7) 

With the same accuracy wo = wo, and therefore Eq. 
(3.6) has only the solution p = 0, which cannot be regar­
ded as an end point of the spectrum. 

4. ABSORPTION COEFFICIENT 

The electromagnetic properties of a system of elec­
trons are determined by the polarization loopcaJ 

(4.1) 

where w is the frequency of the light (reckoned from the 
absorption edge) and g2 is the electron-phonon coupling 
constant and contains various parameters of the crystal 
(the interband matrix element of the transition, the 
width of the forbidden band, and others). Usually the 
observed absorption coefficient is 

K(w)= -1m II(w). (4.2) 
Calculating (4.1) by the residue theorem, we have 

JI(w)= g'2rri _ER(p(w)), (4.3) 

where p(w) is the position of the pole, R(p(w)) is the 
residue, and the summation is carried out over poles 
for which Im p(w) > 0, or for Im p(w) = 0, Re p(w) > 0. 

Again using for brevity the dimensionless variables 

(w-iil,)/w,=w, p'/2mw,=u', (4.4) 

we obtain the positions of the poles 

u' = '/,[w + 2ia/w'l•]± {'!.[w + 2iafwY•]' + [w + 1- iaw'I•]}V• (4.5) 
and the corresponding residues 

R-'=-ku(1+ (w+ 1 -u')' ]· (4.6) 
m (1 + u')' 

Far from the singularity (a« lwl ~ 1), obviously, 
TI(w) differs little from the corresponding value for the 
free electron: 

II(w)= Il'(<•l)= III'(•wo) / (-i) (I+ w)-'h, 
II'( wo) =- 2rrg'im / p0• 

(4.7) 

We therefore consider the region near the singularity 
(lwl ~ a). It is obvious that in region I (lwl » a 2), 

when we can use perturbation theory with a renormal­
ized threshold, Eq. (4.7) is valid just as before. It re­
mains to consider region II ( lw I :S a 2). In this region, it 
follows from (4.5) that 

u'.= 2atl'fwl,-ilwl!2a, w <0; (4.8) 

and from (4. 6) u' = 2ai f1w, il'li/2a, w > O; 

R= -m/p,u. (4.9) 
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Gathering the required poles, we ultimately obtain 

II(w)= I II'(wo) I{- (2a) 'f,j I w I 'i•- il w I'/, I (2a)Y'}. w < 0, 

II(w)=III'(wo)l { 1 -::_i (Za)'"} , w>_O. 
l'2 (w) '/, 

(4.10) 

It is seen from the last formulas that below the thres­
hold the absorption coefficient K(w) vanishes, and above 
the threshold it becomes infinite (Fig. 7). Thus, the be­
havior above the threshold differs greatly from that ob­
tained with the aid of perturbation theory, when K also 
vanished above the threshold. 

The conditions for experimentally observing the 
effect, with n-InSb as an example, were discussed in[4 J. 

One must add to this discussion that in realistically 
attainable magnetic fields it is very difficult to satisfy 
the criterion of one- dimensionality (1. 8) with a strong 
inequality. One should hope that the influence of other 
Landau bands does not distort the effect very strongly. 
These hopes can pertain to a lesser degree to the exci­
ton effects which were not accounted for in this paper, 
since the widths of the singularity regions a 2w0 do not 
exceed the energy of the Coulomb interaction of the 
electron and the hole. However, the latter effects can 
be excluded if one considers not the interband absorp­
tion, but the absorption from charged donors. 

The authors are grateful to L. P. Gor'kov, S. V. 
Iordanski1, L. P. Pitaevskit, V. L. Pokrovskil, and E. I. 
Rashba for fruitful discussions. 
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