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Electron excitations of an antiferrodielectric {AFD} in the <!ase of a non-collinear arrangement of the 
spins on the sublattices are investigated by means of exciton theory. It is shown that magnetic Davy
dov splitting (MDS) for magnetic-dipole optical transitions in an AFD can be observed only when the 
arrangement of the spins of inequivalent magnetic ions is noncollinear. Formulas are obtained for the 
magnitude of the MDS as a function of the external magnetic field and for the intensity of the compo
nents of the Davydov doublet. The theory is compared with experiment for the crystal RbMnF3. 

1. INTRODUCTION 

A number of experimental papers on the investigation 
of light absorption by magnetic ions of an antiferrodi
electric (AFD) have appeared recently; in this work, a 
doublet splitting of the narrow magnetic -dipole lines of 
optical transitions has been detected and is associated 
with the collective properties of the magnetic ions of 
the AFD's (Cr;P3 , YCr03 and RbMnF3 crystals}. By 
analogy with the splitting which reflects the collective 
properties of molecules in molecular crystals, r 1 l this 
splittin~ has been called magnetic Davydov splitting 
(MDS)r -a 1 in order to distinguish it from the Bethe 
splitting of the levels of a magnetic ion in a crystal lig
and field. 

In AFD's possessing weak ferromagnetism (the four
sublattice AFD's Cr2 0 3r2 ' 51 and YCr03r41 ), the magni
tude of the MDS in the absence of a constant external 
magnetic field depends on Dzyaloshinskii's exchange 
constant, whereas for an ideal two-sublattice AFD, such 
as RbMnF3 ,r 3' 61 the MDS is entirely induced by a con
stant external magnetic field. 

The first attempt to explain MDS theoretically was 
undertaken by van der Ziel. r 21 However, as Sugano et 
al. [7 1 have shown, the combined quadrupole -quadrupole 
and spin-orbit mechanism used by van der Ziel for the 
transfer of the excitation between sublattices leads to a 
magnitude for the MDS of 10-2 em-\ which clearly does 
not agree with the experimental data. In r 7 l, the trans
fer of the excitation between inequivalent magnetic ions 
as a result of the antisymmetric exchange interaction 
between a virtual magnon and an exciton is investigated. 
Although the order of magnitude of the MDS turns out to 
be correct, in the presence of an external magnetic 
field Ho the mechanism proposed in r71 for the appear
ance of the MDS explains neither the quadratic depend
ence of the splitting on H0 nor the intensity of the com
ponents of the Davydov doublet. This same objection ap
plies to the explanation of MDS given by Allen et al. in 
t 5 l, The correct dependence of the magnitude of the 
MDS on the external field was obtained by the author 
in t BJ. 

In the present paper, the electron excitations of an 
AFD in the case of a non-collinear arrangement of the 
spins S1 and S2 of the sublattices are investigated us
ing the exciton theoryt 11 developed for an AFD,r 9 - 11 l 
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and the conditions for which MDS occurs are found. By 
way of an example, we compare the theory with an ex
perimental observation of MDS in a crystal of RbMnF3. 

2. HAMILTONIAN FOR AN AFD ELECTRONIC 
EXCITATION 

The lowest optical electronic excitations of an AFD 
magnetic ion are accompanied by a change of the ion 
spin by unity. In collinear AFD's, this leads to a rig
orous spin exclusion on the transfer of excitation ener
gy from one sublattice to another1H 10 ' 11 1. The spin ex
clusion is weakened for AFD's under the influence of a 
strong external constant magnetic field in a phase with 
reversed moments, and for AFD's with weak ferromag
netism. It is in these cases that we should expect Davy
dov splitting to appear.t 11 l 

We shall consider the lowest electronic excitations 
of an AFD whose sublattices have spins with non-collin
ear equilibrium values (Fig. 1). In the case of an AFD 
with "easy-axis" anisotropy, the spins of the sublat
tices are oriented along the direction of the Z1 and z2 

axes, which form an angle £J = 91 = -92 with one of the 
anisotropy axes z, along which the external magnetic 
field H0 is applied. Then cos () = H0/HE, if .JHAHE 
< Ho < HE (HA and HE are the anisotropy magnetic 
field and exchange magnetic field respectively}. In the 
case of an AFD with weak ferromagnetism in the ab
sence of an external magnetic field, cos £J = Hn/HE, 
where Hn is the Dzyaloshinskii exchange magnetic 
field. To obtain the AFD Hamiltonian describing the 
electronic excitations, we start from the fact that the 
interaction of AFD magnetic ions reduces to the inter
action between electrons of unfilled 3d or 4f shells.t 12' 13 1 

FIG. I. Equilibrium spin configuration for 
Ho >He. 

!/,!lz 
y 

1lThe transfer of excitation energy becomes possible in the second 
order of perturbation theory, if virtual magnons are included [ 7]. 
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Therefore, the total Hamiltonian :/6 of a system of inter
acting magnetic ions, leaving the number of electrons at 
each ion unchanged, can be written, using the results of 
paper c 14 J, in the form 

~na; = .E £Aaan:.; Aaana; J..a 

'" 
+ + .E (naic,; naic,l VI naic,; naic,) ·an:; ,,.,a:O, ,,.,ana; ,,.,ana;,,.,; 

(A, a) 

:J6int = + .E Vno; m~, 
na, m~ 

Vna; m' = .E (naic,; mB"-zl Vlnaic,; m~ic,) 
(A,cr) 

+ .E (naic,; mBic,l Vlm~ic,; naic,) 
("·,0") 

X .E xa:, ( crt')x~:,(cr,')x,.,(cr,')x,.,(o/) + + 
ana; J.lalamfl; ).2a2am~; A3o3an.:t; A~a~, 

rJ•'al 

(1) 

(2) 

(3) 

where the index (A., a) under the summation sign de
notes summation over all A.i and CJj· 

In the formulas (2) and (3), a~a;A.a and ana;A.a are 
creation and destruction operators for an electron in 
the A.-th orbital with spin projection a in the a -th mag
netic ion at the n-th lattice site; 

S • • e' 
= Q>n,, ,, (r,)cpn,, ,,(r,) I r, _ •·I cp"'' ,, (r,) Q>n,, ,, <•·> a., ar,, 

where (/Jna; A.(r) is the electron wavefunction (in the 
XYZ coordinate system) which is the solution of the 
Schrodinger equation for an electron situated in a self
consistent Hartree-Fock field and in the electrostatic 
crystal field of the ligands surrounding the magnetic ion; 
X a a( a') are the spin wavefunctions of the electron, de
fined in the coordinate system xa, Ya, za. Taking into 
account that the operator for a rotation through angle 
e Q' about the y-axis for a spin s = % has the form 

R(8.} =I cos (Oa I 2) + ia, sin (Oa I 2) 

(I is the unit matrix, and ay a Pauli matrix), we obtain 

the explicit dependence of the operator Vna· m{3 of the 
interaction between the magnetic ions on the angles e a 
and 813 at which the electron spins of the magnetic ions 
are inclined: 

Vn•; m~ = .E (nat.,; mB!.,I VI nat.,; m~t.,) 
<'· ") 

+ .E (na..Ai; m~A21 vI mB As; na/..q,) a:a.; 1.jaP:fl; "-2crPmfl; AJ0'2ana.; A4al, 

<'· ") 
( 4) 

(e.-a,) ( ea-e~) . (ea-e,) 
<I>aa' --2-.=6ao•COS --2- +(llol6o•t-llat6a,!)sm - 2-. 

(5) 

The first term in expression ( 4) describes the exchange 
interaction of the ions na and m{3 and depends essen
tially on the direction of the spins of the interacting 
electrons in the crystal, whereas the second term, which 
describes the Coulomb interaction, does not depend on 
the direction of the electron spins. 

To write down the Hamiltonian ~:16f of an excited 
state of the AFD, it is necessary to define Bose opera
tors B~a(f) which create an electron excitation f at an 
ion when the ion undergoes a transition from the ground 
state I (/J~a) to the excited state I qJta>. Defining the 
operator Bii.a(f) by means of the relation[!' 11 J 

l{!lna1) = Bn~+(f} l<fno0 ) 

and confining ourselves to quadratic terms in the opera
tors B~a, Bna, we obtain for the quantity ~ :16 f an ex
pression of the usual form2 > 

/1:161 = .E (Ae/ + D1)Bno +(t)Bna(f)+ .E' M~a; m~na +(f)Bm,(/), (6) 
na. no:; rn~ 

where 

!:J.e.' = (<f'na'I:J6.al(jlna1)- (<p,.a'IJ'ignal<fna0) 

is the optical excitation energy of an ion in a crystal 
ligand field, comprising the energies E.\a of the indi
vidual electrons and the configurational interaction en
ergy of the electrons; 

f ~' I. 0 I 0 • I ) D = ~ { ( Q>no, q>,., IV no; m~ q>,.~, Q>na 
mP 

- < cp:a;; Cfl::f11 v net; m~ I tp~r.; rv:a>} 
is the change in the interaction energy of all the ions of 
the AFD with one ion when the latter undergoes a tran
sition to an excited state. c 1' 11 J The matrix elements for 
transfer of the f-th electronic excitation 

(7) 

are determined by the exchange interaction contained in 
the operator Vna; m{3· 

To find the analytic dependence of the quantities 

M~a mB on the angle of inclination e a of the spins of 
the sublattices, we examine the structure of the wave
functions lqJ~a) and I ~a). Since in the coordinate 
representation the functions I (/J~a) and I qJ~a) are lin
ear combinations of Slater determinants and transform 

. . 2S + 1 2(S- 1)+1 
respectively accordmg to the r1 and r f 
representations of the crystal symmetry group,[ 13 J in 
the second quantization representation these wavefunc
tions have the form 

(8) 

2lHere we confine ourselves to the Heitler-London approximation 
[ 1] for the optical excitations of the AFD. In treating spin excitations 
of an AFD, one must add a term proportional to B~" B~ to the opera
tor t,J(f. 
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Here I 0) is the vacuum electron function, j is the num
ber of magnetic electrons in the 3d or 4f shell of the 

ion, and c{ are numbers determined from the normali

zation of the function I Cf~a> and its symmetry. 
It follows from the form of the functions (8) that the 

excitation I Cf~a) - I Cfta> takes place by way of a tran
sition of one of the electrons from a state with spin pro
jection +% to a state with spin projection -%. Conse
quently, the matrix elements for transfer of the excita
tion, according to (4), (5), (7), and (8), are written as 

M I _ u I { ( , ( 9~ - 9~ ) } no; m~- .!Jtno; m~ ll.~ + 1-ll.~)cos - 2-

The transformation 

1 '\' . 
B •• (f) = --=-~ e•kn u •• (k; f)B.(k; /). 

1N •• 
where N is the number of cells in the crystal, !J. is the 
exciton band index, and k is the wave-vector, brings 
the Hamiltonian (6) to the form 

<M • .' = E E.(k; f)B,+(k; f)B.(k; f). 

"" 
(10) 

3. INTENSITY OF SINGLE-ION OPTICAL 
TRANSITIONS 

For a full elucidation of the nature of MDS in AFD's 
it is necessary to consider the polarization of the lines 
of the Davydov doublets, E 1(k; f) and E2 (k; f). Single
ion optical transitions in an AFD under the influence of 
the magnetic field component h0 of an electromagnetic 
wave of frequency w and wave-vector Q are defined in 
the exciton representation by the operator 

;M,._,(t) = M,(f)h,e-'•'B/(Q; f)+ h.c., 

M,(f) = !!B }'N I: ( cp •• 1 IE s •• , e:x:p(iQr •• ,) I cp •• •) u.,(Q; /), 
• i 

where Snai and rnai are the operators of the spin and 
coordinates of the i -th electron in the a -th ion of the 
n'th cell, and IJ.B is the Bohr magneton. 

Here we are interested in magnetic-dipole transi
tions between states with the same orbital electronic 
configuration in crystals with 0tJ. symmetry c 2 • 6 J i.e., 

in the transitions 2s+1Ag- 2(s- 1)+ 1Eg, and for the 

magnetic-dipole transition moment we obtain the ex
pression 

iJ!B iN . '\' '\' II + I ') M.(f)=-e-Q' ~~(cp •• a •• , •• a •• ,, ••• . cp •• 

(13) 

Here B~ (k, f) and BIJ. (k, f) are Bose operators which where 

create and destroy an exciton f in the band !J. with wave 
wave-vector k and having energy EIJ.(k; f). For crys-
tals with a center of symmetry, 

( 9 -8 ) E.(k;f)= L'1e1 +D' +L/(k)-(-1)"L/(k)cos' -'-2-' • 

L f(k) _ '\' g I ikn 
1 - L..J ..;n oa; ocr; e ' 

L '( '\' I ·. , k)= ~Jt,,.,exp{:k(n+p,-p,)}, 

(11) 

where Pa is the radius-vector from the center of the 
cell to the a -th magnetic ion. 

It follows from expression (10) and (11) that two 
bands E 1(k; f) and E2(k; f) of excited states correspond 
to one optical excitation .6.Ef in the crystal. For k = 0, 
the AFD electronic excitation branches differ from one 
another by an amount 

( 8,- s,) t. v0 (/) = 21 L,t (0) I cos' --2- , (12) 

which we can call the magnetic Davydov splitting in the 
AFD. (This optical splitting should not be confused with 
the splitting of two exciton branches that is character
ized by the separation between the minimum energy of 
the upper branch and the maximum of the lower branch.) 
The splitting .6. vn(f) is absent in the case of an anti
parallel arrangement of the spins of the sublattices in 
the ground state, when B1 = e and B2 = 7T + e. Thus, the 
formula (12) also reflects the law for lifting the spin 
exclusion on transfer of an excitation from one sublat
tice to another as a function of the angle between the 
spins of the magnetic ions in the ground state. 

rr •• = ~ ( 1 1 ) , 
'12 1 -1 

and da is the operator of an electric -dipole transition 
in the a -th ion of the cell; in the case when the crystal 
environments of the magnetic ions are equivalent (which 
is the case for most AFD's), da does not depend on the 
sublattice index a, i.e., d1 = d2 = d. We now take into 
account that the spin operator Sa of an electron in its 
own system of coordinate xw Ya, za (Fig. 1) is related 
to the spin operator S<a > in the XYZ system of coor
dinates by the transformation 

Sfa) = Sza sin Sa+ Sza COS Sa, S{;.) = SYa' 

sfa) = s, .. cos Sa - Sxa sins ... 
(14) 

Then, according to (8), (13), and (14), the quantities 
Mi(f), which determine the probability of single-ion 
magnetic-dipole transitions in an AFD for a given po
larization vector h0 , acquire the form 

Mz (f) iQfln 'I NF (. e . 8) h liZ 
1(2) = -2- V 2mffio sill 1 <2'> Sill • ' o ' 

~ iQJ.L 8 v NF M,<•> (f) = - 2- -2 - (cos 8, + cos 82), h 0 _l_ Z, mffi0 {-) 

F 2mffio I ~ I di I ' f I + I o \' = ~ AA' (J... A) ((flna ana;A lana;~' 'l'na) , (15) 

where F is the oscillator strength of the optical transi
tion under consideration, w 0 is the transition frequency, 
and m is the electr.on mass. We remark that the ma
trix elements of a dipole transition (A I dj I A1) of polari
zation j are taken between states A and A1 belonging 
to the same 3d (or 4f) shell. Therefore, for the transi-

2s+1 2(s-1)+1 .. 
tions Ag - Eg to occur, 1t 1s necessary 

to include high-lying odd electron states. c 12 J 
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The MDS problem is completely solved by the for
mulas (11), (12) and (15), if the connection between the 
angle 0 = 01 = -02 and the external magnetic field H0 

and Dzyaloshinskii exchange magnetic field is taken into 
account. Here we shall say a few more words about 
what happens to the AFD excitation branches E 1(k; f) 
and E2(k; f) in the case of large fields H0 , when the 
AFD becomes a ferrodielectric. On increase of H0 , the 
spins on the sublattices form a smaller and smaller 
angle between themselves. Because of this, the reso
nance transfer Mtr m2 of an excitation between sub
lattices increases and the Davydov splitting gets bigger, 
although the intensity of the second exciton-excitation 
branch falls (like sin2 0). So long as two sublattices of 
the AFD exist (i.e., up to fields H0 sHE), we can speak 
of two branches of the same AFD electronic excitation, 
E 1(k; f) and E2(k; f). For fields H0 =HE, an abrupt 
change of the crystal symmetry occurs. If the crystal 
possesses cubic symmetry, the unit cell now contains 
only one magnetic ion and the lattice constant becomes 
smaller by a factor of two. The branch E2(k; f), which 
had earlier its own independent physical meaning, is 
now a continuation of the branch E 1(k; f), since the Bril
louin zone of the crystal has grown larger by a factor 
of two. Thus, at H0 =HE, two antiferromagnetic 
branches become one electronic -excitation branch 
E (k; f) 3 > of a ferrodielectric, with 

E(k;f)= t:J.e' +D' +L'(k), L'(k)= I:.K,!e'••. (16) 

(The summation over n in (16) is performed over the 
sites of a lattice whose lattice constant is half that of 
the crystal in its antiferromagnetic phase.) Here we 
have a complete analogy with typical Davydov splitting 
in molecular crystals, for which the splitting is totally 
absent when the molecules acquire the same spatial 
orientationl 1 l-one of the branches becomes a continua
tion of the other branch, since the Brillouin zone has 
been doubled. 

It follows from what has been said that the explana
tion of MDS given by Sugano et al. for an AFD with col
linear sublattices with reflection symmetry is incor
rect. Taking account of virtual magnons can, as pointed 
out in l 7 l, lead to a spin-forbidden transfer of an exci
tation between different sub lattices. However, the ful
fillment of this condition alone is not sufficient for the 
observation of MDS, since the intensity of one of the 
components of the doublet goes to zero. A necessary 
condition for the observation of the MDS of magnetic
dipole transitions is that the spins of the AFD sublat
tices be non-collinear. Passing over to the study of 
MDS by means of the formulas (11), (12), and (15) for 
specific crystals, it is necessary to remember that MDS 
in AFD's with complicated magnetic structure (such as 
that in crystals of Cr203 and YCr03) requires in addi
tion a treatment of the electric-dipole optical transi
tions (occurring with inclusion of spin-orbit interaction), 

3lFor AFD spin-excitation branches E 1 (k) and E2 (k) in strong mag
netic fields ( cf., e.g. [ 15 ] ), the splitting 6.v = E 1 (k)-E2 (k) also increases 
with increase of the field H0 , but at H0 = HE for crystals of cubic sym
metry the branch E2 (k) is a continuation of the branch E 1 (k). The 
branches E 1 (k) and E2 (k) become one spin-excitation branch of a fer
rodielectric. In the general case there are two excitation branches when 
H0 ;;;. HE, for both electronic and spin excitations. 

since, because of the inequivalence of the crystalline 
environments of the magnetic ions, it is possible to ob
serve combined magnetic and electric Davydov split
ting. 

4. MDS IN A CRYSTAL OF RbMnFs 

The MDS of magnetic -dipole optical transitions 
should be observed most clearly in collinear two-sub
lattice AFD's. Eremenko and Novikovl6 l observed the 
MDS of the 25 144.5 em - 1 line of the 6 A1g- 4Eg transi-
tion in the ion Mn2+ in the ideal cubic two-sublattice 
AFD, RbMnF3. Because of the smallness of the aniso
tropy field HA ~ 4 Oe and the large magnitude of the 
exchange field HE~ 9 x 105 Oe, non-collinearity of 
the sublattice spins, necessary for the observation of 
MDS, is achieved at fields Ho >He =~HAHE ~ 18 
x 103 Oe. This is seen clearly experimentally. Fig-
ure 2 illustrates the MDS of this optical transition. The 
25 144.5 cm-1 line splits under the influence of the mag
netoelastic interaction into a and b orbitally nondegen
erate states. Each of the a and b states undergoes a 
further splitting in a field H0 > He into a 1, a2 and 
b1o b2 components, which are associated only with the 
collective properties of the crystal. l 6 l 

The formulas (11), (12), and (15) are in full agree
ment with the MDS pattern in a crystal of RbMnF3. In 
fact, knowing the equilibrium spin configurations as a 
function of the magnitude of the external field H0 l 16 l 
and the selection rules for magnetic-dipole optical tran
sitions l6 l to the states a and b, we have, according to 
(11), the following expression for the exciton-excitation 
energies 

E,,,(Q ~ 0; /) = t:J.e1 + I,Jf + L.' (Q ~ 0) 

± L,'(Q ~ 0) cos' e, f =a, b. (17) 

(To obtain (17), we took into account that, for a crystal 
of RbMnF 3 for equilibrium non-collinear spin states, l 16 l 
01 = -02 = 0 and cos 0 = H0/HE.) We note now that the 
electronic excitation energy AEf of an ion is com{1osed 
of the energy of a purely electronic excitation AEf and 

0 

the Zeeman excitation energy J.leffH0 {gS- gf(s- 1)} 
x cos 0, where g and gf are the g-factors in the ground 
and excited states in a cubic field ~. Calculating too 
the quantity of, we find 

t:J.e' + D' = t:J.e.' +Do'- ( 1 - _!__) (S- 1) ~terrHo' ' 
g HE 

D.' = ---} I: I: (naA.; m~A.' IV I naA.; m~A.") 
m~;i AA'A"a 

Thus, for the exciton-excitation branches E 1(Q ~ 0; f) 
and E2(Q ~ 0; f) we have, finally: 

E,,,(Q ~ 0; f)= t:J.eo' +D.'+ L/ (Q ~ 0) 

{ llerr(S-i)(g'-g) L.'(Q~O)} , 
~ + &. 

gH, HE' 
(18) 

It can be seen from formula (18) that the coefficients of 
H~ have different magnitudes for the excitations f1 and 
f2 (f =a, b). Experimentally this is manifested in the 
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different curvatures of the parabolas f1 and f2 ; Fig. 2 
shows that for a RbMnF3 crystal 

L,'(Q ~ 0) > 0, !teff(g1 I g -1) < 0, 

L,'(Q ~ 0) > l!tcff g'; g I (S -1)/lE, 

i.e., the resonance interaction energy is positive and 
exceeds the Zeeman excitation energy in absolute mag
nitude. A numerical value of L~(Q ~ 0) is found by com
paring the theoretical formula for the MDS 

Av0 (/) = 2£/(Q ~ 0)/lo' I HE', (19) 

obtained from expression (12) with the experimental 
formula found in paper r 6 J (H0 is in Oersteds and t.vn 
. -1 mcm 

(20) 

An estimate of the magnitude of the exchange inter
action Mt. nz between neighboring ions on opposite 
sublattices'is also of interest. It follows from the defi
nitions (9) and (11) that 

, L/(Q~O) '(e,-e,) 
Mni;n2;:::::: {j COS --2- ' 

where o is the number of nearest neighbors for a crys
tal of cubic symmetry. Therefore, for an RbMnF 3 crys
tal, according to (19) and (20) we obtain 

M~t ~ 9 [em -r ] cos' e. 
Thus, the exchange is a maximum for excitation of ions 
with parallel spins and equal to zero for excitation of 
ions with antiparallel spins (the spin exclusion on the 
transfer of an electronic excitation between sublattices 
of the AFD). 

The intensity of the components of the Davydov dou
blet is easily evaluated using the formulas (15), if we 
note that the light absorption corresponding to the first 
and second components of the doublet is proportional to 
cos2 e and sin2 e. For fields H0 <HI ~ 1.4 x 105 Oe, 
the intensity of the first component is small, but on in
crease of the field it rises sharply, while the intensity 
of the second component falls sharply (proportionally 
to 1- (H0/HE)2 ). This conclusion is in full agreement 
with the experimental picture of the absorption. In 
Fig. 2 the dashed portions of the parabolas a1 and b1 
exactly characterize the low -intensity components of 
the doublet. 

To conclude the comparison of the theory with ex
periment for the AFD RbMnF 3 , we emphasize again that 
the good agreement is obtained as a result of the fact 

v, cm- 1 

25150 

25135 

01 1 I 

H, H1 

FIG. 2. Exciton absorption in the transition 6 A 1g-> 4 Eg in RbMnF 3 

(from the data of [6 ] ); t; is the dependence of the MDS on the magnitude 
of the external magnetic field H0 • 

that the RbMnF3 crystal has a clearly defined cubic sym
metry, for which the crystalline ligand environments of 
magnetic ions of the first and second sublattices are the 
same. In this sense, this crystal can be considered to 
be ideal for the study of MDS. 

For an AFD with weak ferromagnetism at zero mag
netic fields H0 , the magnitude of the MDS can be ob
tained in an elementary way, if we put 81 = -8 2 = 8 and 
cos 8 = Hn/HE in the general formula (12). The result
ing expression for the MDS coincides exactly with the 
results of paper [7 J for H0 = 0. 

5. CONCLUSION 

The theory of MDS in AFD's developed in the present 
paper is applicable to magnetic -dipole transitions in 
magnetic ions. However, the exciton model used to de
scribe the excited states of an AFD can be applied to the 
study of electric -dipole transitions, and this enables us 
to describe electric Davydov splitting (EDS) in an AFD 
both at the frequencies of single -ion optical transitions 
in ions and at the frequencies of pair optical transitions. 
A detailed account of the theory of EDS for an AFD will 
be given in a separate paper. 

The author is deeply grateful to A. S. Davydov, Acad
emician of the Academy of Sciences of the Ukrainian 
S.S.R., and V. V. Eremenko for fruitful discussions of 
questions touched upon in this paper. 
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