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The phase transitions and the spontaneous magnetization of a three- dimensional ferromagnetic Ising 
lattice containing interstitial impurities, which change the magnitude and sign of the exchange integral 
between neighboring lattice sites, are considered. It is assumed that the impurities are in thermo­
dynamic equilibrium with the lattice. If the presence of the impurity changes the sign of the exchange 
integral, then under certain conditions in such a system two or even three temperatures may exist at 
which there is a phase transition of the ferromagnetic-paramagnetic or antiferromagnetic-paramag­
netic type. 

INTRODUCTION 

THE low-temperature behavior of the spontaneous 
magnetic moment of a ferromagnetic Ising lattice con­
taining interstitial impurities, which change the magni­
tude and sign of the exchange integral between neighbor­
ing lattice sites, was investigated in an article by one 
of the authors. [ll It was found that in order to investi­
gate the low- temperature properties of such a system 
it is convenient to use the model proposed by Lush­
nikov, [2 J for which one can obtain the exact expression 
which relates the free energy of the Ising lattice con­
taining impurities to the free energy of the correspond­
ing ideal lattice. One of the conclusions of article[1 J 

consists in the fact that a small concentration of impuri­
ties, which change the sign of the exchange integral be­
tween neighboring lattice sites and strongly decrease 
its absolute magnitude, leads to a sharply nonmonotonic 
dependence of the spontaneous moment of a ferromag­
netic lattice on the temperature. The physical reason 
for this property is that at sufficiently low temperatures 
the impurities form clusters, leading to the appearance 
of regions with their magnetization opposite to the 
nominal magnetization. 

For a larger concentration of such impurities a non­
unique dependence of the (paramagnetic-ferromagnetic) 
phase-transition temperature on the impurity concen­
tration appears, as was shown in the article by Kasai, 
Miyazima, and Syozi[3 J for the example of a square 
lattice. Because of this the system under consideration 
may possess two phase transition points (the lowest 
temperature phase and the high temperature phase are 
paramagnetic, but the intermediate phase is ferromag­
netic). This conclusion is in agreement with the more 
general results of Fisher[4 J for a model with so- called 
"mobile impurities" (impurities which are in thermo­
dynamic equilibrium with the lattice). 

In the present article it is shown that in a three­
dimensional ferromagnetic Ising lattice containing inter­
stitial impurities, which change the sign of the exchange 
integral between nearest-neighbor lattice sites (we shall 
call such impurities antiferromagnetic}, the appearance 
of three phase transition points is possible. In this con-

nection the lowest temperature phase is antiferromag­
netic. The ferromagnetic phase corresponds to a finite 
temperature interval separating the region of the para­
magnetic phase from the antiferromagnetic state. 
Finally, the high-temperature phase is, of course, a 
paramagnetic phase. In connection with the derivation 
of the basic result of the present work, the physical 
reasons which lead to the existence of several phase 
transition points in the given model are discussed in 
detail. 

1. THE RELATION BETWEEN SHORT-RANGE AND 
LONG-RANGE ORDERING IN LUSHNIKOV'S MODEL 

Let us consider an Ising lattice containing impurities, 
which are introduced between two neighboring lattice 
sites and change the exchange interaction between them. 
We shall assume that the impurities are in thermo­
dynamic equilibrium with the lattice, i.e., their distri­
bution is determined by the minimum of the free energy 
of the lattice with impurities. As far as we know this 
model was first studied in detail by Lushnikov. [2 J 

Since each impurity changes only a single bond be­
tween the sites, it is convenient to formulate the problem 
of interest to us in terms of the bonds between sites. If 
the neighboring sites are in identical spin states, then 
we shall call their bond positive. We shall call the bond 
negative if the neighboring sites have oppositely directed 
spins. 

Let v denote the concentration of negative bonds (the 
ratio of the number of negative bonds to the total num­
ber of bonds in the lattice). For an ideal lattice the 
quantity v is a measure of the short- range order and 
simply defines the energy E of the lattice per bond: 
E = -J(1- 2v), where J denotes the exchange integral 
of the ideal lattice. 

In a perfect lattice v is a quite definite function of the 
temperature: v = v(y2} where y = e- f3 J and {3 = 1/ T. 
Since the spontaneous magnetic moment of a perfect 
lattice, which is the parameter of long- range order, is 
also a single-valued function of y2 (M = M(y2}}, then the 
relation between the parameters of short- range and 
long-range order in a perfect lattice is trivial. 
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For a lattice containing impurities, the relation be­
tween the corresponding quantities is not so simple. 
However, we shall show that the concentration lie of 
negative bonds in a lattice containing impurities is rela­
ted to the temperature and impurity concentration by 
means of a simple relation lie = II(TJ), where TJ is a 
parameter which is determined from the appropriate 
equation in articlel21 • The proof will be based on the 
fact that the quantity Ec (the energy of the lattice con­
taining impurities, calculated per bond) may be obtained 
in two ways. On the one hand it may be expressed in 
terms of the concentration II(TJ) of negative bonds in a 
perfect lattice by its standard calculation according to 
the formula 

d 
E, = - -[PF,], 

dp 

where F c is the free energy of the lattice with impuri­
ties, calculated per bond. On the other hand, by means 
of simple considerations it may also be related to the 
concentration of negative bonds, lie· By equating the ob­
tained expressions and carrying out simple algebraic 
transformations, we actually obtain Vc = v(TJ). 

Thus, we first derive an expression for the energy Ec 
of the lattice containing impurities. As shown inl21 the 
free energy F c of the lattice with impurities is related 
to the free energy F = F(y2) of a perfect lattice by the 
following equation: 

1 1 
PF, = PF(TJ)-Tln-;j+ cln 6 +(1- c)ln(1- 6)- cpJ, -(1- c) PI, 

(1) 
where J 1 is the new exchange integral, associated with 
the presence of the interstitial impurity, and the quantity 
7J = (1 - ~ )y2 + ~ v2 is determined from the equation 

c 1- c v (TJ) 
---+--+--=0. 

TJ-Y' v'-TJ TJ 
(2) 

as was proved inl 11 • Here c denotes the impurity con­
centration (the ratio of the number of impurities to the 
total number of bonds in the lattice), and V 2 

= exp(-2{3J1). As indicated inl11 , the quantity~ which 
appears in the fundamental formulas (1) and (2) is the 
concentration of impurities on positive bonds, i.e., the 
ratio of the number of impurities located on positive 
bonds to the total number of positive bonds in the lattice. 
The following expression for the energy of a lattice con­
taining impurities follows from Eq. (1) with Eq. (2) taken 
into consideration: 

E,= 21']-'V{TJ) {1{1- 6)Y' + J,5v'}- c],- {1- c)J. (3) 

Now let us obtain an expression for Ec by another 
method, using the physical meaning of the quantity ~. It 
is obvious that one can write the lattice energy Ec in the 
form 

: E, = -{1- v,) (6J, +{1- 6)1} + v.,gJ, +{1- ~)/}, 

where t denotes the concentration of impurities on 
negative bonds, i.e., the ratio of the number of impuri­
ties located on negative bonds to the total number of 
negative bonds. Taking it into consideration that vc is 
the concentration of negative bonds in the lattice with 
impurities, we write c = t11c + ~(1- vc)· Then we have 
the following simple expression for the energy Ec: 

E, = c/1 + (1- c)J- 2(1 -- v,) {GJ, + (1- 5)1}, (4) 

Type of lattice I y I "' 
Square 4 ¥2-1 0,146 0.5 0.854 
Honeycomb 3 2'-va 0.115 0,352 0.885 
Diamond 4 0,437 0,22 0,590 0,78 
Simple cubic 6 0,641 0,322 0,757 0.678 
Body-centered 8 o. 727 0,366 0.828 0.634 

cubic 

Note. The values of the parameters T/o and c0 are taken from [3] , the 
values of ck are taken from (5]. 

where ~ is found from Eq. (2) as has already been 
noted. Equating relations (J) and (4) and using expres­
sion (2), one can show that 

v, = 1-..:._+ v'v(TJ) . 
5 'I'] 

Finally, having rewritten (2) in the form 

...:_= 1 + (v'-TJ)V(TJ) 
6 'I'] ' 

we finally have "'c = v(TJ). 
Since it was shown inm that the spontaneous magne­

tization is a single-valued function of 7J, namely, Me 
= M(TJ), then the relation lie= v(TJ) obtained by us estab­
lishes the connection between the parameters of short­
range and long- range spin ordering in a lattice with 
impurities.1> 

It was shown inl 2 J that the thermodynamical quanti­
ties of an Ising lattice with impurities, regarded as 
functions of the parameter TJ, have the same singulari­
ties as the corresponding quantities for a perfect lattice, 
regarded as functions of y2 • The phase transition in the 
lattice with impurities take place at 7J = 7Jo 
= exp(- 2J/To), where To is the Curie temperature of the 
perfect lattice. It is very important to note that TJo is a 
number which is characteristic of the type of lattice 
being considered (see the table). But in a perfect lattice 
v(TJo) = co, where Co denotes the concentration of negative 
bonds at the phase transition point; c0, just like 7) 0 , is a 
number which has a specific value for a given type of 
lattice (see the table). Since we have proved that "'c 
= v( TJ), then from the above discussion it follows that: 
if a phase transition occurs in the lattice with impuri­
ties at a certain temperature rx. then the concentration 
of negative bonds at the point T = TA is the same as at 
the phase transition point of the original perfect lattice. 
In other words, the nature of the short-range spin order­
ing at the phase transition point for the lattice containing 
impurities, which is determined by the concentration 
Vc of negative bonds, only depends on the type of lattice 
(square, cubic, etc.), but does not depend on the impur­
ity concentration c or on the value of the new exchange 
integral J 1 • However, the temperature of the phase 
transition naturally depends on both c and J1. And what 
is more, the kind of phase transition is changed in the 
lattice with impurities (it becomes a third-order tran­
sition l2 1). 

The formulated result for the model under considera­
tion provides a specific example of Fisher's remarkl 6 J 

with regard to the fact that the behavior of a substance 

nwe note that in [3] the quantity e, which is the average value of 
the spin-spin correlator between nearest neighbors, is chosen as a mea~ 
ure of the short-range order. The quantity e is related to v in a simple 
manner: e = 1-2v. 
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near its critical point is primarily determined by the 
statistical properties of the system, i.e., not by the 
interaction forces in the system (its energy), but by the 
extent of its ordering (the entropy of the system). 

2. CLASSIFICATION OF THE ORDERED STATES IN A 
FERROMAGNETIC LATTICE CONTAINING ANTI­
FERROMAGNETIC IMPURITIES 

In what follows we shall confine our attention to an 
investigation of Ising spin lattices which also permit 
antiferromagnetic ordering in addition to ferromagnetic 
ordering. As is well known (see, for example/7 J ), this 
is the case for those lattices in which one can divide the 
lattice sites into two classes a and {3 such that all of 
the nearest neighbors of a site belonging to class a are 
sites of class {3 , and vice versa. The simplest examples 
of such lattices are the square, simple cubic, and body­
centered cubic lattices. 

In order to be definite we shall assume J > 0 and 
J 1 < 0. For c = 0 Eq. (2) for the determination of the 
quantity TJ has the natural solution TJ = y2 , leading to the 
trivial result F c = F(y2). For c = 0 the lattice under 
consideration is ferromagnetic with its Curie point To 
determined from the condition y2 = TJo. 

For c = 1 the solution to Eq. (2) is given by TJ = v2 

and correspondingly F c = F(v2), where upon a change of 
the temperature T in the interval (0, oo) the quantity 
v2 = exp(- 2{3 J 1) varies over the interval ("", 1 ). For 
c = 1 the lattice being analyzed is antiferromagnetic with 
an exchange integral J1 and a Neel point determined 
from the condition v2 = 1/TJo. 

As will be clear from the following, the classifica­
tion of the different states of the investigated system is 
essentially based on the properties of the function 
v = v(x); therefore it is helpful to consider its behavior 
over the entire range of variation of the independent 
variable x, i.e., over the interval (0 < x < oo). A 
schematic graph of the function v(x), an analytic ex­
pression for which can only be obtained for the two­
dimensional lattice, is shown in Fig. 1. Its continuity 
and monotonic increase are the characteristic features 
of this graph. In the interval 0 < x < 1 the function v(x) 
determines the concentration of negative bonds in the 
ferromagnetic Ising lattice. At the point x = TJo, corre­
sponding to the Curie temperature, v(TJo) = c0 , and the 
graph of the function has a vertical tangent. This is re­
lated to the fact that the heat capacity of an Ising lattice 
tends to infinity at the Curie point. In the interval 
1 < x < 00 the same function determines the concentra­
tion of negative bonds in the antiferromagnetic Ising 
lattice. For x = 1/71o, corresponding to the Neel tem­
perature, v(1/71o) = 1- co, and the graph of the function 
again has a vertical tangent. For x = 1 (this corre­
sponds to an infinitely high temperature) the number of 
negative bonds in the lattice is equal to the number of 
positive bonds and v(1) = 1/2. 

-t------+-- --------
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1-t. : 
tlz -------!-

F 

I 
I 

p : 

pL---~-7-?1---------­
~. I 1/~, 

FIG. 1 

By virtue of the monotonic nature of the function v(x) 
we may conclude that a long-range ferromagnetic order­
ing exists in the lattice for v < c0 , and a long-range 
antiferromagnetic ordering exists for v > 1- c0 • If the 
concentration of negative bonds is found in the interval 
co < 11 < 1 - co, then the lattice is found in a paramag­
netic state. 

Now let us return to the statement which was proved 
in the preceding section, enabling us to find the con­
centration of negative bonds in the lattice containing 
impurities, namely, the formula vc = v(71). The possi­
bility of such a classification of the states in a lattice 
containing impurities follows from the single-valued 
correspondence between the concentration of negative 
bonds and the long-range order in the lattice, and also 
from the properties of the function v(71). 

If 0 < vc < 1/2 (this is possible only for 0 < 11 < 1), 
then one can call the states of the system ferromag­
netic-like (FLS). However if 1/2 < vc < 1 (which can 
be realized only for 1 < 11 < oo), then it is natural to 
call the corresponding states antiferromagnetic-like 
(ALS). In the FLS region a transition may occur be­
tween the ferromagnetic and paramagnetic phases of 
the system, and in the ALS region a transition may 
occur between the antiferromagnetic and the paramag­
netic phases. Having set TJ = 1 and v(1) = 1/2 in Eq. (2), 
one can obtain the dependence of the concentration c on 
that temperature T, which separates the FLS and ALS 
regions. On the (c, T) plane the indicated temperature 
corresponds to points on a certain curve (we shall call 
it the limiting curve). From Eq. (2) one obtains the fol­
lowing equation for the limiting curve: 

c[i- th ~/, / th ~/] = i. (5) 

We recall that {3 = 1/T, J > 0, and J 1 < 0. 
An interesting property of the limiting curve is the 

fact that for given values of J and J 1 this curve does not 
depend on the type or dimension of the lattice under 
consideration. The schematic form of the graph of the 
limiting curve is depicted on Fig. 2, where 
c1 = [1 + IJ1l/Jr1. We now note that the following limit­
ing behavior of the function vc follows from Eq. (2): for 
T = 0 and any impurity concentration v cIT= 0 = c. But 
since FLS exist for vc < 1/2, and ALS exist for v 
> 1/2, then a natural division of the states into Fts 
and ALS occurs on the T = 0 axis in Fig. 2: all of the 
points in the (c, T) plane lying to the left of the limiting 
curve describe FLS, and all of the points to the right of 
the limiting curve are ALS. Let us perform a compara­
tive analysis of Fig. 1 and Fig. 2. Since vciT=O = c, 
then the states of the lattice for T = 0 and c > 1/2 are 
ALS. If the ratio J/IJ1l of the exchange integrals is 
such that C1 > 1 - co, then for 1 - c0 < c < c1 the verti­
cal straight line c = const certainly intersects the 

FIG. 2 



PHASE TRANSITIONS AND SPONTANEOUS MAGNETIZATION 591 

limiting curve, and therefore the theoretical possibility 
of the existence of phase transitions (ferromagnetic­
paramagnetic and paramagnetic- antiferromagnetic) 
arises in the range of concentrations 1 - Co < c < c1. 
The conditions for realizing this possibility will be con­
sidered below. 

3. SPONTANEOUS MAGNETIZATION OF A LATTICE 
CONTAINING IMPURITIES 

On the basis of exact results for the planar square 
Ising lattice, the low-temperature behavior of the spon­
taneous magnetization was analyzed in articleuJ for the 
case of a small impurity concentration (c « 1). Using 
the results of this analysis and also the qualitative con­
siderations discussed inl1J, one can easily predict the 
low-temperature behavior of the magnetization of a 
three- dimensional ferromagnetic lattice for c « 1. 

Let us start with the case J 1 = 0, when the impurity 
in its interstitial position completely breaks the coup­
ling between the neighboring spins. A reduction of the 
magnetic moment of the ferromagnetic lattice containing 
impurities as T - 0 in comparison with its nominal 
value in this case can be achieved only in the following 
manner. Certain groups of spins arise, bounded by 
closed surfaces which pass through the interstitial 
positions at which the impurities are located, and conse­
quently there is a simultaneous breaking of the bonds 
with the remaining part of the lattice. The smallest 
group of this type is an individual spin, which has all of 
its bonds with its nearest neighbors broken. For small 
impurity concentrations the formation of precisely such 
groups is most probable. 

Since the accumulation of impurities surrounding a 
single spin can only occur in a random fashion (for J1 
= 0 it is not energetically favored), then the number of 
such clusters for small concentrations (c « 1) is pro­
portional to cY, where y denotes the number of nearest 
neighbors. 

In the case J 1 < 0 but IJ 11 « J the mechanism for 
the reduction of the magnetic moment as T- 0 is com­
pletely different. In this case the formation of an indi­
vidual cluster in which the impurities completely sur­
round a single reversed spin is energetically favored. 
However, the distribution of the individual clusters re­
mains a random distribution (their amalgamation is not 
energetically favored); therefore for small impurity 
concentrations (c « 1) the number of such clusters will 
be proportional to the first power of the concentration. 

In order to quantitively verify these conclusions we 
shall carry out a calculation of the spontaneous magne­
tization of a three- dimensional lattice with the aid of an 
approximate method, namely, the Bethe-Peierls method. 
As is well known, [BJ this method gives good results for 
low temperatures. 

In the Bethe-Peierls method the internal energy of a 
perfect Ising lattice may be written in the following 
form:l8 J 

E(1J) = -1 {2cr(1J) - 2M(1]) + 1}, 1] = y' == e-'~', (6) 
where the quantities a and M, which are the parameters, 
respectively, of short-range and long-range ordering, 
are found from the relations 

~ ~-1 

cr(1]) (1 + Z1])(1 + z') - 1• M(1J) = z• + 1 ' (7) 

/ 

0 

FIG. 3 
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in which x = y / ( y - 1) ( y denotes the number of nearest 
neighbors in the lattice), and the quantity z is found 
from the equation 

(8) 

Using the relation cited earlier between the internal en­
ergy and the concentration of negative bonds in an Ising 
lattice, E(17) = J{2v(17)- 1}, and comparing this with 
Eq. (6), we obtain 

v(1J)=M(1J)-cr(1J). (9) 

Let us substitute expression (9) into Eq. (2} and find its 
solution as T- 0 in the case IJ1I « J. It is easy to 
verify that for c « 1 the solution of interest to us 
possesses the property 17 « 1. Then the expansion 
11(17) = 217'1' + 0(172y-2) is valid, where O(x) indicates a 
quantity of the order of x for x « 1. The corresponding 
expansion of the parameter M(17) has the form 

M(1J)=-{1- 21]'- 0(11"-')}. 

Then in the case of the complete rupture of the bonds 
(J1 = 0}, by repeating the corresponding arguments of 
articlel1J, one can show that the low-temperature ex­
pansion of the relative change 6-m in the magnetic mo­
ment, calculated per spin, will be given by 

!lm = -2c'{1 + ae-'"}, (10) 

where a is a constant which depends only on c. 
Thus, for T - 0 and c << 1 we actually have the esti­

mate 16-ml ~ cY for the relative decrease of the spon­
taneous moment. 

In the case J 1 < 0 and JJ 11 « J in similar fashion one 
can show that 

!lm = -c{1 + be-'W•1}, 

where b is again a certain constant which only depends 
on c. Thus, the assertion formulated above about the 
linear dependence of 6-m on c has been proved for J 1 
< 0 and IJ d « J. 

4. PHASE TRANSITIONS IN A FERROMAGNETIC 
LATTICE CONTAINING ANTI FERROMAGNETIC 
IMPURITIES 

In the recently published articlel3J a quantitative 
analysis was made of the dependence of the phase tran­
sition temperature on the impurity concentration for the 
case of a planar square Ising lattice. It was shown that 
for J 1 < 0 and IJ11 < J the phase transition temperature 
is a double-valued function of the concentration and has 
the form of curve 2 in Fig. 3. As J1- 0 the graph of 
this function approaches a monotonically decreasing 
curve of type 1 on Fig. 3, and for J1 = 0 it terminates at 
the point c = ~ on the concentration axis. However, for 
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all plane lattices known to us ck < 1/2, i.e., the end 
point of the curve lies to the left of the limiting curve. 
An analysis of the situation in three-dimensional Ising 
lattices indicates (see the table) that the latter asser­
tion does not hold for them. As will be clear from the 
following, this is associated with the appearance of new 
physical phenomena which are characteristic for three­
dimensional lattices, these phenomena being impossible 
in principle in planar lattices. 

Let us analyze the curves of the phase transition in a 
three-dimensional ferromagnetic Ising lattice containing 
antiferromagnetic impurities in the case when Ck 
> 1- c0 and c1 > 1- c0 • We recall that ck determines 
the point of intersection of the phase transition curve 
with the concentration axis in the case of a lattice with 
impurities which completely rupture the bonds between 
nearest neighbors (J1 = 0). This curve is obtained from 
Eq. (2) for J 1 = 0. An elementary analysis shows that it 
is a monotonically decreasing curve, passing through the 
point ck = 7Jo + (1- 7Jo)c0 for T = 0. We note that whereas 
the quantities Co and ck for the three-dimensional lattice 
can be obtained only by some kind of numerical method, 
the quantity c1 is determined by the exact analytic ex­
pression c1 = [1 + IJ1I/Jr1. 

One can cite convincing physical arguments which 
indicate that, for J1 < 0, IJ1I < J, and c >co, the depen­
dence of the paramagnetic- ferromagnetic transition 
temperature on the concentration should be described 
by a double-valued function, and a characteristic loop of 
the type exhibited by curve 2 on Fig. 3 appears on the 
corresponding graph of TA = TA(c). These considera­
tions are especially clear for IJ 11 « J. It is obvious 
that in this case for T » IJ11 the phase transition curve 
will practically coincide with curve 1 on Fig. 3 (with the 
curve for J 1 = 0). In addition, for sufficiently small 
values of the ratio IJ 11 I J « 1, this agreement will hold 
almost up to c = ck. 

The points describing the ferromagnetic state of the 
substance must be located below and to the left of the 
phase transition curve on the ( c, T) plane. On the other 
hand, for T = 0 the concentration of negative bonds in 
the lattice coincides with the concentration of impuri­
ties, lie= c, as we have already indicated. Since ck 
> co, it follows that in virtue of what has been stated 
above all of the states to the right of c0 (up to the point 
c = 1 - c0 ) on the concentration axis (T = 0) are para­
magnetic. 

In order for a paramagnetic state to exist on the 
T = 0 axis, and for a ferromagnetic state to exist some­
what below curve 2 (near itT » IJ11), it is necessary 
that a parama,gnetic- ferromagnetic phase transition 
occur at temperatures T ~ IJ 11. In other words, the 
phase transition curve 2 must actually have the form of 
a loop of the type depicted on Fig. 3. Since this curve 
certainly passes through the point c = c0 , T = 0, in order 
to prove this assertion it is sufficient to show that a 
bulge exists in curve 2 having a vertical tangent at 
c = c* > co. We shall present a rigorous proof of the 
existence of this loop somewhat later, but right now let 
us turn to the analysis of the antiferromagnetic states 
of the lattice under consideration. 

First of all we note that for c > 1/2 one can assume 
as a starting point an antiferromagnetic Ising lattice 
with an exchange integral J 1 ( J 1 < 0), and the remaining 

impurity bonds in the lattice, with an exchange integral 
J (J > 0), are considered as defect imperfections with a 
concentration 1- c. 

It is obvious that the Neel temperature T1 for a lat­
tice with c = 1 will have an order of magnitude T1 ~ IJ d 
~ T0 IJ11/J. From symmetry considerations it is obvious 
(one can prove this by a rigorous analysis of the initial 
equations) that for T = 0 the antiferromagnetic ordering 
encompasses the interval 1 - c0 < c < 1 and vanishes at 
the point c = 1 - c0 • The curve of the antiferromagnetic­
paramagnetic phase transition is schematically repre­
sented by curve 3 on Fig. 3; it is monotonic and single­
valued. Using as an example the case IJ1I « J it is 
easy to understand why the mechanism which leads to 
the appearance of the loop on curve 2 cannot influence 
the monotonic behavior of curve 3. In fact, the charac­
teristic temperature for the formation of clusters of 
defect bonds of the type discussed in Sec. 3 is of the 
order of the quantity J » IJ1I ~ T1, i.e., clearly above 
the Neel temperature. Therefore the formation of such 
clusters cannot influence the behavior of the system in 
the temperature range T < T1. 

From the point of view of the possibility of different 
phase transitions, the most interesting situation is that 
in which 

Co < 1/2 < 1 -Co < c' < c •. (11) 

Upon fulfillment of conditions (11) and for jJ11 < J the 
entire range of possible impurity concentrations c splits 
up into the following regions: 

1) 0 < c < co. In this region at low temperatures the 
system is found in a ferromagnetic ordered state and 
the Curie temperature is of the order of the quantity T0 ; 

2) co < c < 1 - co. For these concentrations, two 
phase transitions are possible. The lowest temperature 
phase is the paramagnetic phase. With an increase of 
the temperature, the transition into the ferromagnetic 
phase occurs forT~ IJ1I· With a further increase of 
the temperature, the system again experiences a transi­
tion from the ferromagnetic state into the paramagnetic 
state (the transition temperature is given by the upper 
part of loop 2 in Fig. 3); 

3) 1 - Co < c < c*. In this range of concentrations 
three phase transitions are possible, separating the 
regions corresponding to antiferromagnetic, paramag­
netic, and ferromagnetic states of the substance. The 
antiferromagnetic phase exists at very low temperatures 
(its region of existence lies below curve 3). The para­
magnetic phase occurs at higher temperatures. Above 
it (in temperature) there is a finite temperature interval 
in which the ferromagnetic phase exists. And, finally, 
the paramagnetic phase again occurs at temperatures 
lying above curve 2. 

4) c* < c < 1. In this range the system is found in 
the antiferromagnetic state at low temperatures, and 
the Neel temperature is of the order of magnitude of T1. 

If the inequalities (11) are replaced by other inequali­
ties, then the classification of the states in different 
ranges of the concentration can be carried out in analog­
ous fashion. 

Finally, it is perhaps worth mentioning that the be­
havior of the heat capacity C( c, T) and of the spontane­
ous magnetic moment Mc(T) over the entire range of 
temperatures and concentrations for the three-dimen-
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sional case can be investigated with the aid of the 
Bethe-Peierls method discussed above. We note that 
the application of the method of the molecular field in 
its simplest version (the Bragg-Williams method, 
seelaJ) does not even qualitatively give the result estab­
lished above about the double- valued nature of the curve 
TA.(c), and accordingly the existence of two or three 
points in temperature at which there is a phase transi­
tion. This is related to the fact that in the Bragg­
Williams method the parameter of short- range order 
vanishes at the phase transition point, that is, vc(77o) 
= 1/2. Then for c > c0 the lower branch of the curve 
TA.(c) coincides with the axis of abscissas and the ALS 
and FLS regions overlap, which is impossible in princi­
ple in view of the presence of the limiting curve. 

Finally, let us return to the proof that in a three­
dimensional Ising lattice the case when c* > 1 - co can 
actually be realized. As already mentioned, in order to 
construct the quantitative dependence of the phase tran­
sition temperature on the impurity concentration it is 
sufficient to know two numbers that characterize the 
type of lattice being considered, namely, the numerical 
values of the parameters T/o and c0• We have taken these 
numbers from articlel3 J and they are cited in the ac­
companying table. With the aid of machine calculations 
of Eq. (2) we plotted curves showing the dependence of 
the phase transition temperature on the impurity con­
centration for two types of lattices- simple cubic (see 
Fig. 4) and body-centered cubic (Fig. 5) and for differ­
ent values of the ratio n = J / IJ 1 1 (the values of n are 
written above each curve). The left-hand group of 
curves in each Figure represents the dependences of 
the Curie temperatures on the impurity concentration in 
the FLS region; the middle group of curves represents 
the family of the corresponding limiting curves. Finally, 
in the lower right- hand corner is shown the curve of the 

antiferromagnetic-paramagnetic transition for n ="" 
(the analogous curves for finite values of n will end at 
the same points on the coordinate axes, but will pass 
somewhat above the curve shown). 

From an investigation of the cited curves it follows 
that in the simple cubic lattice for n > 25 the corre­
sponding loop on the phase transition curve has a bulge 
for which c* > 1 - co. In the body- centered lattice 
(where the number of nearest neighbors is larger) this 
same result is attained for smaller values of n, namely, 
for n > 6. Thus, in principle impurities can exist such 
that a sufficient concentration of them will lead to the 
result that the situation analyzed above is realized in 
the system. 

In conclusion we note that upon reversing the signs 
of the exchange integrals (J < 0, J 1 > 0) the curves 
shown in Figs. 3, 4, and 5 undergo mirror reflection, 
corresponding to the substitution c - 1 - c. Therefore 
everything discussed above can be attributed to an anti­
ferromagnetic Ising lattice containing ferromagnetic 
impurities. 
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