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The problem of propagation of a stationary shock wave in a collisionless plasma with thermal ions 
( Ti ;I! O) in the absence of a magnetic field is solved. The dependence of the shock wave velocity on 
the potential is found for temperature ratios Te/Ti = 101-103 , The minimal value Te/Ti = 5 for 
which the waves can exist is found. Results of experiments on the propagation of finite- amplitude 
ionic shock waves in a laboratory plasma (Te/Ti = 20-50) are presented. The initial stage of 
wave formation and the dynamics of ion reflection from the wave front are studied. The ion distri
bution function in a plasma is measured for waves with different amplitudes and velocities. Evolu
tion of a large-amplitude wave under conditions close to those in the experiment is studied by 
carrying out a numerical experiment with a "computer plasma." The results of the theoretical 
analysis are compared with the experimental data. In all cases considered, the calculations and 
experiments indicate that the Mach numbers do not exceed 1.6. 

1. INTRODUCTION 

As is well known[ 1- 31, ion-acoustic waves of small am
plitude can propagate in a rarefied plasma with hot elec
trons (Te >> Ti, where Te i-electron and ion tempera
tures). Great interest atta~hes to the nonlinear dynamics 
of propagation of such waves with finite amplitude, es
pecially because a non-isothermal plasma is an exam
ple of a strongly dispersive medium with small absorp
tion. As follows from hydrodynamic theory ( Ti = 0), 
propagation of nonlinear stable elementary waves, for 
example compression solitons[4- 61 is possible in such a 
medium, and any initial perturbation, generally speak
ing, breaks up in the course of time into an aggregate 
of such elementary oscillations with a spatial dimen
sion on the order of the characteristic dispersion 
length (Debye radius, AD= v'Te/(47Tne2), in this case). 
The characteristic velocity u of the collisionless 
shock wave produced in this manner is of the order of 
the velocity of ion sound Vs = v'Te/mi. For Mach 
numbers M < 1.6 ( M = u/vs), the formation of a sound 
wave with nonlinear oscillations behind the front has 
been qualitatively confirmed by numerical calcula
tions[7'8l and experimentally[ 9 • 10l, The hydrodynamic 
approximation is valid until the amplitude of the poten
tial reaches the critical value 'Per= 1.3 Te/e[4l, 
above which the "breaking" of the wave takes place and 
the motion becomes of the two-stream type. As shown 
in the numerical experiment[uJ, in which the particle 
method was used to describe the plasma, at a wave 
amplitude slightly exceeding the critical value, the 
"breaking" of the wave as it propagates in a plasma 
with cold ions ( Ti = 0) occurs periodically with a fre
quency -wpi· In a real experiment, the ion tempera
ture, while much less than Te, remains finite, and 
there is always a group of ions reflected from the 
moving potential hump. As follows from[ 12• 13l, in this 
case the structure of the wave can change noticeably. 

In the present paper we have investigated the struc
ture of a collisionless shock wave in a plasma with 
thermal ions. In the first part we find the stationary 
profile of the potential of the shock wave for different 
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Mach numbers and ion temperatures ( Ti/Te 
= 10-1-10-3 ). In the second part we give results of an 
investigation of the initial stage of motion of a pertur
bation wave of specified form, as obtained from a 
numerical experiment. In the third part we describe 
experiments performed on the "Volna" installation, 
aimed at the study of the propagation of ionic waves of 
finite amplitude in a laboratory plasma. It was assumed 
in the calculations that the distribution of the plasma 
electrons (including the captured ones) is Maxwellian, 
and consequently the electron density at any place is 
described by a Boltzmann distribution. It follows from 
the results of a comparison of theory and experiment, 
given in the present paper, that the correctness of this 
assumption is fully confirmed. 

2. THEORY AND CALCULATION 

Stationary case. To find the profile of the potential 
in the stationary shock wave for an arbitrary number 
of reflected particles, it is necessary to solve the 
Poisson equation 

d'qJ I dx' = 4n:e (n,- n,). (1) 

Here ne and ni are respectively the densities of the 
electrons and singly-charged ions, e is the electron 
charge, and cp is the electrostatic potential. Let us 
assume that the density of the electrons at any place is 
described by a Boltzmann distribution 
ne = no exp ( ecp / Te ), and that there are no captured 
ions. There is no doubt that the number and the distri
bution function of the captured ions depend on the 
method of wave formation. However, if it is assumed 
that the velocity of the wave greatly exceeds the 
thermal velocity of the ions, then the number of cap
tured particles will be negligible. To find the solution 
of Eq. (1) in a form analogous to that obtained in[ 12l, 
we choose the distribution function of the ions in the 
unperturbed plasma (cp = 0) in the form (in a reference 
frame moving together with the wave) 

f(vo)=A Gxp[-m,(jv.j-u)'/2T,], Vo~-w, 

v0 <-w, 
(2) 
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where v0 is the velocity of the ions in the unperturbed 
plasma, A is the normalization factor, and 
w = f2ecp A/mi. Solving the Vlasov stationary equation, 
we obtain with allowance for (2) the distribution func
tion at any point x: 

f(x, v) =A exp [- ;;, ("yv' + 2eqJ(x)lm,- u)•]. (3) 

Let the coordinate of the maximum of the potential of 
the frontal wave lie at the point x = 0. We then assume 
that in the region x > 0 there fall only those particles 
from the distribution (2), having a velocity v0 > w. 
When x < 0 the point with arbitrary potential cp ( x) is 
reached by (incoming) particles from (2) with veloci
ties v0 ~ ..J2ecp/mi, and reflected particles lying in the 
interval -w s Vo s- ..J2ecp/mi. We thus obtain for the 
ion density the expressi<ms 

M }C 

where 

n{<p) =A [J /(qJ, v)dv + J /(qJ, v)dv]. x < 0, 
0 0 

n(qJ)=AJ f(qJ,v)dv. x>O, 
(4) 

}C 

X= l'2e(qJA- q>) I m,, 

and the function f(cp, v) is determined by expression 
(3). The constant A is found from the boundary condi
tion at x =- oo, where it is assumed that cp = dcp/dx 
= 0, ni(O) = n0 • Consequently, 

A= no{f exp [-~(u- v)'] dv +wJ exp [- .,':' (u- v)'] dv} -•. 
0 2T, _T, 

0 (5) 
We choose the dimensionless variables 

!lJ = eq> IT,, ~=xI 'AD, V =vI u 

and the notation 

(6) 

9=T,IT,, p=218M', R=2llliM', s=2lllAIM'. (7) 

Substituting (4) with allowance for (5)-(7) into the 
Poisson equation (1) and integrating once, we obtain 

x<O, 
(8) 

1 dill' M T{a) =e"'+BM'J F(V,R)dV+E. x>O, (9) s ,. 
where F(V, R) = V..JV2- R exp[-(V- 1)2/p), 
B = uA/no. 

The constant D is found from the boundary condi
tion <I> = d<I>/d~ = 0 (x =- oo), and E is found from the 
condition of matching the solutions for the regions 
x < 0 and x > 0 at <I> = <I> A: 

E =D = -1- [ j V"exp[-(V-l)'lp]dV 
0 ,. 

-J V'exp[-(V-1)';p]dv] Bill'. 

In addition, to solve Eqs. (8) and (9) it is necessary to 
know the relation between M and <I> A (i.e., between the 
Mach number and the amplitude of the wave). This re
lation is obtained from the equation 

1• 

e"'A-f=BM' [JF(V,O)dV+ JF(V,O)dV- jF(V,s)dV]. (10) 
o 0 \'8 

f.// I.Z ~ 

FIG. I 

FIG. 2 

At low ion temperatures ( e » 1) the integrals in 
(10) can be determined by expanding the integrand in 
powers of e-1• Accurate to terms e-2, Eq. (10) is 
written in this case in the form 

<PA -- 1 
e -1 = M'(1-l'1-s)+W[2- 3(1- s)-''' +(1- s)-'1•]. 

From this we can obtain the increment to the wave 
velocity due to the thermal motion: 

m = _1_ 2(1-so)'"- 3+(1-s0)-1 

2Mo9 2-s,-2(1-so)Y· 

where M0 is the velocity of the wave at e = ""• and 
so= 2<1>A/Mg, At low wave amplitudes, the wave 
velocity tends to the velocity of the hydrodynamic ion
acoustic wave M = ..J1 + 3/® ~ 1 + 3/2®. However, 
when <I> A< exp(-2Te/Ti) expression (1) has no solu
tion. (This circumstance was pointed out to us by A. V. 
Gurevich.) The reason for it is that when <1> A - 0 the 
concentration of the reflected ions is proportional to 
nref ~ ..J <I> A exp ( -Te /Ti), whereas the increase of the 
ion concentration on the crest of the wave is ~ni ~ <I> A, 
and therefore when <I> A< exp ( -2Te/Ti) we have nref 
> ~niz and no compression wave is produced. It should 
be noted that owing to the smallness of exp ( -2Te/Ti), 
the region where there is no stationary wave is very 
small and practically merges with the ordinate axis on 
the scale of Fig. 1. 

The results of the solution of Eqs. (8)-(10) are 
shown in Figs, 1 and 2. The relations between the wave 
velocity and the amplitude of the potential are shown 
in Fig. 1. The region of existence of solutions is 
bounded by the curves 1 and 2. Curve 1 is the plot for 
hydrodynamic solitary waves (solitons), and curve 2 is 
the envelope of the limiting values of the Mach num
bers. The limiting values are obtained from Eq. (10) 
with simultaneous satisfaction of the quasineutrality 
condition: ne( <I> A) = ni( <I> A) at <I> = <I> A· In this case 
the solution has a monotonic character. 

At a negligibly low ion temperature Ti/Te = 10-3-

10-4 ), the plot of M( <I> A), as expected, is close to curve 
1. The wave profile at M - 1 « 1 can be represented 
in this case as an aggregate of almost non-interacting 
solitons, and the form of the frontal soliton practically 
coincides with the profile of the solitary wave at the 
same value of M. This fact makes it possible to 
represent qualitatively the shock wave as an aggregate 
of repelling solitons kept in equilibrium on the one side 
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by a kind of piston producing these solitons, and on the 
other by the pressure of the reflected particles. 

Figure 1 also shows the dependence of the limiting 
values of the Mach numbers and the velocity of the 
hydrodynamic ion-acoustic wave on ® (curves 3 and 4, 
respectively). The point of intersection of the curves 
gives the critical value of the ion temperature Ti 
Rl 0.2Te, above which the existence of the shock wave 
is impossible. 

Figure 2a shows the profile of the potential of the 
shock wave at different wave velocities for a fixed 
value of ®, while Fig. 2b shows the same for different 
plasma ion temperatures at a given value of M. It fol
lows from Fig. 2 that the amplitude and period of the 
oscillations decrease with increasing ion temperature 
and wave velocity. 

The final results obtained in the present study differ 
somewhat from the results of Bardotti and Segre[ 13l 
who used a solution method different from that given 
above. In particular, the dependence of the limiting 
Mach numbers Mn = Mn( ®) does not coi~cide with the 
relation obtained by us from the exact formula (10) 
(curve 3, Fig. 1), apparently because the approximate 
method of determining Mn, given in[ 13\ is quite inac
curate. 

Nonstationary case. To solve the problem of the 
evolution of a given perturbation of the density we used 
the method of numerical experiment with a model 
plasma. Use of this method permits the closest ap
proach to the conditions of a real experiment. In the 
one-dimensional case of interest to us, we assume that 
the electron density has a Boltzmann distribution, and 
that the ion component of the plasma is represented in 
the form of an aggregate of a finite number of charged 
particles, amounting to 2-7 x 103 for different vari
ants. The field distribution at any instant of time is 
determined from Eq. (1). The position of the center of 
the j-th particle in space, at a known field distribution, 
is determined from the equation 

dvj = - _!!__ oq> 
dt m, ox 

The particles with a specified distribution at the initial 
instant of time could move in an interval of ~100 Debye 
units. At the limits of the interval (0, L] the conditions 
stipulated for the potential were 

qJ'(O) = ~p'(L) = 0 (11) 

and the particles were reflected on reaching the limit. 
The solution of the boundary-value problem (1), (11) 
was obtained by a numerical method similar to that 
used in[ 111 • In place of (1) we solved the partial differ
ential equation 

(12) 

where 1/!('P) = 'Pxx + 41Te[ni- no exp(eqJ/Te)]. The sta
tionary solution of Eq. (12), obtained for t - ""• serves 
as a solution of the initial equation (1). 

If we denote by qJ~ the value of the potential at the 
instant of time tm = m tot at a node of the spatial grid 
Xk = kt.x, then the density of the ions n~ is defined as 
the number of particles located at the irlstant of time 
tm between the coordinates Xk-J./2 and Xk+J./2, multi
plied by the normalization coefficient. To decrease the 

FIG. 3. Phase space. Frames from the film for values of twpi equal 
to: a-0, b-2, c-5.4, d-17. 

density jumps as the particle passes through the bound
aries Xk- 1; 2 and Xk+I/2, the particles were "smeared 
out" in space, and this led to a certain distortion of the 
dispersion properties of the plasma[l1J, 

This method was used to determine the motion of an 
ion-acoustic wave with an initial density profile 

N(x) = 1 + N, exp [- (x- x,)' / l'), 

and a velocity in the form 11( x) = Vs ln { N( x)}, where 
No is the amplitude of the perturbation and l is its 
half-width. In the numerical calculations, the tempera
ture ratio(® = 20) and the density drop in the wave 
(N0 = 3) were taken from calculation of the proximity 
to experiment with an ionic wave of large amplitude. 
The thermal noise was set by a random-number genera
tor. 

The state of the phase space ( v, x) was displayed on 
an oscilloscope screen[14l, making it possible to trace 
the position of each particle in time. Figure 3 shows 
the state of phase space in the region of the maximum 
potential of the wave (the x scale is in units of AD, 
and the y scale is 0.5vs per division). A gradual in
crease of the slope of the wave was observed 
( t = 2wp\), and starting with a certain time there was 
observed also a reflection of the particles from the 
leading front of the wave ( t = 5.4 wi)\). The presence of 
thermal noise causes only part of the incoming flux to 
be reflected (in contrast to the case Ti = 0). At 
t = 5.4 w-\ one can see clearly three streams: one 
accelerared from the crest of the wave, one reflected, 
and one transmitted. 

Figure 4 shows the evolution of the potential of the 
wave. The small-scale oscillations of the potential are 
connected with the finite number of particles per Debye 
radius, The deceleration of the wave, the decrease of 
its amplitude, and the reflection of the particles occur 
continuously, and no pulsations were observed in the 
calculations as in the case of Ti = 0[111, 
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FIG. 4 

scope 

FIG. 5. Experimental setup: !-incandescent cathode, 2-anode, 3-
emission probe, 4-Langmuir probe, 5-profile of gas cloud, 6-pulsed 
valve. 

3. EXPERIMENT 

Production of plasma. The schematic diagram of 
the setup is shown in Fig. 5. A cylindrical vacuum 
volume (diameter ""tOO em, l"" t50 em) was evacuated 
to a pressure p ~ 10-6 mm Hg. Xe gas was injected 
from the end with the aid of a pulsed gas valve. The 
expanding gas cloud was ionized by a stream of acceler
ated electrons from an incandescent cathode placed at 
a distance ~to em from the point of injection of the 
gas. The plasma produced in this manner spreads with 
a velocity much larger than the velocity of motion of 
the neutral gas. The rate of flow of the neutral gas is 
4 x t04 em/sec. The average plasma flow velocity is 
4 x 105 em/sec. After a time ~ t msec, a quasista
tionary flow of the plasma is established. In that time 
interval the plasma parameters do not vary in time 
along the axis of the volume. The potential decreases 
along the axis; the ions produced in the part of the 
volume occupied by the gas are accelerated in such a 
way that at the opposite end of the volume their velocity 
reaches 5 x t0 5 em/ sec (2M). At some instant of time, 
when the neutral gas occupies approximately one 
quarter of the volume, a negative pulse of rectangular 
form, of duration 5-40 iJ.Sec, is applied to the cathode. 
This increases the flow of electrons from the cathode 
and the degree of ionization of the neutral gas. By 
varying the amplitude and duration of the pulse it is 
possible to vary the size of the density drop. The 
spatial dimension of the front of the initial perturbation 
of the density is ~to em. The plasma density drop 
produced in this manner approximately duplicates the 
profile of the neutral gas. 

Diagnostics. The density of the plasma and the tem
perature of the electrons were determined from the 
electronic part of the probe characteristic, plotted 
after a time 10 iJ.Sec. By differentiating this character
istic twice, it is possible to obtain the electron distri
bution function, which in these experiments was close 
to Maxwellian. Typical plasma parameters are Te 
~ 5-7 eV, ne"" 3 x t07 cm-3 , the mean free path of the 

electrons and ions is determined by the collisions with 
the neutral particles and amounts to ~ t0 3 em. 

The time variation of the ion density was registered 
with the aid of single probes operating in the ion satura
tion current mode. Since the stream velocity was large 
compared with the change of the particle velocity in the 
wave, the increase of the probe current is proportional 
to the ion density. 

The particle spectrum was measured with an ion
velocity time-of-flight analyzer. The open time of the 
analyzer shutter, which formed a narrow packet of 
ions from the investigated region of the plasma, was 
chosen to be 0.5 iJ.Sec, which is much less than the 
characteristic time of variation of the potential in the 
wave (""5 iJ.Sec). At a flight-tube length 22 em, the 
analyzer ensured a resolution of about 5% in a velocity 
interval 8 x 10 5-1.2 x t0 6 em/sec. The potential of 
the plasma was measured by an incandescent probe. 
Owing to the relatively low resistance of the plasma
probe contact and the high resistance of the output 
divider, the probe potential was close to the plasma 
potential. The probe filament supply circuit was 
turned off during the measurement time, and the 
capacitance of the filament to ground was 1-2 pF. 
This made it possible to obtain a time resolution of 
0.2 iJ.Sec. 

The velocity of the wave was determined from the 
time shift of the signals from two probes shifted rela
tive to one another along the direction of propagation 
of the wave. In addition, by measuring the amplitude 
of the potential in the wave and the shift of the maxi
mum of the distribution function ~M, the wave velocity 
M can be calculated from the expression 

llM = M -jM'-2$". 

Ion spectrum in plasma stream. Since the plasma 
potential decreases with increasing distance from the 
point of injection of the gas, the production of ions as 
a result of ionization occurs at points with different 
potentials. This leads to a scatter of the energy spec
trum of the ions in the stream. Depending on the poten
tial difference on the boundaries of the region in which 
the ions are produced, the width of the energy spec
trum of the particles in the plasma stream varies. 
Thus, by varying the dimension of the gas cloud it is 
possible to vary the energy scatter of the plasma ions 
in a certain range. 

The energy spectrum of the ions was close to 
Maxwellian, so that it is meaningful to speak of an 
ion temperature. The ion temperature in the stream 
system Ti can be determined from the expression 

i'1.e = 2yT,e, + T,, 

i.e., in comparison with the energy scatter in the 
laboratory coordinate system ~~. which is measured 
with the analyzer, Ti in the stream is smaller by a 
factor ~~/ 4~ 0 (for ~~ « 4~ 0 ); here ~ 0 = miV~/2, 
where V0 is the average stream velocity. The stream 
velocity was determined from the propagation velocity 
of the small-amplitude wave under the assumption that 
the velocity of such a wave in the stream system is 
close to vs. In addition, ~ 0 can be determined if one 
knows the potential and the total energy of the ions 
measured by the analyzer. 
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In these experiments, the energy scatter ~£ for 
different cases was varied in the range 2.5-4.5 eV, 
corresponding to an ion temperature in the stream 
Ti = 0.1-0.3 eV at £ 0 , 16 eV. 

Results of experiments and discussion. Figure 6a 
shows oscillograms of the profile of n, illustrating the 
evolution of the wave as a function of the distance 
traversed by the wave for M = 1.2 (the wave velocity 
was determined at x = 80 em). n is given in arbitrary 
units. As the wave advances, the initially smooth per
turbation becomes steeper, and oscillations appear be
hind the wave; their amplitude increases with increas
ing distance traversed by the wave, and the width of 
the wave front, starting with a certain instant, remains 
constant. As follows from the experiments, the initial 
perturbation breaks up into elementary oscillations 
with a characteristic dimension on the order of AD· 
Starting with a certain distance (x = 70), owing to the 
presence of a small number of reflected particles, a 
quasistationary motion is established. The wavelength 
of the oscillations, equal to approximately 6-7 AD, 
approximately coincides with the calculated one ob
tained for the stationary case for the same values of 
M and ® (Fig. 2). 

Figure 6b shows profiles of n in the case of a large
amplitude wave (M = 1.45, ® , 50). The arrows denote 
the positions of the particles accelerated in the front 
of the wave. The profile of such a wave differs signif
icantly from the profile of a small-amplitude wave. 
First, the increase of the slope occurs at shorter dis
tances; second, there are no clearly pronounced 
periodic oscillations behind the front, and ahead of the 
front there appear fast ions, which drift forward and 
form pedestal waves. These can include both particles 
reflected from the front and those rolling over the 
crest of the wave, but they cannot be distinguished 
experimentally. As follows from numerical calcula
tions, where analogous processes were observed, the 
main contribution is made by the reflected particles. 

Figure 7 shows profiles of n and rp at different 
Mach numbers ( ® = 50). We see that with increasing 
wave velocity the amplitude of the potential increases, 
the period and the depth of the oscillations decrease, 
and the slope of the front increases somewhat. In the 
presence of an appreciable number of reflected parti
cles, there are practically no oscillations on the profile 
of the wave (M = 1.45). 

With increasing ion temperature (® = 20, Fig. 7), 
the amplitude and period of the oscillation are much 
smaller for the same Mach numbers. 

n 
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The experimental results shown in Fig. 7 are in 
qualitative agreement with the calculations for a sta
tionary shock wave (Fig. 2). As follows from the calcu
lation (Fig. 1), at ® =50 and ® = 20 the limiting wave 
velocities are respectively M , 1.4 and M, 1.3. Ap
proximately the same values were obtained in the ex
periment, but with further increase of the amplitude of 
the initial perturbations the wave velocity increases 
slowly. This can be attributed to the fact that as the 
number of the ions reflected by the wave increases, 
the potential <I>o ahead of the front of the wave in
creases greatly, leading to an increase of the limiting 
amplitude of the potential of the wave to a value <I>cr 
, (M 2 + oi> 0)/2. In the case of small M, when oi> 0 , 0, 
the amplitude of the potential, as follows from Fig. 7, 
is close to the calculated one for a stationary wave. 

Particular interest attaches to an investigation of 
the ion velocity distribution function at different points 
of the wave profile. In each experiment, as a rule, the 
spectrum was investigated at two points of space; 
ahead of the front and behind the front of the wave. 
Simultaneously with this, the potential and wave velocity 
were measured. 

Figure Sa shows the spectrum of the ions ahead of 
the wave (1) and behind the front of the wave (2) for the 
case of a small number of reflected ions (M = 1.2). 
Behind the front, the maximum is shifted towards 
larger velocities, and broadening of the spectrum is 
observed. This form of the distribution function of the 
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ions in the wave of the potential agrees qualitatively 
with the function described by formula (3). The distri
bution of the particles in the plasma after the passage 
of the wave (at the point cp ~ 0) hardly differs from the 
unperturbed distribution. 

Figure 8b shows the distribution function of the 
particles ahead of the wave and behind the front of the 
wave of large amplitude. Behind the front of the wave 
{2) in the region of large velocities, the spectrum is 
cut off, and ahead of the front (1) there appeared a 
group of reflected particles. Since all the particles 
whose velocities (in the laboratory frame) exceed a 
certain limiting value are reflected (the shaded part 
of the spectrum of the unperturbed plasma), it follows 
that the spectrum of the reflected particles is smeared 
out. If the reflection process has a stationary charac
ter, then the spectrum should decrease abruptly at a 
certain velocity. The form of the spectrum behind the 
wave front (2) coincides, in the main, with the calcu
lated one. As seen from the phase picture (Fig. 3d, 
t = 17 wp\) and from the experimental data {Fig. 8b (2)), 
the spectrum is strongly smeared out in the region of 
low velocities and decreases quite sharply at a velocity 
approximately equal to the wave velocity. 

The smearing of the experimental spectrum behind 
the wave front and of the spectrum of the fast particles 
ahead of the wave front in the region of large velocities 
is much more appreciable than could be caused by the 
resolution of the analyzer. This can be attributed to 
the nonstationary character of the reflection process. 

In conclusion, the authors are deeply grateful to 
R. z. Sagdeev for constant interest in the work and for 
valuable advice. 
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