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An equation describing the scattering of particles by random magnetic pulsations in a strong mag­
netic field is derived. Approximate solutions to this equation are found for a number of cases in­
cluding that of a non-uniform field. The time intervals and distances over which isotropization of 
the particle beam occurs are estimated. A consequence of the scattering anisotropy is that the time 
for the scattering of particles through an angle J ~ 1T may considerably exceed the time for scatter­
ing through an angle J ~ 1. The scattering of cosmic ray particles in interplanetary space is con­
sidered on the basis of the obtained results. 

1. FORMULATION OF THE PROBLEM 

INVESTIGATION into the multiple scattering of parti­
cles in a magnetic field with random inhomogeneities 
is important for the theory of turbulent plasmas, for 
the problem of cosmic ray propagation in interplanetary 
space and for many other phenomena. This problem 
has been solved in different approximations by Dolginov 
and one of the authors of this paper in[l• 2l, by Tverskoi 
in[ 3• 4 l and by Vernov and his co-workers, using a 
numerical method, in[sJ. 

In the present report we consider the scattering of 
particles in a mildly turbulent plasma located in a 
strong magnetic field. The energy of the scattered 
particles is large compared to the energy of the plasma 
particles and their density is small. We assume that 
the spectrum of the magnetic pulsations is known and 
that it is statistically isotropic. The higher order cy­
clotron harmonics, which exert a strong influence on 
the scattering when the angle between the particle 
momentum and the magnetic field is close to TT/2, are 
taken into account. Scattering at such angles may prove 
to be extremely small if the magnetic turbulence spec­
trum decreases with increase in the wave number. As 
a result, the distance over which the scattering of the 
particle beam through an angle J ~ 1T (isotropization) 
occurs, may be made considerably larger than the dis­
tance over which the particles are scattered through 
an angle J ~ 1. The slow variation of the large-scale 
magnetic field in space may increase this distance 
still further. 

We determine in this paper the form of the particle 
distribution function for small angles and for angles 
close to TT/2, and estimate the distance over which 
isotropization occurs. The results of the computation 
are used to explain the observed scattering of cosmic 
ray particles emanating from the sun. 

2. THE KINETIC EQUATION 

To solve the problem of the multiple scattering of 
particles in a strong magnetic field, we use the equa­
tion obtained in[ 1l: 
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( a- a ) ae+va;-HoD F(r,p,t) 

= f D"B",(r, tlr(--r).--r)exp{ -1\p(--r) :p} D,F(r,p,t---r)d--r. 
(1) 

Here, H0 is the intensity of the regular field,* 

D=-e [p.~] 
me ap 

-the momentum rotation operator, and Batl(r, x, r)­
the random magnetic field correlation tensor. The 
argument r describes the slow variation in space of 
the square of the random field, x and r-the attenua­
tion in space and time of the correlation between the 
components of the random field; ar( r) and ap( r)-the 
change in the coordinates and momentum of the parti­
cle in the regular field H0 ( r ), which may be assumed 
uniform over distances of the order of the Larmor 
radius. 

If the regular field H0 is sufficiently strong, so that 
the perturbation of the motion of the particle by the 
random field in a time interval of the order of the 
cyclotron period is small, then the distribution func­
tion F(r, p, t) may be averaged over the angle of rota­
tion. As a result, the left hand side of Eq. (1) to the 
zeroth order with respect to the small ratio of the 
Larmor radius R = cp/ eH 0 to the variation scale L of 
H0 , takes the form(s] 

aF 8F 1 aF -+ vcos-1}---(Vh)vsin-1}-at az 2 att ' 
{2) 

where h is the unit vector in the direction of H0 , and 
z is the coordinate measured along the line of force of 
H0 • The last term in {2) describes the change in the 
angle between the momentum and the direction of H0 

in the inhomogeneous field due to the conservation of 
the adiabatic invariant Pi/H = const. 

We assume that the magnetic pulsations, which are 
described by the tensor Bat!• arose as a result of cer­
tain linear oscillations of tlie plasma. In that case, 
they can be regarded as the superposition of harmonics 
with random phases and some definite dispersion law 
w(k). For a statistically isotropic turbulence, the 
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tensor Ba{:l can be written in the form 

B.~(r, M(-r), -r) = J B (k) ( 6.~- k~~~) e'l""•-•(•>•1 d'k. (3} 

The function B depends on the absolute magnitude of 
k and on r, which describes the weak spatial depend­
ence of the turbulence spectrum. The quantity ~r( T) 
has the form 

v1. [hv1.] 
M(-r)= hv 11-r+Q·sin!:h+-!:l-(1-cos!h), (4) 

where v 11 , v1 are the components of the velocity of the 
particle parallel and perpendicular to h; ~~ = eHo/mc, 
being the relativistic mass of the particle. 

Substituting in (1) the quantities (3) and (4) and the 
corresponding expression for ~p( r), and averaging 
over the angle defining the direction of the vector v 1, 
we obtain the required equation: 

aF aF 1 aF 
- + v cos \t-- -(Vh) v sin~-at az 2 0\t 

1 ( e )' 1 a aF =- - ---b(t})sintl--. 
2 me sin tl- Otl- 0{} (5} 

The coefficient b( ~) is given by the integral 

- k 2 

b(tt)=J d-rJ d'kB(k)[( 1- k~ sin'<p) cosQ-r 

k 2 

+ T sin <p cos <p sin !:h] exp { ik 11 v. 1-r 

+ ik1.R1. [sin(Q-r- <p) +sin <p ]- iw (k)T}, (6) 

where R1 = v 1 /n and cp is the angle between k and v 1• 
Let us suppose, for the sake of definiteness, that 

the magnetic pulsations are produced by small ampli­
tude Alfvim waves. In that case, 

(7) 

where UA is the Alfven velocity ( UA « v) and y is a 
small imaginary part. We choose the spectral function 
B(k} in a form corresponding to a spectrum that de­
creases at large k according to the power law: 

(8) 

Here, 

A,= 4n'hLo' 'f(v/2-'/,) 
(v > 1), (9) 

(HU r)) is the mean square of the random field and 
k01 = Le-the correlation length. For such B(k), the 
magnetic energy density per unit interval of the wave 
numbers is, for k >> k0, proportional to k-11 • Accord­
ing to experimental data given inr 7- 111 , for interplane­
tary magnetic field the exponent 11 assumes in differ­
ent parts of the spectrum values ranging from 1 to 3.8. 
Henceforth, we shall consider the case R << Lc when 
the scattering of the particles is determined by just 
this power-law part of the spectrum. 

Substituting the quantities (7) and (8) in the integral 
(6) and using the well-known formulas for the Bessel 
functions, we express b(e) for R « Lc in the form of 
a sum 

b(tt) = ~2-:t'R--=1.'-'A...,..., t { [ (n + 1) (n- :!......2 - 1) +a,.'] 
lv1,- uAI "~' 

~J J.'(x)xdx ( v 2) , 5~ J.'(x)xdx 
X o (x' + an')'l'+' + (n + 1) 2 + an o (x' + a.')'i'+' 

1 ( v ) -5 J:dx)xdx (lO) 
- (n + ) 2 + 2 an'' (x' +a.') '•'+' 

+ [ ( 1) ( + v + 3 ) ']~J J!+z(x)xdx } 
n+ n 2 +a. "(x'+a,.';·'+' +~(\t), 

where 
~ ({}) = 2nJ dkll dkl. ~~~'kl.B~k)l,'(kl.Rl.) (11) 

k [y-tk,(v 1 -u")] 

In all the summands of formula (10), except the last, 
the passage to the limit y- 0 has been carried out. 
However, such an approximation turns out to be too 
crude for the calculation of {:l( ~ ). 

For v 1 << 1 v 11 - UA 1, the main contribution to the 
sum over n is made by the term containing J~( x). 
Putting J~ ( x) R> 1, discarding all the other terms, and 
integrating with respect to x, we have 

b = 2n'A,Iv 11 - uAI'-' / (v + 2)Q' + ~ (lt). (12) 

In the opposite limiting case v 1 » I v11 - UA I, it is 
necessary to take into account all the terms of the 
series (10}. Since the large values of x are the im­
portant ones in the integral, we may use the asymp­
totic expressions for Jn(x) and substitute for the 
square of the cosine, its average value which is ?'2. 
Summing the series, we obtain 

b=2n"'A,f('v/2+'/,g(v+1)lvu-uAI' +~(tt), (13) 
f(v/2+2)Q'vJ. · 

where /;(x) is the Riemann function. Apparently, for 
an arbitrary relation between v 1 and I VJJ - UA I, suf­
ficient accuracy will be given by some simple interpo­
lation formula which will go over in the two limiting 
cases into (12} and (13). 

The summand {:l( ~) describes the scattering of the 
particles moving along the magnetic field with the 
velocity UA of the waves, i.e., the particles which are 
in Cerenkov resonance with the waves. In the approxi­
mation y- 0, the effective time of interaction of such 
particles with the waves turns out to be infinitely large, 
and the width of the resonance--zero. But in order to 
calculate the isotropization time for the particles, we 
must allow for a finite width of the Cerenkov resonance. 
One of the causes guaranteeing this width is the atten­
uation of the Alfven waves with the decrement[ 121 

y(k)=~(2:!.._+__c_). 
2 p 4no 

(14} 

where 1) and a are the coefficients of viscosity and 
electrical conductivity and p is the density of the 
plasma. Substituting (14) into (11} and evaluating the 
integral, we obtain for y~R2/ I vu - UA 12 » 1 

( ) 10nf(v/2- 'f,)A,L,'-' (15) 
~ \t = vf(v/2)y, ' 

and for y~R 2/I v11- UAI 2 « 1 and 11 < 3 

~(lt)= 2nC,A,y,R1.'-:R' . (16) 
lvll-uAI 

Here y 0 denotes the value of y(k} when k11 = R-\ 

J~ J~ xy'l,'(x) 
C,=

0 
dx 

0 
dy (x'+y')'l'+' 

is a constant of the order of unity. 
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The second cause of the broadening of the Cerenkov 
resonance is the scattering of the particles as a result 
of which their longitudinal velocity varies in the vicinity 
of the value vu = UA according to the law 

Vn('t') = UA ± V9't', (17) 

and the particles get out of resonance with the wave. 
The angular velocity e of rotation of the momentum of 
a particle by the random field is roughly equal to 
eH/ me, where H is the mean field of the waves with 
wave vectors of the order of the reciprocal of the 
Larmor radius of the particle or larger, i.e., those 
waves which effectively scatter particles. Formula (17) 
describes the action of the same magnetic inhomogenei­
ties on the particle during the time T. It is precisely 
because of this that ( vu - uA) increases linearly with 
T, and not with .fT, as in the case of diffusion in angle 
space. In the ca-se of the spectral function (8), we have 

. e"'f(H,') ( R )<•.:<),; 
a~----- . 

me L, 

(18) 

In accordance with (17), we shall have for not too large 
T 

(19) 

whereas t:.r 1 ( r) is given as before by the last two 
terms of formula (4). The time of resonance interac­
tion of a particle with the waves is defined as the time 
of interaction of the particle with a region of the field 
the dimensions of which are of the order of R. We find 
this time with the aid of (18) and (19): 

-c.~v~ =_!_V H. (_!::_)<·-·>'·. (20) 
vll Q (H,')''• R 

For a rough estimation of the term {:3( J) under the 
conditions when the collision width plays the dominant 
role, we may use (15) and (16), writing, in place of y 0 

in these formulas, the value of 1/r0 given by (20). 
As a result, the equation takes the form (5) when 

averaged over the angle of cyclotron rotation of the 
particles, b(J) being then given by the formulas (12)­
(16). These results have been obtained for isotropic 
distribution of the wave vectors of the random field. 
U all the k were directed along H0 , the quantity b ( J) 
would, for any v 1 and vu - UA, be given by (12) while 
the term containing {:3( J) would not appear at all. Such 
a case has been considered by Tverskot[4J. 

Notice that Eq. (5) does not describe the motion of 
the particles across the lines of force of H0 • Such a 
motion arises in the subsequent orders with respect to 
the small ratio R/L. Also, Eq. (5) does not include 
terms describing the acceleration of the particles. 
These terms are (uA/v)2 times smaller than those 
corresponding to scattering. Thus, Eq. (5) is suitable 
for the description of the motion of the particles the 
velocity of which is much larger than the velocity of 
the magnetic pulsations during the time t:.t << Ta, 
where Ta is the time interval during which the energy 
of the particles changes appreciably. The process of 
isotropization of the particles, which is a more rapid 
process than the acceleration process, is investigated 
below with the aid of this equation. 

3. MULTIPLE SCATTERING OF PARTICLES IN A 
MAGNETIC FIELD 

It is possible to obtain an analytical solution to Eq. 
(5) for angles satisfying the conditions J « 1 or 
1 cos J I « 1. Setting in the first of the specified 
regions sinJ Rl 9, cosJ Rl 1, we transform Eq. (5) for 
the stationary case into the form 

/JF- _!_(.Vh)-& /JF = _f _..!_~ ~ .!.._. (21) 
/Jz 2 {)flo . l(z) flo 8flo flo /Jflo +flo l!(flo)O(z- z,), 

where a point source has been added to the right hand 
side. The quantity l(z) is determined from (9) and (12): 

Z(z)= 4(v+2)r(v/2-'/z) H,' (~)·-• L,. (22) 
vr(v/2)"'fn (H,') R 

It has the meaning of the mean free path a particle with 
respect to scattering into an angle of the order of 
unity. The mean free path depends upon the momentum 
of the particles and upon the field intensities ( H~) and 
H0 according to the law l ~ p2-11H~/( H~). For 11 > 2, 
the mean free path decreases with increase in the en­
ergy of the particle. This is explained by the fact that 
as the Larmor radius increases, the scattering in- . 
homogeneities increase both in scale and in number. 

The solution of Eq. (21) may be obtained by slightly . 
generalizing the method used in[ 1J. We give the final 
result: 

H,(z) { flo' } F(z,fJo)= exp ----- • 
:n:H,(z,)fJo'(z) f)'(z) 

(23) 

where 
flo'(z) = 4J' H,(z)dz' 

,, H,(z') Z(z') · (24) 

The solution (23) is valid provided J2(z) < 1. 
U the dependence of H0 and l on z can be neglected, 

then the mean square of the scattering angle (24) in­
creases linearly with distance from the source. U H0 

and H1 vary with distance according to one and the 
same power law H0 ~ H1 ~ (zo/ztJI., while the shape of 
the spectrum (the quantities 11 and Lc) remains un­
changed, then for z >> z0 

flo'(z)= 0 -
- 4z ( z ) "(•-Z)+t 

(a(v -1)+ 1]l(zo) z0 • 

(25) 

Let us apply these results to the scattering of low 
energy solar particles in interplanetary space. Accord­
ing to the Parker model[ 13l, in the region inside the 
earth's orbit, a Rl 2 for the large-scale magnetic field 
H0• According to measurements made on Mariner-4[Io] 
the spectrum exponent 11 = 1.5 ± 0.2. U the larger part 
of the magnetic inhomogeneities is generated near the 
sun and then transported into interplanetary space by 
the solar wind, then H1 should vary roughly linearly 
with H0 • This conjecture is confirmed for the region 
outside the earth's orbit by measurements[Iol; when 
the distance from the sun increased from 1AU to 
1.43 AU, the value of ( HD decreased by a factor of 
2.4 and H~-by a factor of 2.5. Notice that according to 
Parker's model, the field should decrease rather more 
slowly. As the plasma is radially dispersed the trans­
verse-with respect to the scattering direction-scale 
of the inhomogeneities should increase linearly with 
distance, but small-angle scattering is determined by 
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the longitudinal dimension of the inhomogeneities which 
remains approximately constant. 

Substituting into (25) a = 2 and 11 = 1.5, we find 
that J 2 does not depend on z. If then J 2 < 1, the parti­
cles generated on the sun should arrive on earth in the 
form of a corpuscular stream of large anisotropy. 
Such anisotropic streams of protons of energy of 
several MeV and, lasting many hours, have been re­
corded more than once in experiments by Vernov and 
his collaborators£ 141 • The possibility that the situation 
considered above was approximately realized in these 
cases is not to be ruled out. It should be noted that the 
condition J 2 < 1 is not fulfilled at that level of mag­
netic pulsations that is cited in[loJ. However, that can­
not be a decisive argument against the considered 
model since the level of pulsations fluctuates strongly 
even from day to day. 

If the source of the particles operates for a long 
time, i.e., if a stationary formulation of the problem is 
possible, then there will exist in the region of applica­
bility of the solution (23), together with the anisotropic 
stream, isotropized particles which, having undergone 
large-angle scattering at points far away from the 
source, had diffused back to the source. But a simple 
estimation shows that the number of such particles 
will be small. For example, if l = const., then in the 
region r « l, where the solution (23) is applicable, the 
density of the isotropic background will be roughly 
(r/Z )2 Rl () 4 « 1 times the density of the corresponding 
anisotropic stream given by (23). The separation of the 
anisotropic current from the cosmic ray plasma back­
ground is fully within the reach of modern experimental 
means and is confidently carried out in experiments[14 l, 

We should note also that the value for the spectrum 
exponent 11 = 1.5 cannot be considered as having been 
finally established. According to data obtained by 
Burlaga and Ness£ 11• 151, the principal part of the small­
scale inhomogeneities of the magnetic field in inter­
planetary space is due to tangential and rotational dis­
continuities. The spectrum exponent has then the 
value 11 = 2 and the formula (25) leads to the depend­
ence J 2 ~ z - the same as when the particles are 
scattered in a homogeneous medium. 

In the considered region of space, where the small­
angle approximation is applicable, it is easy to obtain 
the solution of the nonstationary problem as well. Let, 
for example, the source be time independent and not 
monoenergetic: Q = f(t)cp(v)6(z- Zo)6(J)/J. The 
kinetic equation, in the same approximation as for (21 ), 
takes the form 

__! aF + aF _ ~(Vh)t}~ = _1_!_~,t} aF 
v at az 2 att l(z) t} at} · att 

1 
+~6(tt)j(t)rp(v)6(z-z,). {26) 

Its exact solution may be written as 

F=f(t-(z-z,)/v)rp(v)H,(z) exp{- _tt' }. {27) 
nH,(z,)tt'(z) t}'(z) 

This may readily be verified by a direct substitution. 
We note a few properties of this solution. 

Even for an instantaneous outburst in the source 
(f (t) = O(t)), a detector will record a finite duration 
of the outburst if the particle source is not monoener­
getic. The recorded duration of the flare will be 

z-z, 
ilt=--Av 

v' ' 
{28) 

where llv is the spread in the velocities of the parti­
cles in the source. As llv- 0, we obtain llt -0. 
This result is connected with the use of the small-angle 
approximation in which all terms of the order of and 
higher than J 2 are discarded. In fact, the duration of 
the instantaneous monoenergic outburst as recorded by 
a detector will be 

z-zo _ 
llt~--tt•. 

v 

It is determined by the fact that the longitudinal veloci­
ties of the particles are confined within the limits: 
from v to a value of the order of v( 1 - J 2 ). The dura­
tion llt has the order of the J 2-terms which were 
neglected in the equation in comparison with the time 
of flight of the particles from the source to the detec­
tor. 

We note also that the distribution of the particles 
according to their velocities at a fixed moment of 
time, recorded by the detector and proportional to the 
quantity 

t( t- z-:z,) rp(v). 

does not coincide with the spectrum in the source. 
Let us now consider scattering in the region of 

angles where the inequality x = 1 cosJ 1 « 1 holds. In 
this region, the first term in (13) is small and it de­
creases as VIJ - UA while the second term peaks at 
v 11 = UA· Therefore, the quantity b( J) has a minimum 
at some value x = x0 which may be determined from 
(13) and (16): 

(29) 

where, for simplicity, we have neglected UA in com­
parison with v. If x0 is of the order of unity, then the 
minimum of b( J) is not deep and does not exert any 
significant influence on the scattering. But if x0 « 1, 
then the scattering is greatly weakened for angles such 
that I cos J I Rl x0 , which leads to a considerable in­
crease in the time of isotropization of the particles. 
Let us consider this interesting case in greater detail. 

For the region 1 >> x > x0 and for H0 = const, Eq. 
(5) takes the form 

1 aF aF 1 a aF 
--±x-=----·x•-., 
v at az l'(z) ax ax 

where the signs ± correspond to cosJ ~ 0, and the 
quantity 

l' 4(v+2) H .. (L, )•-• 
(z)= (v'-1g(v+1) (H,') R L, 

differs from 1 ( z) by a factor of the order of unity. 

(30) 

(31) 

Let us begin the analysis of Eq. {30) with the case 
when 11 = 2. We neglect the spacial inhomogeneity of 
the system (aFjaz = 0, Z' = const) and follow the 
filling-up of the region of angles between x = x0 and 
x = x1 (x0 « x1 « 1). Eq. (30) may be written as 

aF a'F aF 
-=x'-+2x-
a-r: ax' ax • 

{32) 

where T = vt/l'. We impose on the distribution func­
tion the boundary conditions F(x1) = F 1, F(x0 ) = 0. 
The constant F 1 Rl ( 21T rl if the region X > xl is filled 
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with particles and the distribution function is normal­
ized to unity. The second condition corresponds to the 
supposition that particles which reach the boundary 
x = x0 , i.e. the central maximum region of b(J}, are 
instantly transported to the backward hemisphere of 
angle space. Such an approximation is sufficient for a 
rough estimation of the isotropization time. 

Solving Eq. (32} with the specified boundary condi­
tions, we have 

F (x, t') = F 1 (t- x; ) + ,~- ~ Ane- (•!·••• )'.sin (J.nln_3_), (33} 
f X n=l Xo 

where Xn = nn/ln(x1/x0 ). The coefficients An are to 
be found from the initial conditions. The time required 
to fill up the region x1 > x > x0 , as found from (33), is 
roughly given by 

't, ~ (..!_+_n• -)-' 
4 ln' (x,/x,) 

(34) 

This time varies from zero for a broad resonance 
Xo R:: x1 R; 1 to the value T1 = 4 for x0 - 0. The time 
T 0 required to scatter particles through an angle J ~ 1, 
according to the foregoing results, is roughly equal to 
unity. If the initial distribution is such that the number 
of particles for which J < 'IT/ 2 is roughly the same as 
the number for which J > 'IT/2, then the isotropization 
time Ts R; To+ T1. But if at the initial moment the 
distribution is considerably anisotropic, for example, 
if J R; 0 for all the particles, then the isotropization 
time will be considerably larger than To+ T1. This 
is explained by the fact that the "leakage" of particles 
from the forward to the backward hemisphere of angle 
space takes place slowly for small x0 , The rate of 
transition of particles into the backward hemisphere 
dN/ dT is obtained by integrating (32} with respect to 
x: 

dN / d't = -x,'F' (xo), (35) 

where the prime denotes differentiation with respect to 
x. We determine from this the order of magnitude of 
the isotropization time: 

(36} 

Let us estimate F'(x) in the quasi-stationary approxi­
mation, assuming that Ts » To+ Tto When Ts >> T 

>> T 1, only the first term on the right hand side of (33) 
remains. This term does not depend on time and 
yields a quasi-stationary distribution of the particles in 
the forward hemisphere. Using the indicated value for 
F, we find the isotropization time: 

rr:, = x,-';::;:, 1. (37) 

The solution (33) and the above estimates for the 
characteristic times show that during a time interval 
of the order of ts = l'/vx0 (at a distance of the order 
of l'/x0 from the source) the corpuscular stream has 
a peculiar structure: the forward hemisphere is almost 
completely filled with particles while the backward 
hemisphere contains a small number of particles, and 
a steep gradient exists at x = x0 in the angular distri­
bution. 

For 11 >" 2 the qualitative features of the isotropiza­
tion process remain the same as for 11 = 2. For the 
isotropization time we obtain the estimate Ts R; x~-ll, 
valid for x~-ll » 1. The mean free path with respect 

to scattering through 1T, according to this estimate and 
formulas (29) and (31), has the order of magnitude 

(38) 

An additional increase in the mean free path A oc­
curs if the regular field H0 is nonuniform and the 
particles move in the direction of decreasing intensity. 
Focusing, arising as a result of the conservation of 
the quantity sin2 J/H 0 , hinders the penetration of the 
particles into the backward hemisphere. 

The corresponding estimate may be obtained in the 
following fashion. In a mildly nonuniform field Eq. (5) 
for the stationary case takes the form 

d'F dF 
x• dx' +(vx•-!_ e,)dx = 0, 1 ;J;>x > x,. (39) 

where e 1 = Y2 l 'div h = const.; e 1 > 0 if the particles 
move in the direction of decreasing H0 • Let us solve 
(39} with the same boundary conditions that were used 
to obtain (33). 

For e 1 << 11x~- 1 , we obtain the same result as in 
the case when H0 = const., while for e 1 >> 11x~- 1 , we 
shall have 

F(x) = F, {t- exp [ e,(x•-'- x,V-') ] } . (40} 
( v -1)x,v-• x•-• 

An estimation of the isotropization time yields 

x,'-• [ e, ] 
't,=a,-exp (v-1)x;-' • 

(41) 

Consequently, for e 1 >> 11x~-r, it is necessary to 
multiply the mean free path A given by formula (38} by 
( Xo / e r) exp ( () 1 / ( 11 - 1 ) x~- 1 ) . 

Using experimental magnetic spectrum data, we can 
estimate with the aid of the obtained formulas the mean 
free path of low energy particles in interplanetary 
space. However, experimental results obtained by dif­
ferent authors at different times appreciably differ 
from each other. Using the Mariner-4 data[1oJ and 
estimating the collision width of the Cerenkov reso­
nance with the aid of the formulas {20} and (29}, we 
find for protons of energy 1 Mev x0 = 0.9. This means 
that the weakening of the scattering when x R; x0 is 
small in this case. Estimation of the transport mean 
free path from the formula (22) yields a value of the 
order of 0.1 AU. Such a value agrees with the experi­
mental data obtained by Vernov et al.r 14 l on the dif­
fusive propagation of low energy particles in inter­
planetary space. The transport mean free path com­
puted from the data obtained by Sari and Ness[ 11 l turns 
out to be greater than 1 AU. If the main contribution to 
the observed magnetic spectrum is made by discon­
tinuities in the magnetic field, as is proposed in [uJ, 
then the theory developed here may prove to be inap­
plicable since a particle can be scattered at once 
through a large angle as it passes through a discon­
tinuity. 

The authors are grateful to V. V. Batygin and A. A. 
Rumyantsev for a discussion of the paper. 
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